
Event driven programming in Perl using the Event module

Event driven programming in Perl using the Event module
.2.00Jochen Stenzel (perl@jochen−stenzel.de)7 December 2000

Table of Contents

1. Introduction

1.1. The task
1.2. Implementations of asynchronous programs
1.3. Event handling with Perl
2. An overview of the Event module

2.1. The watcher concept
2.2. Making watchers
2.3. Starting the loop
2.4. A complete example
3. Event in detail

3.1. Watcher attributes
3.2. Object management
3.3. A watchers life cycle
3.4. Priorities
3.5. Watcher teams
3.6. Writing callbacks
3.7. Loop management
4. Watchers by example

4.1. Signal watchers
4.2. Excurse: Callback setup
4.3. Timers
4.4. I/O watchers
4.5. Excurse: Passing user data
4.6. Idle watchers
4.7. Variable watchers
4.8. Group watchers
5. Advanced features

5.1. Watching Watchers
5.2. Watcher suspension
5.3. Customization
5.4. Event and other looping modules
6. Using the C API

6.1. Preparations
6.2. Perl watcher and C callback
6.3. C watcher, C callback
6.4. C watcher and Perl callback
7. Application examples
8. Outlook
A. Data

Event driven programming in Perl using the Event module 1

mailto:perl@jochen-stenzel.de
O watchers
O watchers
O watchers

A.1. About this document

Event driven programming in Perl using the Event module

2 Event driven programming in Perl using the Event module

1. Introduction

1.1. The task

Everyone of us knows programs like this

A click somewhere, and something happens. Another click somewhere else, and (usually) anything else happens. If
my application is a web browser receiving a site from a server, the browser is able to take this site while it is still
usable. Hopefully. So, if I prefer, I can stop the download even before it is completed by just clicking a button or
choosing a menu option.

Clicks, server messages and menu choices are events. The principle of such a program is to work on basis of
events. And regardless of time and frequency of events, in every case the appropriate handler function is called to
serve it. This could be illustrated like this:

Various graphical interfaces do even more than that: they work asynchronously as well. This means that a second
event can be detected while the first event is served, a user has not to wait until the first result arrives. It also means
that the results of earlier events can be provided before the results of later events.

1. Introduction 3

 If I request a web page and use the same application
 to check my mailbox while the page is loaded, mails
 may arrive before the page.

Contrary to this, programs without a graphical interface usually work synchronously and can handle events only if
they are expected:

The first event will be served first, and the second subsequently. (Well, signal handlers are an exception here both in
Perl and C − in a limited matter.)

 A usual shell (without job control) cannot handle new
 commands while it is still processing another. But while
 it offers a prompt, it cannot do anything until the user
 will have been entered a new command.

But there is no need to restrict the event driven, asynchronous architecture to graphical interfaces. (Even if it is really
hard to imagine a synchronous GUI.)

 An asynchronous shell would provide a new prompt
 while it processes a command, so the user could already
 enter new commands. The shell would process all entered
 commands simultaneously and would offer the first
 available result first, regardless of the command
 order.

Event driven architectures are really worth a thought everytime a program has several handling lines which do not
strongly depend one from another, if these subtasks need certain start impulses and if they could be finished
(completely or in parts) quick enough to avoid mutual blocking.

 Independend tasks could be

 − background calculations;
 − preparation of data to provide them quickly on request;

Event driven programming in Perl using the Event module

4 1. Introduction

 − displaying process progress while the process still progresses;
 − accepting commands;
 − receiving data from other processes;
 − supervision of several IPC connections (e.g. IRC);
 − signal processing;
 − date reminding;
 − ...

1.2. Implementations of asynchronous programs

There are several ways to build asynchronous programs. Multiprocess systems on base of fork() are very popular
(think of the usual servers). Threads are a light weight variant of them. And, finally, event driven programming is
another way. This term, from now on, is used in this document for systems handling occuring events on base of a
loop. Each of these systems has certain advantages and disadvantages:

method expense data sharing parallelism remarks

fork() relatively high (depending
on the operating system)

difficult (theoretically)
real

the system limits the
number of processes

Threads relatively low (sometimes enormous)
synchronization overhead

(theoretically)
real

not really usable in perl
5.005

event driven
programming

low simple serialization long running tasks
have to be split up or
delegated

With all these methods, the solution has to be split up into several parts.

Note: The mentioned methods do not mutually exclude each other in a program. Sometimes it can be useful to
combine them to get the greatest possible advantage (see the callback section for examples). But here I first want to
point out ways to implement the base algorithm.

Event driven programming turns out to be real alternative here!

1.3. Event handling with Perl

A simple form of event handling is provided by %SIG. This interface is simple indeed, easy to use − and limited. It can
handle signals only, for example, and there is no loop.

But Perl provides a real base function to implement event driven programs: select() lets the system take control
until one of certain user defined events occurs. This can be made the base of a loop. Additionally, an optional timeout
can be set to reactivate the program if nothing else happens. Events are described by vectors which make the
interface more sophisticated, but the IO::Select module simplifies both usage and readability as a wrapper.

Well, on the other hand, select() and IO::Select are restricted to exactly one timeout and events happening on
handles. Other types of events are not covered. Changing and maintaining event masks is not easy. While it
is possible to build event loops basing on select() / IO::Select, building them a flexible way could become a
challenge.

But there is no need for such effort: Event by Joshua N. Pritikin (CPAN−ID JPRIT) provides a powerful, flexible,
scalable and fast event loop with a relatively easy interface, designed for various event types. It gives you the chance
to build event driven scripts in minutes. Besides this, Event code is easy to read.

Event driven programming in Perl using the Event module

1.2. Implementations of asynchronous programs 5

Event driven programming in Perl using the Event module

6 1.2. Implementations of asynchronous programs

2. An overview of the Event module
In event driven process models, all essential things happen in exactly one process. To manage this, they install an
event loop − a base function which embeds, controls and serializes anything else. While the loop is running, two
tasks have to be performed again and again: events have to be recognized and associated functions have to be
called to handle them.

As usual, Event implements the serialization of handler calls by a queue. To detect events, the module uses special
objects called watchers.

2.1. The watcher concept

Event works an object oriented way. Its main actors are so called watchers which expect the happening of certain
events and are prepared to initiate appropriate answers.

These watchers are very specialized. Each of them is responsible to detect events of a certain type. Some look for
IO events, others for timers, others detect signals and others watch variables. There is even a group of watchers
trained to recognize "nothing" − they get alarmed if the program is idle. And finally, a group of special agents
shadows other watchers.

events watcher

I/O io

timer timer

signals signal

2. An overview of the Event module 7

nothing else happened idle

variable access var

other watchers acting group

Well, technically spoken, all these various watchers of course are objects of several classes derived from
Event (Event::io, Event::timer etc.). They connect certain events and certain functions.

As soon as a watcher detects an occurence of its target event it initiates the call of its handler. Well, in principle.

The real process is more complex: in order to ensure the teamwork of all watchers, Event uses intermediate steps to
perform the call of an event handler. If an event is recognized, a watcher generates a new object of a special
Event subclass (Event::Event or Event::Event::Io, respectively) and stores it in the queue. (To avoid
confusion, I will use Event::Event only from now on to name that class.) This object represents an order and
contains informations about the detected event, the handler to call and the detecting watcher. By doing so, the
watchers event handling is done, and it continues immediately to watch for events again.

Event driven programming in Perl using the Event module

8 2. An overview of the Event module

The generated Event::Event object, on the other hand, remains in the queue until it is processed in the loops
handling phase. The loop then calls the handler function referenced in the object.

Event driven programming in Perl using the Event module

2. An overview of the Event module 9

After the order is carried out completely the loop destroyes the order object.

An order object in the queue is no longer influenced by its "parent" watcher. It only contains a reference to it. That's
why at a given time a number of Event::Event objects may be stored in the queue which are all made by the same
watcher. Every watcher provides a method pending() which supplies its still queued orders in a list context:

 # get the still pending orders
 @pendingOrders=$watcher−>pending;
 # How many still unhandled tasks did the watcher produce?
 print $watcher−>desc, ": ", scalar(@pendingOrders), " tasks\n";

In a scalar context, pending() supplies a true value if such orders still exist.

To sum things up at this point, three important parts of the Event model became already visible: watchers to
recognize events, callbacks (stored in queued Event::Event objects) to handle them and the loop which controls
everything using a queue. And so, watchers, loop and callbacks are the base elements of Event programming.

Event driven programming in Perl using the Event module

10 2. An overview of the Event module

2.2. Making watchers

An Event loop without active watchers would do nothing, and that's why such a loop terminates itself immediately.
So, to avoid this, at least one watcher is installed usually before the loop starts:

 # install an io watcher to check STDIN and
 # initiate callback() calls if anything happens
 Event−>io(fd=>*STDIN, cb=>\&callback);

Watcher constructors are named according to their type. In this example, an I/O watcher was built. Watchers of the
other types could be installed by similar constructor calls (Event−>timer(), Event−>var() usf.).

The behaviour of a watcher is controlled by its attributes. All the parameters passed to an constructor call are simply
attribute settings configuring the watcher properties. Usually, only a subset of available attributes is used explicitly in
a watchers constructor call, the remaining attributes are set by default. In the example above, the made I/O watcher
should call a certain function callback() if something happens at handle STDIN.

There is no limit in the number of watchers, you can build as many as you need.

And here comes another example, installing a timer:

 # install a pizza alarm facility
 Event−>timer(
 at => time+300,
 cb => sub {warn "Look at the pizza!";},
);

All these shown example watchers become active immediately after the constructor call. This means that they detect
events. But, to give them a chance to handle these events, you have to establish the loop.

2.3. Starting the loop

If there is at least one active watcher, the loop can be started. This is done by the class method loop():

 Event::loop;

Event driven programming in Perl using the Event module

2.2. Making watchers 11

And that's all! Your script is running event driven now. Linear and synchronous program flow is left behind. If there
are statements after the loop() call, they are delayed until the loop processing will be stopped.

As long as the loop runs, the program is controlled by the installed watchers, their callbacks and, of course, by
occuring events.

A running loop can be stopped by the class method unloop():

 Event::unloop();

This method stops the running loop without effect to the installed watchers. This means that you could restart the loop
later on by a new call of loop() and it would run as before.

Obviously, unloop() calls has to be implemented in watchers callbacks.

2.4. A complete example

The following example demonstrates all base elements of Event programming together.

 # set pragma
 use strict;

 # load module
 use Event qw(loop unloop);

 # install initial watcher
 Event−>io(fd=>*STDIN, poll=>'r', cb=>\&io);

 # start loop
 loop;

Event driven programming in Perl using the Event module

12 2.4. A complete example

 # FUNCTIONS ###

 # io handler
 sub io
 {
 # read line
 my $cmd=<STDIN>;
 chomp $cmd;

 # stop processing, if necessary
 unloop, return if uc($cmd) eq 'QUIT';

 # get alarm data
 warn("[Error] Wrong format in \"$cmd\".\n"), return unless $cmd=~/^(\d+)\s+(.+)/;
 my ($period, $msg)=($1, $2);

 # install a new one shot alarm timer
 Event−>timer(
 prio => 2, # before IO;
 at => time+$period, # set alarm;
 cb => sub # callback;
 {
 warn "[Alarm] $msg\n"; # inform
 $_[0]−>w−>cancel; # clean up
 },
 repeat => 0, # one shot;
);

 # display a message
 warn '[Info] Your timer "', $msg, '" is running.', "\n";
 }

This script is a reminder: you can enter dates and it will remind you.

 Working on the current project, at 17:20 you
 realize that you will have to interrupt in a
 while, so you quickly note:

 3600 Last metro today!
 [Info] Your timer "Last metro today!" is running.

 A few minutes later, you start the coffee
 machine but immediately continue working.
 Just for safety you type in:

 300 coffee
 [Info] Your timer "coffee" is running.

 Now this evening is saved. Five minutes later
 a message arrives:

 [Alarm] coffee

 , and just in time 18:20 the message

 [Alarm] Last metro today!

 reminds you to go home.

Simply, isn't it?

Event driven programming in Perl using the Event module

2.4. A complete example 13

Event driven programming in Perl using the Event module

14 2.4. A complete example

3. Event in detail
This chapter describes details of Event which the introduction could not provide.

3.1. Watcher attributes

The properties of a watcher are determined by its object attributes. Attributes are set explicitly in a watchers
constructor or later on by attribute methods. Besides this, a lot of attributes require no explicit setting because they
have reasonable default values.

A number of base attribues are owned by watchers of all types.

base watcher attributes
attribut description

unlimited
access:

cb callback function to be invoked if an event happens

debug trace level setting

desc watcher description, useful to identify and search the watcher

max_cb_tm callback timeout, a callback is interrupted and terminated if it exceeds this limit

prio priority

reentrant a flag permitting nested callbacks

repeat controls if the watcher stops after the first event or not (please note that stopping a watcher does
not mean to cancel it − a stopped watcher is inactivated but still registered − see the watcher state
chapter for details)

read−only
access:

cbtime time of last recent callback invocation (if you check this in the related callback, it shows its current
startup time)

is_running the number of callbacks currently running for the watcher

constructors
only:

async enforces immediate event handling bypassing the event queue (ignoring other watchers
completely), this is overwritten by prio

parked prevents that the new watcher becomes active (it is made but detects no events)

nice priority as offset to the default value, this is overwritten by prio and async

Beginning with version 0.60, Event additionally provides the base attribute data. It is intended not for configuration
but for user controlled data storage.

For developers, version 0.75 introduced private to build watcher subclasses.

Besides these base attributes, each watcher type owns more specific configuration settings.

specific watcher attributes
attribute description

io:

fd the watched handle

3. Event in detail 15

poll specifies which events are of interest: this may be read or write access to the handle, errors or
timeouts (or combinations)

timeout after this time the callback is called even without a handler event

timeout_cb alternative callback to be called if the event times out (this is an optional attribute, by default, the
watcher will invoke the cb callback this case as well)

hard specifies if timeouts of repeated calls start at invokation or finish of an callback (only useful if a timeout
is specified)

timer:

at the clock time when the timer will expire (ASSUMPTION: this is overwritten by interval)

interval seconds between two consecutive timer expiries

hard specifies if a the interval of repeated calls starts running at start or finish of an invoked callback (only
useful if interval is used)

signal:

signal the watched signal (as a string)

idle:

max the maximum amount of time to wait between consecutive

callbacks,
regardles

s of the loops busyness

min the minimum amount of time to wait between consecutive

callbacks,
regardles

s of the amply idle time

var:

var the watched variable (by reference)

poll describes access types of interest: reading or/and writing

group:

timeout period after which the callback should be invoked, even without event

add contains a watcher object to be shadowed (the watched watchers activity is the expected event). This
is a list attribute which can be used multiply. An event is recognized if any member of the so grouped
watchers acts. (Group members can be removed by the watcher method del().)

Attributes are initialized in the constructor by similar named parameters:

 # register a timer
 Event−>timer(interval=>32, hard=>1, cb=>\&callback);

Additionally, attributes can be queried and modified during the whole lifetime of a watcher by similar named watcher
methods, like so:

 # modify a watchers description
 $timerWatcher−>desc("Really that late?");

 # report callback runtime
 print "Last recent callback started at ",
 POSIX::strftime("%c\n", localtime($w−>cbtime));

Event driven programming in Perl using the Event module

16 3. Event in detail

3.2. Object management

You may have wondered about the constructor calls in the examples above. Usually, it is a good Perl tradition to take
and store the object a constructor supplies:

 my $watcher=Event−>io(fd=>*STDIN, cb=>\&callback);

And of course, this is possible with Event objects as well. But more often you will see simplified Event code like the
following:

 Event−>io(fd=>*STDIN, cb=>\&callback);

What's going on? The answer is simply that Event manages the watcher objects internally itself. If you want to
access them later, you can find them by using class methods:

method description

all_watchers() supplies all registered watchers

all_running() provides a list of all watchers with currently running callbacks

all_idle() offers a list of idle watchers ready to be served but currently delayed by higher priorized events

The internal, automatic management of a watcher performed by Event results in the side effect that the reference
counter of an watcher object is influenced by internal module operations. That's why in

 {
 my $watcher=Event−>io(fd=>*STDIN, parked=>1);
 }

the new watcher remains alive even after the block is leaved.

But of course, if you want to do this, you can manage a watcher object yourself. This may be useful indeed if you
have to access it later on because searching it via class methods can become a waste of time (if done regularly or
you have to find certain watchers among a great number of such objects). Only keep in mind that you are not the only
one managing a watcher object. Especially, prevent modifying access to a watcher after it was cancelled (or risk an
exception). The current watcher state can be checked by various methods, especially by is_cancelled().

The following section describes watcher states in detail.

3.3. A watchers life cycle

During its life, a watcher enters various states which determine its behaviour. This means that a watcher object is not
only made, run and destroyed. You can, for example, deactivate it until you need it again. The several state changes
can be initiated explicitly by object methods, or they are performed implicitly caused by fullfilled preconditions. The
current state of a watcher is reported by special functions and methods.

Event driven programming in Perl using the Event module

3.2. Object management 17

The state of a watcher reflects both its activity and its registration. Activity describes if it waits for and detects events.
Registration means if the loop knows the watcher so that the watcher can add handling orders to the queue.

States

ABSENT: The initial state of each Perl variable. The watcher is not made yet, or the watcher object was already
destroyed. Such a watcher is neither registered nor active.

As usually, this special state can be detected by defined().

ACTIVE: The watcher is registered and active, which means it detects events and generates handling orders in the
queue.

is_active() replies a true value in this state.

INACTIVE: The watcher no longer takes care of events, they are ignored. It does not generate handling orders but is
still registered. Regardless of all this, its entire configuration remains unchanged.

You can check for this state using the method is_active() as well. It supplies a "false" value this case.

CANCELLED: The watcher is no longer able to recognize events and generate orders, it is neither active nor
registered. Because of the lost registration it cannot return into states where it would be registered. Its configuration
remains unchanged but cannot be modified, any modifying access will raise an exception. A cancelled watcher
cannot be reactivated.

There is a method is_cancelled() which can be used to check for this critical state before modifications are
performed.

This state is intended to be very temporary. It is designed as the final watcher state before destruction and usually the

Event driven programming in Perl using the Event module

18 3.2. Object management

watcher object passes through this state immediately inside the Event code. The only exception is caused by still
existing external watcher references, located in an Event::Event object representing a still unserved order
generated by the watcher, or in your data if you preferred to store watcher references. Take care in such cases.

State changes

Implicit changes: In general, a watcher can occupy state ACTIVE only if its attributes are sufficient.

 A watcher without callback, for example,
 cannot generate orders that make sense.

As soon as this precondition is violated, a watcher in state ACTIVE is transformed into state INACTIVE automatically.
The following table describes which settings are the minimum for an active watcher.

sufficient watcher settings
watcher type preconditions

all callback set

io timeout set or valid handle stored in fd

timer timeout set, repeated calls only possible with valid interval

signal valid signal stored in signal

idle −

var attributes poll and var have to be set, but not for read−only variables like $1

group at least one watcher in the group

The following example demonstrates a forced implicit state change.

 # deactivate an active watcher implicitly
 # (demonstration only!)
 my $w=Event−>signal(signal=>'INT');
 print "Watcher started.\n" if $w−>is_active;
 $w−>signal('FUN');
 print "Watcher deactivated.\n" unless $w−>is_active;

There's another group of implicit state changes: every non repeating watcher which is not explicitly cancelled enters
INACTIVE after callback execution. This is important because such watchers tend to be forgotten after callback
invokation, but in state INACTIVE they are still alive and still consuming memory.

Note: An application which dynamically installs non repeating watchers will consume more and more memory unless
these watchers are explicitly cancelled or reused after callback execution.

Here is an illustration script:

 # load module, set pragma
 use Event;
 use strict;

 # declare a simple counter
 my $i=0;

 # install the main timer for report purposes
 Event−>timer(
 interval => 0.1,
 cb => sub {
 # report registered watchers
 my @watchers=Event::all_watchers;
 warn "There are ", scalar(@watchers), " watchers now.\n";
 # install a new non repeating timer
 Event−>timer(

Event driven programming in Perl using the Event module

3.2. Object management 19

 at => time,
 cb => sub {$i++; warn "$i. one shot callback!\n";}
);
 }
);

 # enter loop
 Event::loop;

The next table summarizes where to take special attention to inactivated watchers.

watcher implicit change into INACTIVE after callback

io repeat set to 0

timer specified by at, or repeat set to 0

signal repeat set to 0

idle by default (ASSUMPTION)

var repeat set to 0

group by default (ASSUMPTION)

Constructor calls: The parameter parked (if set to a true value) instructs the constructor to generate the new
watcher in state INACTIVE by calling method stop() (the default state is ACTIVE entered by start()). Besides
this explicit setting, INACTIVE is entered implicitly in case of insufficient attribute settings (see table above for details).

 # new and active watcher
 print Event−>var(var=>\$var, cb=>\&cb)−>is_active, "\n";

 # similar, but explicitly deactivated
 print Event−>var(var=>\$var, cb=>\&cb, parked=>1)−>is_active, "\n";

 # insufficient attributes −> state INACTIVE
 Event−>io−>is_active or die "[BUG] Insufficient watcher attributes!";

The constructor parameter parked was introduced to enable watcher storage. By prebuilding watchers expected to
be used later on, you can accelerate your application because it is more expensive to make than to configure a
watcher. On the other hand, measurements showed that the real performance advantage of such pools strongly
depends on your application.

Deactivation: You can deactivate a watcher by calling its stop() method which enforces the watcher to enter the
INACTIVE state. This does not influence orders of this watcher which are already stored in the queue. A deactivated
watcher can be reactivated by calling its method again() (you may use start() alternatively). Of course, the
ACTIVE state can only be entered if the watchers attributes are still sufficient.

 # stop watcher temporarily ...
 $w−>stop;
 ...
 # and reactivate it
 $w−>again;

Cancellation: To finally deactivate a watcher there is a method cancel(). Inside Event, it deregisters the watcher
so that it becomes invisible to the loop and enters the state CANCELLED. All internal references to the watcher
object are removed, and this means that unless there are further object references externally, Perls garbage
collection will immediately remove the object by DESTROY(). But if there are still external references, the object will
remain in state CANCELLED.

Where could external references be located? First, there may be orders made by the watcher still waiting in the
queue. The order objects include a reference to their parent watcher. Second, your own code could have stored the
watcher object somewhere.

 # generate a cancelled watcher
 my $cw=Event−>io;
 $cw−>cancel;

Event driven programming in Perl using the Event module

20 3.2. Object management

 print $cw−>is_cancelled, "\n";

In no case the state change influences orders already stored in the queue.

3.4. Priorities

If events happen simultaneously, the callback invocation order should be determined.

 In most cases it is useful to handle a
 signal immediately, even if a timer
 in the same moment wants to inform you
 about coffee.

Priorities allow to control which event should be served before others in such a case. Lower priorized events have to
wait before they can be served. For this purpose, Event provides eight levels of priority − including "immediately" as
well as "sometimes". To simplify the interface, each watcher type has its own default priority.

priorities
level description default

−1 asynchronous handling: the callback is invoked without delay, ignoring the queue

0 highest "regular" priority

1

2 provided as importable constant PRIO_HIGH signal

3

4 provided as importable constant PRIO_NORMAL idle, io, timer, var

5

6 lowest priority

But of course everyone can specify its own priority hierarchy. All watcher constructors offer three attributes for this
purpose: prio sets an explicit priority, nice defines the target priority as an offset to the default value, and
async selects priority −1.

 # a default signal watcher
 $sigWatch=Event−>signal(signal=>'PIPE');
 print "Default: ", $sigWatch−>prio, "\n";

 # watcher with explicit priority setting
 $sigWatch=Event−>signal(signal=>'PIPE', prio=>1);
 print "Prio 1: ", $sigWatch−>prio, "\n";

 # constructor using prio offset
 $sigWatch=Event−>signal(signal=>'PIPE', nice=>−2);
 print "Default−2: ", $sigWatch−>prio, "\n";

 # signals should be served immediately
 $sigWatch=Event−>signal(signal=>'PIPE', async=>1);
 print "Asynchronous: ", $sigWatch−>prio, "\n";

If more than one priority attribute is passed to the constructor, prio will overwrite async, and both have precedence
over nice.

And, of course, the priority setting can be modified at runtime as well, even if there is only one method to do this:
prio() (async and nice are available in constructors only).

 # signals should be served immediately
 $sigWatch=Event−>signal(signal=>'PIPE', async=>1);
 print "Initial: ", $sigWatch−>prio, "\n";

 # oops, back to default priority

Event driven programming in Perl using the Event module

3.4. Priorities 21

 print "Modified priority: ", $sigWatch−>prio(PRIO_HIGH), "\n";

If you are building a priority hierarchy for various watchers, please keep in mind that even events of the lowest priority
should finally be served. That's why an events priority has not only to reflect importance and urgency of its handling
but has also to take care of its (probable) frequency. If "important" events occur too often they may block all other
watchers. The optimal design sees very important events happening extremely seldom.

3.5. Watcher teams

It is explicitly allowed to have an unlimited number of watchers for the same event, regardless of the watchers type. If
such a well watched event happens, all callbacks are invoked subsequently. (Nevertheless, priorities are still in effect,
so there is no guarantee that the sequence of orders may not be interrupted by a callback of a watcher outside the
team if you assign different priorities to the team members.)

3.6. Writing callbacks

Orders in the queue are represented by objects of the class Event::Event. The loop performs the order by invoking
the callback function stored in this object.

The Event::Event object is passed to the callback as its only parameter, this is managed automatically. Because it
stores more informations besides the callback itself, it connects the callback with both the initial event and the
watcher which detected the event and generated the order. Once the callback is finished, this intermediate transfer
object is destroyed.

 # callback taking the Event object
 Event−>io(..., cb=>sub {my ($event)=@_;});

So well, an Event::Event object is very passing thing, but nevertheless it plays an important part in handling an
event.

Event driven programming in Perl using the Event module

22 3.5. Watcher teams

Event::Event objects are very similar to watcher objects: they own attributes which can be accessed by methods
of the same name. But different to watchers Event::Event attributes cannot be modified, they are read−only.

Event::Event object attributes
attribute description

got only available if the corresponding watcher has a poll attribute: then it describes the event
in poll format

hits informs how many triggers of the watched event should be

serviced by
invocation of

the callback

prio the parent watchers priority (at event time)

w the parent watcher object (in current state)

Especially the offered access to the parent watcher is often used to modify the watchers configuration or state, like so:

 sub callback
 {
 # get Event object
 my ($event)=@_;

 ...
 # cancel the initial watcher, if possible
 $event−>w−>cancel if $allExpectedEventsArrived;
 ...
 }

Keep in mind that the watcher may have been modified between the events occurence and the callbacks
invokation. While an Event::Event object "freezes" the event state in the queue, the related watcher works on and
all parts of the program are free to modify it until this event will be handled by callback invokation, which could take a
significant while. The watcher might even been cancelled which means that modifying access would raise an
exception. That's why you should check a watchers state before you modify it in a callback.

 # something seems to block us, we should act more often!
 $event−>w−>prio($event−>w−>prio−1) unless $event−>w−>is_cancelled;

Event driven programming in Perl using the Event module

3.5. Watcher teams 23

On the other hand, often your callbacks will not need the informations provided by the passed Event::Event object
and you can ignore it.

Besides the parameter interface there is only one thing which should be taken into account: a callback should
return quickly. Remember that there is only one process for event recognition and handling, which ideally means the
handling of all detected events in a reasonable time. As long as a callback is performed, watchers, loop and other
callbacks are definitely blocked. That's why a long running callback should be shortened. There are several methods
to do this, one is to split it up into partial tasks which are performed subsequently by a state machine. Each callback
invokation could handle one state, for example. Another method is delegation to other processes which might run in
the same process space (threads or subprocesses) or in a foreign one (on a server). The third alternative is
cooperation: you can enforce an intermediate event recognition and handling by calling Events class method
sweep(). This and other class methods of loop management are described in the next section.

There is one exception to the rule that a callback runs exclusively: if a signal arrives while a callback performs
sleep() or select() to delay itself, these functions will be terminated by the signal. Callback execution will then be
continued after the sleep() or select(), regardless of the remaining period of delay. If you really need to
implement such a delay in a callback, Event::sleep() can be used which is not interrupted by signals. But seen in
the light of the previous paragraph it would be a better choice to avoid such delays at all.

3.7. Loop management

Besides watchers and callbacks the event loop itself is the third pillar of Event. The loop is managed by various class
methods. In most cases, loop() and unloop() are sufficient.

An interesting aspect of the Event design is that loops can be nested. This means that you can call loop() from a
running callback (which is embedded into a loop itself) to enter a new inner loop level. Nevertheless, all registered
watchers are still active there.

loop control
methode description

loop() enters a new loop level. Loops are terminated automatically unless there are active watchers.

unloop() terminates the most inner loop level, all registered watchers remain unchanged.

unloop_all() terminates all loop levels (but still without effect to the installed watchers)

sweep() enables a callback to let Event recognize and handle intermediately occured events. After doing so,
sweep() returns immediately. (The priority of events to be served by the method can be limited by a
sweep() parameter.)

Because a loop without active watchers terminates itself immediately, the following idiom is often used to cleanup
both loops and watchers:

 # stop all loops AND deregister all watchers
 $_−>cancel foreach Event::all_watchers;

Event driven programming in Perl using the Event module

24 3.7. Loop management

4. Watchers by example
This section is intended to introduce the several watcher types by discussing example code. This is not a complete
review of all features but more a summary of experiences (and discussions at the mailing list).

As this is a "learning by doing" section, one does not have to be an experienced Event programmer to understand it.
On the other hand, it surely does not repeat everything said in other sections. You can start right here but reading
previous chapters may help.

In all examples, it is assumed that "use strict" is in action and Event is loaded, so the following is an "invisible
startup part" of all code sequences shown:

 # set pragma
 use strict;

 # load modules
 use Event;

If anything more is required, it will be mentioned in the examples.

4.1. Signal watchers

They seem to be the simplest type of watcher because there is only a very limited and predefined event set. More,
probably every Perl programmer is familiar with %SIG which makes it easy to imagine what signal handling basically
means. Or, in other words, the following should be intuitive:

 1: # install signal watcher
 2: Event−>signal(
 3: signal => 'INT',
 4: cb => sub {warn "Why do you want to kill me?\n";},
 5:);
 6:
 7: # start loop
 8: Event::loop;

Well, right. This script installs a watcher for the SIGINT signal. Everytime such a signal arrives (e.g. when a user
types CTRL−C), the callback function should be invoked. In this case, the callback only displays a message.

To do this, we build and install a new watcher (lines 2 to 5). Event−>signal() is a constructor which does this for
us. Here it takes two configuring parameters: signal specifies the signal to be watched, and cb is used to set up the
callback.

The signal is passed by a string. "INT" specifies SIGINT, "PIPE" points to SIGPIPE and so on. This is very similar to
the usage of %SIG.

As with %SIG, it is impossible to catch SIGKILL.

The callback is specified by a code reference. There are several other ways to set it up which will be discussed in the
subsequent section.

Knowing %SIG you may ask if signal watcher callbacks are special by any means, and if care should be taken to
make them reentrant (another signal may arrive while the first handler is running). But this is simplified with Event:
once the handler is running, it runs regardless of all events, including more signals. New signals are detected
independently of a running callback and will be queued until they can be served by another callback invokation. Run
this example to see it working:

 # set pragma
 use strict;

 # load module
 use Event;

4. Watchers by example 25

 install signal watcher
 Event−>signal(
 signal => 'INT',
 cb => sub {
 warn "Detected ", $_[0]−>hits, " SIGINT events.\n";},
 warn "Sleeping now!\n";
 # delay
 Event::sleep(10);
 warn "Slept.\n"},
);

 # loop
 Event::loop;

Once the callback is running, subsequently arriving SIGINT signals will not cause it to stop. Different to this, they are
collected in the event queue until the next callback for them can be started. Event will then invoke one callback for all
queued SIGINT signals, passing their number in hits.

People familiar with %SIG may remember two special conventions:

 $SIG{HUP}="DEFAULT";

and

 $SIG{INT}="IGNORE";

both have a special meaning: they do not install main::DEFAULT() or main::IGNORE() as event handlers (which
would be the case for every other string assignment) but declare that the signals should be handled "as usual"
("DEFAULT") or should be completely ignored ("IGNORE"). Now, are there similar features built into Event?

The answer is that there is no need for such special semantics because you can manage signal watchers a more
consistent way to behave likewise if you wish.

For example, if you want your signal to be served by perl as usual while there is a watcher registered for it, you can
change the watchers state into INACTIVE. So, to get a result similar to

 {
 # temporarily reenable default handling
 local($SIG{INT})='DEFAULT';

 # do something
 }

with Event you can write

 {
 # temporarily reenable default handling
 $signalWatcher−>stop;

 # do something

 # reactivate custom handling
 $signalWatcher−>again;
 }

If you want a signal to be ignored, just install an empty callback:

 # install signal watcher
 Event−>signal(
 signal => 'INT',
 cb => sub {} ,
);

 # start loop
 Event::loop;

Well, but often it's the same with ignoring as with default handling: there are installed signal handlers doing real things
but they should be disabled temporarily. This case, the shown solution is not satisfying at first sight because the

Event driven programming in Perl using the Event module

26 4. Watchers by example

installed ignorance is permanent. To work around this, you can temporarily exchange the stored callbacks:

 {
 # temporarily ignore the signal
 my $cb=$signalWatcher−>cb;
 $signalWatcher−>cb(sub {});

 # do something

 # reactivate original handling
 $signalWatcher−>cb($cb);
 }

This seems to be the simplest way. Another idea is to have a set of watchers for the same signal from which exactly
one could be chosen to be active at a given time. All others would been waiting in state INACTIVE. Having set up
this, it could be managed that one of these set watchers ignores the signal, while others handle it really. See the
subsequent discussion of multiple watchers for examples.

Finally, to sum up this comparison of %SIG and Event, it is not recommended to mix both models. It's surely possible
to do this and may work in most cases, but it's inconsistently at least. But not only that. %SIG is less flexible, not
scalable, offers less tuning features and runs completely besides Event. Why missing the power and flexibility of
Event without need?

Signal watchers have a very high priority by default to be served immediately. Actually it's the highest priority set by
default (accessible by the constant PRIO_HIGH). This makes sense because most signals represent very important
and urgent system messages. Nevertheless, if you want a signal to be served not that quickly, you can set up another
priority. For example, user signals may be less important than SIGINT.

 # install signal watcher
 Event−>signal(
 signal => 'USR1',
 cb => sub {warn "Hi!\n";},
 prio => PRIO_HIGH+1,
);

Even with high priority, signals may arrive faster than they can be handled (because they have a high priority to the
system as well). That's why a signal callback may be invoked only once for a sequence of similar signals which
arrived almost "together" − that means, with a very high frequency.

4.2. Excurse: Callback setup

Now that we made first watchers, let's have a closer (and more general) look at callback setup. Callbacks are usually
set up by a code reference:

 $watcher−>cb(\&callback);

Symbolic references are supported as well. This is known from %SIG where you can write

 $SIG{INT}='package::callback';

Different to this, Event does not accept
 Event−>signal(
 signal => 'INT',
 cb => 'callback', # does not work
);

Event provides a more general way by accepting an array reference.

 Event−>signal(
 signal => 'INT',
 cb => ['package', 'function'], # invokes package::function()
);

The first array element names the package, while the second element is the function name. This means that the
'package' string in the example above can be replaced by any package or class name of your choice which will

Event driven programming in Perl using the Event module

4.2. Excurse: Callback setup 27

obviously result in invoking package::function() or Class::function() as the callback.

More, the first element in the anonymous array can also be an object:

 Event−>signal(
 signal => 'INT',
 cb => [$object, 'method'], # invokes $object−>method()
);

which means that the method method() of the passed object is called as callback. The various ways of callback
setup by array references are demonstrated in the following example:

 1: # declare helper class
 2: package OO;
 3:
 4: # class variable
 5: my $counter=0;
 6:
 7: # constructor
 8: sub new
 9: {
 10: # get parameters
 11: my ($class)=@_;
 12:
 13: # init object variable
 14: my ($me)=++$counter;
 15:
 16: # make and supply new object
 17: bless(\$me, $class);
 18: }
 19:
 20: # demonstration method/function
 21: sub display
 22: {
 23: # get parameters
 24: my ($me)=@_;
 25:
 26: # report invokation method
 27: warn ref($me) ? "Called as method of object $$me (@_).\n"
 28: : "Called as function (@_)\n";
 29: }
 30:
 31: # reply a true value to flag successfull init
 32: 1;
 33:
 34: # main package
 35: package main;
 36:
 37: # install watchers
 38: Event−>signal(signal=>'INT', cb=>[new OO, 'display']);
 39: Event−>signal(signal=>'HUP', cb=>[new OO, 'display']);
 40: Event−>signal(signal=>'PIPE', cb=>['OO', 'display']);
 41:
 42: # enter loop
 43: Event::loop;

If the script receives SIGINT, the firstOO object reports that its display() method was invoked. It is the same for
SIGHUP which is handled by calling the display() method of the secondOO object. Different to this, SIGPIPE is
handled by the OOclass method display(). Run the script to see yourself.

4.3. Timers

Timers are widely used to detect timeouts, make a process waiting for another, implement alarms and reminders and
so on. But nevertheless it's not always that easy (and sometimes a little bit tricky) to implement them without event
handling. The simplest task is to make a program wait for a certain period of time, which is usually done by calling
sleep() or the three argument select().

 sleep(20);

Event driven programming in Perl using the Event module

28 4.3. Timers

 select(undef, undef, undef, 30);

Reminders can obviously be realized by checking date lists periodically and mentioning all currently open dates.

 while (%dateList)
 {
 # check date list
 foreach my $date (grep(time>=$_, sort {$a<=>$b} keys %dateList))
 {
 # report date and remove it from the list
 warn "[", formatDate($date), "] $dateList{$date}\n";
 delete $dateList{$date};
 }

 # wait ...
 sleep(60);
 }

Checking a code sequence timeout is trickier. There is an idiom which uses eval() together with alarm() to
implement a timeout for a certain code block:

 # This example is derived from perls documentation.

 # perform code with timeout control
 eval
 {
 local $SIG{ALRM}=sub {die "alarm\n"}; # NB: \n required
 alarm $timeout;
 ...
 alarm 0;
 };

 # timed out?
 if ($@)
 {
 # propagate unexpected errors
 die unless $@ eq "alarm\n";
 # timed out
 }
 else
 {
 # no timeout
 }

Hm. Looking at these examples, I think that although there is a number of ways to make timers work without event
handling, they are not very flexible sometimes. They are indeed sufficient for simple cases, but there is also a
tendency to end in code which is not really easy to read and maintain when things become more complex. Imagine
you have to combine a number of these timers, to cascade them (e.g. having to check a timeout for a code block and
timeouts for several nested subblocks seperately) or to add additional tasks like user interaction ...

That's different with event handling, especially with Event. It is very easy to set up a timer for whatever purpose you
want. It is done the same way everytime, so if you know how to set up a timer for a reminder, you know how to set up
a timer for timeouts. So, by the way, here is a reminder.

 # This example demonstrates the usage of Event
 # timer watchers.
 #
 # Call the script this way:
 # script <seconds to alarm> <event to remember (any text)>.

 # load module
 use Event;

 # install timer
 Event−>timer(
 at => time+shift,
 cb => sub {
 warn "Time to remember \"@ARGV\".\n";
 $_[0]−>w−>cancel; # clean up

Event driven programming in Perl using the Event module

4.3. Timers 29

 }
);

 # enter loop
 Event::loop;

All Event watchers are installed by Event methods which characterize the watcher type, so the constructors name is
"timer" this case. The at attribute determines when the timer event shall happen, this point of time is passed in UNIX
time format (seconds since 1970). Here it is calculated as summary of the current time and the user set period until
the requested alarm.

Well, this scripts task could have been performed by a simple sleep() call as well! Surely, but add more dates to
the list and watch them all together ... and the sleep() program quickly becomes complex! Not so with Event:

 # install requested timers
 while (@ARGV)
 {
 my ($period, $description)=(shift, shift);
 Event−>timer(
 at => time+$period,
 cb => sub {
 warn "Time to remember $description.\n";
 $_[0]−>w−>cancel; # clean up
 }
);
 }

 # enter loop
 Event::loop;

This is almost the same code and still intuitive and clear, but now a user can pass as many alarm requests as he
wishes by providing a period / description pair for each alarm in the script call. ("script 5 'the second
alarm' 2 '1st'") An even more flexible reminder (for an unlimited number of dates and additional user
interaction) with Event was simple enough to be used as an introduction example in "A complete example" above.

Note that in both examples Event::unloop() is not called. The loops will automatically terminate after the last
mentioned alarm because every installed timer watcher dies after callback execution. Well, not necessarily ... but
because we used at to specify the event. at installs one shot timers. This is different with interval which is an
alternative attribute: timers set up by interval automatically repeat.

 Event−>timer(
 interval => 5,
 cb => sub {warn "It happened (again).\n";}
);

interval sets up the event time by an immediately beginning period (in seconds). The shown timer will detect its
first event 5 seconds after installation, and then it will continue to work and detect events every 5 seconds.

Is there a way to install a timer with interval but make it a one shot watcher? Yes, of course: the repeat attribute
just flags this behaviour.

 Event−>timer(
 interval => 5,
 repeat => 0,
 cb => sub {
 warn "It just happened.\n";
 $_[0]−>w−>cancel; # clean up
 }
);

This timer runs only once, exactly like an at=>time+5 one.

Now that we combined repeat with interval, can we do the same with at to install repeating "at" timers? No.
Repetition always requires an interval to be specified. A repeating timer without an interval will throw an exception.

Speaking about intervals, let's have a final look at the simple repeating watcher set up by interval. This time, the
callback reports its invokation time.

Event driven programming in Perl using the Event module

30 4.3. Timers

 # store startup time
 my $startup=time;

 sub callback
 {
 # report callback invokation
 warn "Event after ", time−startup, " seconds.\n";
 # have a rest
 sleep(10);
 }

 B:Event−>timer(
 interval => 20,
 cb => \&callback,
);

 # enter loop
 Event::loop;

What will this script report? Please note the sleep() call in the callback (I do not recommend this for real callbacks,
of course ;−). Without any doubt, the sequence of messages will start by something like

 Event after 20 seconds.

But then? After this report, the callback falls asleep for ten seconds. What will the next report say? This depends on
the watchers restart time. By default, the timer is restarted after callback execution, and so the next message will
arrive 50 seconds after script call (20 s until the first call plus 10 s sleeping − now the timer restarts − plus a new
period of 20 s to the next event). This means that by default repeated timer events strongly depend on the watchers
callback runtime. This may not be sufficient − especially with callbacks of a less determined runtime than a simple
sleep() call provides. If you need timer events with a fixer frequency, the hard attribute can be used to enforce a
repeating watcher to restart before callback invokation.

 B:Event−>timer(
 interval => 20,
 hard => 1,
 cb => \&callback,
);

Now the example script will report events every twenty seconds.

Finally, Event timers run independently on each other. They can be started, stopped and disabled asynchronously.
One of the best things, in my opinion, is the fact that with Event timers can run besides very different watchers. The
time until the timer event can be used. Timers can be one certain part of a complex system of user interaction, IPC,
signal handling, periodically performed tasks and more. They play their part, but they do not enforce the rest of the
systems code to be written a special way determined by the timers (as the eval()/alarm() construct does.) In
short, Event timers provide a great flexibility and may be worth alone to design a script on base of Event.

 I wrote a (client/server) system where
 timers are dynamically installed and
 started when a server interaction begins.
 When a server times out to answer a request,
 it is automatically disconnected by the (one
 shot) timer. On the other hand, if the server
 answers in time, the timer is simply cancelled
 and destroyed by the related I/O watcher.
 An unlimited number of such connections and
 timers can be active at the same time, each
 started at an individual time and with a special
 timeout.
 At the same time, other timers perform periodical
 tasks with user defined periods.

Event driven programming in Perl using the Event module

4.3. Timers 31

4.4. I/O watchers

I/O event watching is an everyday job. Not every program has timers, and signals are actively used only by a low
percentage of all Perl scripts (I suppose). But almost every program implements I/O, at least to present results. In
fact, most programs also get any data by I/O to work with. So, if we have an event driven program, we surely need
support in this area as well. And of course it is provided by Event.

Well, which types of I/O handling are really an object of I/O event watching? Surely not the presentation of results I
just mentioned above. This is an active part of a program, determined by the program flow, and a program can call
the usual functions like print() to present data. Not even all incoming data are related to events, think of the
reading of a configuration file which can be done the same usual way in an event driven application and in a common
script. What's basically most interesting here is the kind of data that arrives asynchronously and unpredictably − user
interaction, data arriving via IPC or income in a watched file which is written by another process. To detect these
kinds of events, I/O watchers were designed. Let's start with file watching.

4.4.1. Watching files

 01: # init file, then open file for reading
 02: my $file='tailtest.tmp';
 03: open(IN, $file) or die "[Fatal] Could not open $file.\n";
 04:
 05: # install "tail −f"
 06: Event−>io(
 07: fd=>*IN,
 08: cb=>sub {
 09: # check for real news
 10: return if eof(IN);
 11:
 12: # read new line and report it
 13: print "New line detected: ", scalar(<IN>), "\n";
 14: }
 15:);
 16:
 17: # start loop
 18: Event::loop;

This is a reimplementation of tail −f using Event. (To see what happens, run the script and add something to the
file "tailtest.tmp". Touch this data file initially unless it already exists.) Well, the basic structure of this program is
already well known from the signal and timer examples above, it's always the same which makes it easy to use
Event in all its various flavours. The io() method here installs a watcher for the handle passed to the fd attribute.
An event is detected and the declared callback is invoked whenever something happens at this handle. "Something",
by default, means that there is something to be read at the handle. This event "subtype" is described by the
poll attribute whichs default value is "r" (for "read"), so that the watcher constructor above could also be equivalently
written as

 Event−>io(
 fd => *IN,
 cb => sub {...},
 poll => 'r',
);

There are more types of possible events at a handle: it can be ready to be written, or an error can occur. The related
poll flags are "w" and "e".

 # this watcher detects all kinds of io events
 Event−>io(
 fd => *HANDLE,
 cb => \&ioHandler,
 poll => 'erw',
);

As to be seen here, various io event subtypes can be watched together. Their specification characters are just
combined in the string value of poll. The disadvantage of this approach is that the callback has to determine first
what really happened before it can operate appropriately. This detection can be performed using the
Event::Event objects got attribute.

Event driven programming in Perl using the Event module

32 4.4. I/O watchers

 sub ioHandler
 {
 # get Event object
 my ($event)=@_;

 # act event type dependend
 return ioError(@_) if $event−>got eq 'e';
 return ioRead(@_) if $event−>got eq 'r';
 return ioWrite(@_) if $event−>got eq 'w';
 }

or, alternatively

 sub ioHandler
 {
 # get Event object
 my ($event)=@_;

 # act event type dependend
 if ($event−>got eq 'e')
 {
 # handle io errors
 ...
 }
 elsif ($event−>got eq 'r')
 {
 # read from the handle
 ...
 }
 elsif ($event−>got eq 'w')
 {
 # write to the handle
 ...
 }
 else
 {
 die "[BUG] Unexpected event type!\n";
 }
 }

Now, functions like these are a matter of individual preferences. If you want to avoid them here, you can also watch
each of the various io event types by a separate watcher:

 Event−>io(fd => *HANDLE, cb => \&ioError, poll => 'e');
 Event−>io(fd => *HANDLE, cb => \&ioRead, poll => 'r');
 Event−>io(fd => *HANDLE, cb => \&ioWrite, poll => 'w');

These are three watchers working on one and the the same HANDLE. This way, every event on HANDLE can be
handled by a specialized callback function. We have an overhead of two additional watchers now, but also the
advantage of more readable and faster working callbacks.

People familiar with with the three argument select() will, by the way, note that the detectable io event subtypes
are exactly the same that select() can recognize. The select() function is indeed comparable to io watchers as
well as the basic signal handling via %SIG is to signal watchers.

Well, back to the tail example. Please have a look at line 10:

 # check for real news
 return if eof(IN);

I had to built this in because a file handle is always "ready to be read". This makes the script impressive as a demo
but unusable in real life − we cannot determine if there is really new data or not, the watcher will always "detect"
events even without news, and the result is traditional polling instead of real event handling (inspect the processor
usage). But nevertheless, it works.

Here is a second version of the "tail" demo script which uses an additional timer to produce the detected new data
itself. It by the way shows various watchers cooperating.

Event driven programming in Perl using the Event module

4.4. I/O watchers 33

 # load modules
 use Event;
 use FileHandle;

 # declare and init variables
 my ($c, $file)=(0, "tailtest.tmp");

 # init file, then reopen file for reading
 open(IN, ">$file");
 open(IN, $file);

 # install writer
 Event−>timer(
 interval=>5,
 cb=>sub {
 # report action
 print "Writing new line ", ++$c, ".\n";

 # open file for writing, add a line, close the file
 open(OUT, ">>$file");
 OUT−>autoflush;
 print OUT "$c\n";
 close(OUT);
 }
);

 # install "tail −f"
 Event−>io(
 fd=>*IN,
 cb=>sub {
 # get filehandle and check for real news
 my $handle=$_[0]−>w−>fd;
 return if eof($handle);

 # read new line and report it
 print "New line detected: ", scalar(<$handle>), "\n";
 }
);

 # start loop
 Event::loop;

So, handles connected to real files are not the best candidates to be managed by io watchers. (A timer would be a
better solution for this specific problem. There is also a murmur about new operating system kernel features currently
developed which shall include file modification events. But this is still a sound of future.)

4.4.2. User interaction

Different to file connected handles, IPC handles like sockets or pipes, or handles connected to a terminal, are
excellent candidates to be watched by io watchers. If you watch a socket or pipe for reading, an event will not be
detected until data really comes in. But let's have a look at the most common thing in this area first, which is
doubtlessly user interaction via a terminal bound to STDIN. A first version is quickly designed:

 # install an io watcher to wait for user input
 Event−>io(fd=>*STDIN, cb=>\&user);

Assumed that STDIN is configured the usual way, which means that it is buffered and blocking, this watcher waits on
STDIN until a user has completed a line of input. It then passes the line to the user function, which could handle it as
follows:

 01: # handle a user command
 02: sub user
 03: {
 04: # get the event object
 05: my ($event)=@_;
 06:
 07: # get the handle
 08: my $handle=$event−>w−>fd;
 09:

Event driven programming in Perl using the Event module

34 4.4.2. User interaction

 10: # read the users input
 11: my $cmd=<$handle>;
 12:
 13: # and handle it
 14: chomp($cmd);
 15:
 16: # do something
 17: print '[Info] Performing your command "', $cmd, "\" ...\n";
 18: sleep(5);
 19:
 20: # display a new prompt
 21: print "input> ";
 22: }

Note that the input still has to be read (line 11), the watcher only detected its arrival.

Getting the file handle from the event object (line 8) instead of reading STDIN directly makes this handler more
flexible and usable for various handles.

STDOUT should be set to unbuffered mode to display new prompts immediately (line 21).

Well, there is nothing spectacular in this handling, but nevertheless it's worth to be mentioned. At first sight, it just
reimplements a usual synchronous user interface by using Event which first waits until a command is entered, and
makes the user wait then for command proceeding. It even copies the feature that new commands can be entered
while a callback is still running. But internally, thanks to event handling the script behaves different. It's working
asynchronously, the users command is only one event among others, and while the system is waiting for this special
input, other events can be handled as well.

For example, informations could be periodically collected from somewhere while a script waits for new commands.

What's to say about such an interface? First, the most important callbacks are not the ones invoked by the interface
io watcher but all the others. Most users are familiar with a synchronous interface and will accept that it takes time to
perform their commands, but almost no user accepts a slow interface. This means that all the callbacks besides the
interface one should return very fast.

4.4.3. A multiclient server

Now, let's go to another example. In client/server programming there are two main approaches to build a server. First,
a server can handle exactly one connection a time, making subsequently connecting clients waiting in a queue. This
is a one process architecture, easy to implement and sufficient for very short communications. If connections need to
be established for a longer time, or clients cannot wait until their requests are answered, the server is usually built in
a multi process architecture. The main process accepts new connections, immediately starts a new subprocess and
delegates the further communication to it, quickly returning to accept the next request. One disadvantage of this multi
process approach is that operating systems often limit the number of (sub)processes and by the way the number of
simultaniously connected clients. More, it's difficult to implement communications between the several processes.
Well, most servers (like HTTP or FTP ones) do not really need subprocess synchronisation because every
connection is performed independently of each other.

But nevertheless connection synchronization can be very useful − to synchronize commands which may be given by
various clients but should be executed sequentially, to control limited resources and their usage by the clients /
connections, to accept new clients depending on the state of established connections, to pass data back from a
connection handler to the main process, to pass data between clients (imagine IRC), to log connection informations in
a central logfile or to let the main process control connections by special commands. All this would be easy in a
combination of the two main approaches: if we had only one process, data sharing would be simple, but we should be
able to handle several connections simultaniously. Well, not surprising, event handling provides a way to do this.

 01: # set pragma
 02: use strict;
 03:
 04: # load modules
 05: use Event qw(loop unloop);
 06: use IO::Socket;
 07:
 08: # globals

Event driven programming in Perl using the Event module

4.4.3. A multiclient server 35

 09: my $channels;
 10:
 11: # make socket
 12: my $socket=IO::Socket::INET−>new(Listen=>5, LocalPort=>8001, Reuse=>1);
 13: die "[Fatal] Cannot build initial socket.\n" unless $socket;
 14:
 15: # install an initial watcher
 16: Event−>io(
 17: fd => $socket,
 18: cb => sub {
 19: # make "channel" number
 20: my $channel=++$channels;
 21:
 22: # accept client
 23: my $client=$socket−>accept;
 24: warn "[Error] Cannot connect to new client.\n" and return unless $client;
 25: $client−>autoflush;
 26:
 27: # install a communicator
 28: Event−>io(
 29: fd => $client,
 30: cb => sub {
 31: # report
 32: warn "[Server] Talking on channel $channel.\n";
 33:
 34: # read new line and report it
 35: my $handle=$_[0]−>w−>fd;
 36: my $line=<$handle>;
 37:
 38: # talk
 39: $handle−>print("[Channel $channel] $line");
 40:
 41: # quit if wished (checking \r for telnet clients)
 42: if ($line=~/^quit\r?$/i)
 43: {
 44: $_[0]−>w−>cancel;
 45: warn "[Server] Closed channel $channel.\n";
 46: }
 47: },
 48:);
 49:
 50: # welcome
 51: $client−>print("Welcome, this is Channel $channel.\n");
 52:
 53: # report
 54: warn "[Server] Opened new channel $channel.\n";
 55: },
 56:);
 57:
 58: # start loop
 59: loop;

This script is a multi client server but built in one process. (Please start the server and connect to port 8001 by telnet
to try this example.) It starts like usual servers by making an initial listening socket for connection requests (line 12).
Then it installs an I/O watcher to look after this sockets. Note that this watcher does not block the process, it's only
watching for data arriving at the socket. Most servers block at this point because they call accept() to wait for
connections, but we can delay the call of this function because Events watcher will detect connection requests for us
(a non blocking way).

If a client tries to connect, data is sent to the initial socket, the watcher detects the I/O event and the callback is
invoked. All data is still in the sockets queue. Now, in the callback, accept() is called (line 23). It certainly blocks
nothing because at this point it's clear that there is a request. The accept() call makes a new socket, redirects the
new connection to it and supplies the socket. Then, instead of making a new subprocess talking on this socket, a
further I/O watcher is installed to watch the new socket (line 28). If the client sends data now, it's dynamically made
connection watcher invokes the communication callback. This callback, in our example, simply sends back all input to
the client and can terminate the connection on the clients request.

Note that the server is still in control of the new connection socket. It sends a welcome message to the client after
installing the connection watcher (line 51), and it would be very easy to store the connection socket at a global place

Event driven programming in Perl using the Event module

36 4.4.3. A multiclient server

to make it accessible by the whole program. On the other hand, this would complicate the connection handling
because we would have additional references to the socket, thus making it staying alive even when its
communication watcher is cancelled, so that the connection would remain open. It depends on the application if it is
usefull to install a central cleanup facility or close the socket implicitly by cancelling the connection watcher.

Once the new watcher is installed, we now have two sockets listening and a watcher for each of them. There is still
the initial socket with a watcher ready to accept more clients, and the client socket whichs watcher waits for client
commands. More clients may connect, the number of connections is limited only by the number of sockets the system
can handle at a time. If several clients send commands, their connection callbacks are in fact invoked subsequently,
but from a users point of view, it seems that the server handles all connections simultaniously. Well, if the callbacks
return quickly. Make sure they do.

A certain aspect of callback return is to return ever. This means: avoid blocking callbacks, especially in servers!
From this point of view, the example server is on a good way because the client socket is made autoflushing
immediately (line 25), but it's surely not perfect because it uses blocking I/O to read from the client socket (line 36).
Honestly spoken, the <> operator is not very suitable this place. It all works fine with a line based protocol like FTP
where every command is trailed by a newline, or if a client like telnet is used which sends commands line by line, but
imagine that a (self written?) client accidentally "forgets" to send this special character. This will result in blocking at
line 36, and it will not only block the callback but the complete process and thus all established connections and the
initial socket watcher. For this reason, I recommend to use nonblocking sockets and to build such servers on base of
a stream protocol. These protocols do not need certain characters or strings to determine when a message is
completed. The CPAN module IPC::LDT implements one of them. It automatically unblocks sockets while sending or
receiving data and well cooperates with Event.

4.5. Excurse: Passing user data

Not surprisingly, watcher attributes are intended to store event specific data. But sometimes it is useful to store
application specific data in a watcher object as well.

 A server may dynamically make watcher objects
 for each client connection. Connection data
 such as client host and port or the client users
 account (got via identd, for example) are usually
 detected when the connection is established. But
 they could be of interest in the callback as well,
 even more if the callback should be fast and it
 would be a waste of time to collect these informations
 again (via the socket). Additionally, such data
 lose importance after the related connection is
 closed. So it seems to be a good idea to store
 these data within the watcher object. Each callback
 can access it there, and it will be automatically
 destroyed with the watcher.

For this purpose, Event provides a special "attribute" named data. It is used like any other attribute, which means
that it can be initially set by a constructor parameter:

 # now that we accepted the client,
 # make a new watcher to serve it
 Event−>io(
 desc => "client at $host/$port",
 fd => $clientSocket,
 cb => \&serverClient,
 data => $perl,
);

The "perl" setting in this example may flag whether a client is written in Perl and understands serialized data or not.
This could be an information provided in the connection handshake.

Now, in the callback, we can retrieve the stored informations by using the data() method without arguments:

 # send result to client
 if ($event−>w−>data)
 {
 sendResult($event−>w−>fd,

Event driven programming in Perl using the Event module

4.5. Excurse: Passing user data 37

 serialize($result),
);
 }
 else
 {
 sendResult($event−>w−>fd,
 makeNestedAsciiList($result),
);
 }

But maybe a client decides on the fly that it is now able to handle serialized Perl data. Well, we can modify the stored
data at any time by passing the new value as an data() argument:

 # client wishes to receive serialized data now
 $event−>w−>data(1);

A certain watcher object has always exactly onedata attribute. But this is no limit − using references you can store
whatever you want:

 # make a new watcher to serve the client
 Event−>io(
 desc => "client at $host/$port",
 fd => $clientSocket,
 cb => \&serverClient,
 data => {
 perl => $perl,
 host => $host,
 port => $port,
 },
);

 ...

 # send result to client
 if ($event−>w−>data−>{perl})
 {...}

Note: The data attribute is intended for users. If you want to construct a subclass which inherits from the watcher
class and are looking for a way to store class specific data, private is the attribute to use.

4.6. Idle watchers
 # This example demonstrates the usage of Event
 # idle watchers which can perform tasks when
 # no other action is required. Here the idle
 # watcher solves a math problem whenever possible.
 #
 # To display calculation process, simply type
 # something. The script reacts and illustrates
 # that other watchers are running as well.

 # set pragma
 use strict;

 # constant
 use constant VALUE => 0.001;

 # load modules
 use Event qw(loop unloop);

 # install idle watcher
 my $idle=Event−>idle(
 data => VALUE,
 cb => sub {
 # perform complex scientific calculation

Event driven programming in Perl using the Event module

38 4.6. Idle watchers

 $_[0]−>w−>data($_[0]−>w−>data+VALUE);
 },
 repeat => 1,
);

 # install a simple input watcher
 my $io=Event−>io(
 fd => *STDIN,
 cb => sub {
 # show that you are here
 warn "Well, what's on? The intermediate result is ", $idle−>data, ".\n";
 # read
 <STDIN>;
 },
);

 # start loop
 loop;

4.7. Variable watchers
 # Simple Event example using var watchers.
 #
 # It demonstrates a read access watcher,
 # a write access watcher and a combined one.
 #
 # Please note how difficult read access
 # watching is. Almost noone can predict
 # how often such event will happen. Use
 # read access watchers very carefully.

 # set pragma
 use strict;

 # load module
 use Event;

 # install variable
 my $var;

 # init random generator
 srand (time ^ $$ ^ unpack "%L*", `ps axww | gzip`);

 # install writer
 Event−>timer(
 interval=>2,
 cb=>sub {
 # check what is to do
 if (rand(10)<5)
 {
 # now modify the variable (multiple access!)
 $var++;

 # report action
 print "−−−−> Modified variable.\n";
 }
 else
 {
 # only READ variable (1 access)
 my $value=$var;

 # report action
 print "−−−−> Read variable.\n";
 }
 }
);

 # install read var watcher
 Event−>var(
 var => \$var,

Event driven programming in Perl using the Event module

4.7. Variable watchers 39

 poll => 'rw',
 cb => sub {print "[1 (r)] Read!\n";},
);

 # install write var watcher
 Event−>var(
 var => \$var,
 poll => 'w',
 cb => sub {print "[2 (w)] Written: new value is ", ${$_[0]−>w−>var}, ".\n";},
);

 # install combined var watcher
 Event−>var(
 var => \$var,
 poll => 'rw',
 cb => sub {
 # read access?
 print "[3 (rw)] Read!\n" and return if $_[0]−>got eq 'r';

 # write access: read new value and report it
 print "[3 (rw)] Written: new value is ", ${$_[0]−>w−>var}, ".\n";
 },
);

 # start loop
 Event::loop;

4.8. Group watchers
 # This example demonstrates the usage of Event
 # group watchers. Here the watcher watches an
 # io watcher and a timer, and if none of them
 # acts in a certain period of time, the group
 # watcher invokes its callback.
 #
 # To illustrate this, the timer starts with a short
 # interval and increases it in every callback.
 # The io watcher listens at STDIN so the user can
 # prevend the group watcher event by typing.

 # set pragma
 use strict;

 # load modules
 use Event qw(loop unloop);
 require Event::group;

 # install a simple input watcher
 my $io=Event−>io(
 fd => *STDIN,
 cb => sub {
 warn "Io here.\n";
 # read
 <STDIN>;
 },
);

 # install a timer
 my $timer=Event−>timer(
 interval => 1,
 cb => sub {
 # increase interval
 $_[0]−>w−>interval($_[0]−>w−>interval+1);
 warn "Timer here, next call in ", $_[0]−>w−>interval, " seconds.\n";
 },
);

 # install group watcher
 my $group=Event−>group(
 add => $io,
 timeout => 5,

Event driven programming in Perl using the Event module

40 4.8. Group watchers

 cb => sub {
 #
 warn "Action detected!\n";
 },
);
 $group−>add($timer);

 # start loop
 loop;

Event driven programming in Perl using the Event module

4.8. Group watchers 41

Event driven programming in Perl using the Event module

42 4.8. Group watchers

5. Advanced features

5.1. Watching Watchers

Event provides a number of powerful features for debugging, error tracking and tuning. Already a default installation
offers a class variable $Event::DebugLevel and a debug attribute in each watcher to activate traces of various
levels. If compiled with −DEVENT_MEMORY_DEBUG, Event offers an additional class method
_memory_counters() which informs about the currently installed watchers.

 # display installed watchers
 warn "[Trace] Watchers: ", join("−", Event::_memory_counters), "\n";

 # This displays something like
 # "1−29509−0−0−0−0−5−0−3−0−8−0−0−0−0−0−0−0−0−0", where
 # each slot is a certain event or watcher counter.

Even more, there is an add on module Event::Stats which provides ways to interrogate runtime informations of every
certain watcher. Finally, the add on module NetServer::Portal can be used to install a small telnet server within an
Event application which lists all registered watchers live in tradition of the UNIX utility top. It is fascinating to look
inside the running loop, watching the whole process or a user defined group of watchers! But the highlight of all
indeed is the possibility to use this server to modify and tune watcher attributes and states dynamically from a remote
site.

 Watchers at work: NetServer::Portal

 serviceStatvfs PID=10012 @ redbull | 15:57:33 [60s]
 14 events; load averages: 0.97, 0.98, 0.00; lag 0%

 EID PRI STATE RAN TIME CPU TYPE
 DESCRIPTION P1
 10 4 sleep 84 0:46 86.2% io action registration socket
 5 3 sleep 1 0:05 9.9% io NetServer::Portal
 0 7 150 0:00 1.6% sys idle
 7 3 wait 70 0:00 1.6% idle idle process
 3 3 sleep 51 0:00 0.4% io interface connection to s8a8263 via port
 16 3 cpu 11 0:00 0.2% io NetServer::Portal::Client s8a8263
 2 3 sleep 13 0:00 0.0% time Event::Stats
 9 4 sleep 0 0:00 0.0% io more restricted interface registration s
 8 4 sleep 0 0:00 0.0% io less restricted interface registration s
 11 2 sleep 0 0:00 0.0% time controler host list update timer
 12 2 sleep 0 0:00 0.0% time action host list update timer
 13 1 sleep 0 0:00 0.0% sign signal handler for HUP
 14 1 sleep 0 0:00 0.0% sign signal handler for INT
 15 1 sleep 0 0:00 0.0% io controler socket
 6 6 sleep 0 0:00 0.0% time system check timer: actions
 0 −1 0 0:00 0.0% sys other processes

 %

NetServer::Portal also supports remote symbol table inspection.

5.2. Watcher suspension

Every watcher can enter a special mode SUSPENDED. This mode behaves similar to a state at first sight but is very
different in detail. It was implemented for development, tuning and debugging. This mode only effects activity.

Suspension enforces watchers in state ACTIVE or INACTIVE to behave exactly like a deactivated one while they still
own their original states: they do not recognize events and therefore generate no orders. (It is possible to suspend a
cancelled watcher as well, but without visible effect.) You may imagine that SUSPENDED freezes a watcher so that
you can study it as long as you want without disturbance by timeouts or something like that. (And of course, you
can change the watchers real state while it is suspended.)

5. Advanced features 43

SUSPENDED (similar to states) provides a special recognition method. This is is_suspended().

The "freezing" of watchers is exclusively controled by the attribute suspend and the method suspend(),
respectively. Event recognition and order generation are disabled as long as the attributes value is true. This takes no
effect to orders already stored in the queue or to the real watcher state because suspensions were designed as a
utility for debugging, development and tuning. That's why a watcher can be both ACTIVE and SUSPENDED at the
same time. Because of this it is not recommended to use suspensions in your applications real code, stop() suits
better there.

 # build a new active watcher
 my $w=Event−>var(var=>$object, cb=>\&cb);
 print "Watcher started.\n" if $w−>is_active;

 # suspend the watcher, check its state
 $w−>suspend(1);
 print "Watcher is still active ...\n" if $w−>is_active;
 print "... but suspended.\n" if $w−>is_suspended;

 # cancel suspension
 $w−>suspend(0);

Additionally, the NetServer::Portal module introduced in the previous section provides a way to suspend watchers
remotely.

The special intention of this mode becomes visible in the following example as well. It shows that Event embeds a
watcher into a very special environment if it enters SUSPENDED. This enables to perform operations which would
normally be denied by Event, e.g. setting a watcher with insufficient attributes into state ACTIVE. Please note that
Event rebuilds a valid watcher state when SUSPENDED is leaved.

 # In this example a watcher with insufficient
 # attributes is set ACTIVE. This would normally
 # be prevented by Event, but is possible in
 # state SUSPENDED. As soon as SUSPENDED is leaved,
 # Event immediately restores a valid state.

 use strict;
 use Event;

 # make proband
 my $w=Event−>io(fd=>*STDIN, parked=>1);

 # check
 state($w);
 switch($w, 'suspend', 1);
 switch($w, 'again');
 switch($w, 'stop');
 switch($w, 'start');
 switch($w, 'suspend', 0);
 switch($w, 'suspend', 1);
 switch($w, 'again');
 switch($w, 'stop');
 switch($w, 'start');
 switch($w, 'cb', sub {});
 switch($w, 'suspend', 0);
 switch($w, 'cancel');
 state($w);

 sub switch
 {
 # get operation
 my ($w, $op, @par)=@_;

 # get current state
 my @prev=($w−>is_active(), $w−>is_suspended(), $w−>is_cancelled());

 # perform operation
 eval {$w−>$op(@par);};
 die $@ if $@;

 # check new state, prepare message

Event driven programming in Perl using the Event module

44 5. Advanced features

 my ($msg, $diff)=("$op(@par): ", 0);
 $msg=join('', $msg, $diff?', ':'',
 "activity: $prev[0] ==> ", $w−>is_active
),
 $diff=1 if $prev[0] ne $w−>is_active;

 $msg=join('', $msg, $diff?', ':'',
 "cancellation: $prev[2] ==> ", $w−>is_cancelled
),
 $diff=1 if $prev[2] ne $w−>is_cancelled;

 $msg=join('', $msg, $diff?', ':'',
 "suspension: $prev[1] ==> ", $w−>is_suspended
),
 $diff=1 if $prev[1] ne $w−>is_suspended;

 # report changes
 print "$msg.\n";
 }

 sub state
 {
 # get operation
 my ($w)=@_;

 # report state
 print "STATE: active=>", $w−>is_active,
 ", cancelled=>", $w−>is_cancelled,
 ", suspended=>", $w−>is_suspended, ".\n";
 }

Note: SUSPENDED is entered internally during callback execution if the callbacks "parent" watcher unset its
reentrant attribute. This way nested callbacks can be prevented by Event without touching the user controled
watcher state.

5.3. Customization

Event offers a wide range of flexible tuning features to the experienced user which cannot be described here in detail.

The private attribute is designed to help developers building their own watcher subclasses.

Raising exceptions are caught and displayed as messages, while the loop still runs uneffected. This handling is very
similar to the behaviour of eval() but can be replaced by a user provided function.

Important parts of the internal Event kernel can be extended or replaced by own routines if one prefers.

The C API provides access to the internals and is introduced in a chapter of its own below.

5.4. Event and other looping modules

Perl/Tk implements its own event handling. That's why it cannot be combined with Event today (as I know), so the
usual statement that a Perl script can easily get a graphical interface by using Perl/Tk is not necessarily true if this
script uses Event. Instead of this, you would have to decide which loop to use. But as I know, Nick−Ing Simmons (the
author of Perl/Tk) is watching Event carefully. Maybe there is a common loop one day − but this is still only a wish.

gtk+, another popular GUI library used together with Perl, is built on yet another event model (from glibc). As I know
today, there is no successfully tried way of combination with Event. Perhaps it could be found by using
Events hooks?

Contrary to this, PerlQt which provides one more framework for graphical interfaces is reported to work very well with
Event.

Event driven programming in Perl using the Event module

5.3. Customization 45

 Joshua N. Pritikin provided this example
 of teamwork. It demonstrates how Event
 and Qt can be combined.

 use Qt 2.0;
 use Event;

 package MyMainWindow;

 use base 'Qt::MainWindow';
 use Qt::slots 'quit()';

 sub quit {Event::unloop(0);}

 package main;

 import Qt::app;

 Event−>io(
 desc => 'Qt',
 fd => Qt::xfd(),
 timeout => .25,
 cb => sub {
 $app−>processEvents(3000); #read
 $app−>flushX(); #write
 }
);

 my $w=MyMainWindow−>new;

 my $file=Qt::PopupMenu−>new;
 $file−>insertItem("Quit", $w, 'quit()');
 my $mb=$w−>menuBar;
 $mb−>insertItem("File", $file);

 my $at=1000;
 my $label=Qt::Label−>new("$at", $w);
 $w−>setCentralWidget($label);

 Event−>timer(
 interval => .25,
 cb => sub {
 −−$at;
 $label−>setText($at);
 }
);

 $w−>resize(200, 200);
 $w−>show;

 $app−>setMainWidget($w);
 exit Event::loop();

Complicated at first sight is the teamwork of Event and other modules implementing some sort of event handling as
well, like Term::ReadLine::Gnu. This module, if configured that way, catches every keystroke passed to STDIN to
implement autocompletion of filenames and commands for example. Well, a keystroke is an event as well if someone
watches STDIN. More than that, there are two kinds of loops now. But with the help of both module authors, it
became clear that this problem can be solved. The Event distribution contains an example demonstrating how these
modules can be combined (readline.pl).

Event driven programming in Perl using the Event module

46 5.3. Customization

6. Using the C API
Event comes with a special API which allows to write fast callbacks in C. This chapter provides a first overview about
this feature and is by no means complete. It is assumed that a reader is familiar with the Perl usage of Event.

Note: Please read the Event::MakeMaker documentation carefully (it is part of the Event package). The C API may
be subject to change. This chapter is based on Event 0.80.

C programming in conjunction with Perl is usually associated with things like XS or SWIG. Different to this, I've
decided to use the new Inline module for the examples in this chapter. It automatically performs XS internals in the
background, thus allowing to directly embed C into Perl (right into a script or module), which makes the code shorter
and much more intuitive. Additionally, it enables immediate beginning in the field of mixed Perl/C programming even
for an unexperienced XS programmer (like me at the moment). All this predestinates it for tutorial purposes.

Besides pure tutorial considerations Inline (>=0.30) and Event (>=0.80) directly support each other which makes
using the C API even simpler!

Note: The Inline module is still declared beta software. Nevertheless, the module is stable and all examples in this
chapter are tested to run. The writing is based on Inline 0.30 (this version (or higher) is required to run the
examples).

Well! Having said all this, let's start using the C API. What is it for? It shall simply accelerate event handling. This can
be done in one of three ways: by invoking C callbacks from Perl watchers, by combining Perl callbacks and C
watchers, and by bypassing Perl completely. C callbacks accelerate the users event handler. C watchers accelerate
event handling itself. Let's see.

6.1. Preparations

Install Event (>=0.80). ;−) Install Inline (>=0.30).

6.2. Perl watcher and C callback

In this model, the watcher is installed, initialized and maintained on Perl level, while the watchers callback is a C
function. This is useful for all who need to write fast callbacks, but want to keep Events easy to use Perl interface.

As many callbacks do not necessarily need to access the event data which is passed to a callback, the simplest form
of a C callback does not have to use Event's C API at all:

 01: # pragma
 02: use strict;
 03:
 04: # load modules
 05: use Inline with=>'Event';
 06:
 07: # declare the C part
 08: use Inline C => <<'EOC';
 09:
 10: void c_callback(pe_event * event)
 11: {
 12: printf("Here is the C callback!\n");
 13: }
 14:
 15: EOC
 16:
 17: # install a timer which calls the C callback
 18: Event−>timer(
 19: desc => 'Perl timer with C callback.',

6. Using the C API 47

 20: interval => 2,
 21: cb => \&c_callback,
 22:);
 23:
 24: # start the loop
 25: Event::loop;

Not absolutely necessary in this example but generally good advice is to use strict (line 2) when dealing with
Inline to be warned if perl cannot resolve a function name.

Event and Inline are load together by the use statement in line 5. The special syntax with =>
'module' commands Inline to automatically search for and load the named module if it finds out that this module is
prepared to cooperate with Inline. Well, Event is well prepared for this interaction so it is accepted by Inline and load.

Don't care that use Inline is called again in line 8. This case the syntax language => string passes code of
the specified language in string to be processed by Inline. This means that the C source is transparently
embedded by a simple string! For reasons of readability the C string in this example is a here document. If you do not
want to patch embedded C by Perl (at compile time!) it is suggested to use single quoted strings.

All callback functions are of the prototype void (pe_event *) (line 10). We will investigate this interface soon, for
now, we just use it because the example above runs a callback which works regardless of its arguments.

Do not declare the callback static which would make it unusable on Perl side.

The callback body (line 12) may be replaced by anything you want.

Timer installation (lines 18 to 22) and loop startup (line 25) are performed as usual on Perl side. The C callback
function c_callback() is made available by Inline so we can reference it like a Perl subroutine.

Now the script can be called as usual, and voilá: your watcher invokes a C callback!

The first time you execute the script, Inline will arrange the compilation and integration for you. In all subsequent
calls, this step is passed by, so there will be no further delay. The callback function is integrated into the current
namespace, which is main in this case.

Ok, that's fine, but often we need access to event data. That's where the callback interface becomes important.

Remember the callback interface on Perl side: a callback is not expected to return anything, and it receives an
Event::Event object which provides access to event and watcher data. The C expression of such a subroutine is a
void function taking a pointer to a pe_event structure:

 void c_callback(pe_event * event) {...}

pe_event is the C structure corresponding to an Event::Event object (except for io events, which have an own
structure named pe_ioevent). So whenever an Event::Event object is passed to a callback we automatically
receive a pe_event * on C side to deal with.

Note: People familiar with XS programming will notice that things are more complicated. To transform a Perl data
structure into a C equivalent a mapping (or translation) has to be performed because perls internal data
representations on C side are very special (see perlapi (http://www.perldoc.com/perl5.6/pod/perlapi.html) for details).
(For example, a number is not stored in a C int variable but in an SV structure designed to represent all kinds of
scalar values Perl knows, so one would have to transform that SV into an int first.) An interface programmer
therefore usually has to provide and use typemapping code − but we are completely relieved from this task because
of Inlines transparent integration with Event. By executing use Inline with=>'Event'Inline accesses
typemapping informations and functions provided by Event and transparently integrates them into the Perl/C
interface.

The result of this is very readable code − we can just access the passed data. Replace the callback function of the
first example by

Event driven programming in Perl using the Event module

48 6. Using the C API

http://www.perldoc.com/perl5.6/pod/perlapi.html

 void c_callback(pe_event * event)
 {
 /* do something */
 printf(
 "Here is the C callback.\nI detected %d. events.\nThe events priority was %d.\n\n",
 event−>hits,
 event−>prio
);
 }

As a first example, the events hits and prio data are reported. We could do it in Perl before and can do it in C now
as well!

Because the pe_event structure represents an Event::Event object, each Perl side attribute has a counterpart
here. Most important besides hits and prio we get access to the watcher.

Event::Event attribute counterparts in pe_event structures
attribute pe event member data type

hits hits I16 (integer)

prio prio I16 (integer)

w up pointer to a structure which type depends on the watchers type

You may have missed the got data which is available if the watcher provides a poll attribute, like io watchers do.
Well, io events are passed not by pe_event but by a special structure pe_ioevent just for this additional value:

The got value in pe_ioevent is an U16 integer.

Very similar to the Perl side, we find the watcher embedded into event data. As we are on C side now, this is a
pointer to just another data structure.

Event driven programming in Perl using the Event module

6. Using the C API 49

It depends on the type of the watcher which kind of structure this is, every watcher has its own. (So it is important to
know which watchers shall invoke a certain callback, but this was already true on Perl side as well.)

watcher data structures
watcher type data structure

io pe_io

timer pe_timer

signal pe_signal

idle pe_idle

var pe_var

group pe_group

Regardless of their special type, all these structures have a similar architecture. They contain an element named
base which points to one more structure of type pe_watcher, holding data common to all watcher types.
Additionally, there are individual structure elements for the type specific attributes.

Event driven programming in Perl using the Event module

50 6. Using the C API

To illustrate this, here is an example that accesses various watcher data.

 01: # pragma
 02: use strict;
 03:
 04: # load modules, process C code
 05: use Inline with => 'Event';
 06: use Inline C => 'DATA';
 07:
 08: # install a timer which calls a C callback
 09: Event−>timer(
 10: desc => 'Perl timer with C callback.',
 11: interval => 2,
 12: cb => \&c_callback,
 13:);
 14:
 15: # start the loop
 16: Event::loop;
 17:
 18: __END__
 19:
 20: __C__
 22:
 23: /* This is the C part. */
 24:
 25: void c_callback(pe_event * event)
 26: {
 27: /* get the watcher */
 28: pe_timer * watcher=(pe_timer *)event−>up;
 29:
 30: /* inspect base watcher attributes */
 31: printf(
 32: "Watcher (common attributes):\nmax_cb_tm: %d,\nprio: %d,\ncbtime: %f,\nis_running: %d.\n\n",
 33: watcher−>base.max_cb_tm,
 34: watcher−>base.prio,
 35: watcher−>base.cbtime,

Event driven programming in Perl using the Event module

6. Using the C API 51

 36: watcher−>base.running
 37:);
 38: }

In this example a new technique is used to store the C code: use Inline C=>'DATA' (line 6) lets Inline search for
the source via Perls pseudo handle DATA. This allows to clearly separate Perl and C side which can make a script
more readable. Whenever Inline is invoked this way it will continue reading behind the __END__ mark, searching for
a __LANGUAGE__ mark matching the specified language. In the example above, this is __C__ (line 20) because
Inline was invoked by use Inline C=>'DATA'. The text after this mark is read until the next mark or the end of file
and interpreted as embedded source code of the specified language.

This flexible concept allows to use the DATA "file" for embedded sources in various languages or even several
fragments in the same language to be processed differently.

On C side now we first get access to the watcher (line 28), according to the data structure described above. The cast
in this line helps to avoid compiler warnings about "incompatible pointer types".

Once we have the watcher we can access its data. This is done in lines 33 to 36 and seems to be straight forward −
assumed one knows the data types. So here is a table describing these data more detailed (corresponding with the
related Perl attribute table in a chapter above).

base watcher attributes on C side
Perl side attribute pe_watcher

element
access in C

unlimited access:

cb void *
callback

debug flags WaDEBUG(watcher) to query, WaDEBUG_on(watcher) and
WaDEBUG_off(watcher) to modify

desc SV * desc SvPVX(desc) replies char *

max_cb_tm I16
max_cb_time

as integer

prio I16 prio as integer

reentrant flags WaREENTRANT(watcher) to query, WaREENTRANT_on(watcher) and
WaREENTRANT_off(watcher) to modify

repeat flags WaREPEAT(watcher) to query, WaREPEAT_on(watcher) and
WaREPEAT_off(watcher) to modify

access limited to
certain watchers:

hard flags WaHARD(watcher) to query, WaHARD_on(watcher) and
WaHARD_off(watcher) to modify

read−only access:

cbtime double
cbtime

as double

is_running IV running as integer

Note that several boolean values are stored together in a structure element flags which should be accessed only by
the macros mentioned in the table. (These macros are defined in an Event API header file which is automatically
included by Inline.) The flags are combined on bit level (every setting has its own bit). The query macros (WaDEBUG,
WaREPEAT, ...) work very perlish: for a set flag, anything different to 0 is replied, and 0 otherwise.

 For example, to make a timer repeating, use

 WaREPEAT_on(timer);

Event driven programming in Perl using the Event module

52 6. Using the C API

 assumed that timer is the watcher data structure.

One of these flags is hard which is known to be available for certain watchers only (see below). Now on C side, we
see that nevertheless this flag is stored together with all the others.

The data marked as "read only" are of course not read only in C but in Perl, but it is a wise decision not to touch them
on C side as well, because setting a wrong value may make Event crash.

All these base attributes are to be found in the base structure of each watcher, while the following attributes are
directly embedded into the appropriate special watcher data structures.

specific watcher attributes
attribut pe watcher

element
access in C

pe_io:

fd int fd

poll U16 poll

timeout float timeout

timeout_cb

hard this value is stored
in the base
structure

via base structure

pe_timer:

at double tm.at as double

interval SV * interval GEventAPI−>sv_2interval("", interval, &period) replies a
double in period, newSVnv(2.0) makes a new SV holding a double which
can be assigned to interval

hard this value is stored
in the base
structure

via base structure

pe_signal:

signal IV signal as integer

pe_idle:

max SV * max_interval

min SV * min_interval

pe_var:

var SV * variable

poll

pe_group:

timeout SV * timeout

add

Note: The empty cells shall be filled soon. If you need details now, just refer to the
appropriate watcher types C implementation in subdirectory c, timer.c for example.
Search for the WKEYMETH declaration of the attribute of interest. All these
declarations consist of two types: the first sets a new attribute value, if a new
value is passed to the macro. Then it supplies the new (or just found) attribute

Event driven programming in Perl using the Event module

6. Using the C API 53

value. This is the part you should study. The second part is just for passing the
attribute value to Perl because WKEYMETH functions are intended to be called from Perl
side.

Walking through these tables you may have noticed that not all C data are as simple as prio, cbtime and
running used in the last example: several of the data elements are Perl data types (like SV *). These data need
special conversions before they can be used in a plain C context − and different to the callback parameters which
were transparently transformed by Inline we have to do this now ourselves.

There are two kinds of Perl data here: data types of Perl itself and types declared by Event. Perls own data types can
be converted to C data (and vice versa) by macros described in perlapi (see
http://www.perldoc.com/perl5.6/pod/perlapi.html if you run a perl prior 5.6).

Event, fortunately, comes with all the mapping functions we need for Event data types. More, if used with Inline,
both modules cooperate a way that there is automatically a structure GEventAPI which provides a number of
pointers to the API functions. This structure is our simple gate to the API calls. The following summary example
demonstrates how to use it:

 01: # pragma
 02: use strict;
 03:
 04: # load modules, process C code
 05: use Inline with => 'Event';
 06: use Inline C => 'DATA';
 07:
 08: # install a timer which calls a C callback
 09: Event−>timer(
 10: desc => 'Perl timer with C callback.',
 11: interval => 2,
 12: cb => \&c_callback,
 13:);
 14:
 15: # start the loop
 16: Event::loop;
 17:
 18: __END__
 19:
 20: __C__
 21:
 22: /* This is the C part. */
 23:
 24: void c_callback(pe_event * event)
 25: {
 26: pe_timer * watcher;
 27: double interval;
 28: static int calls=0;
 29:
 30: /* get the watcher */
 31: watcher=(pe_timer *)event−>up;
 32:
 33: /* inspect Event data: event */
 33: printf(
 34: "Event:\nhits: %d,\nprio: %d.\n\n",
 35: event−>hits,
 36: event−>prio
 37:);
 38:
 39: /* inspect Event data: base watcher attributes */
 40: printf(
 41: "Watcher (common attributes):\ndesc: %s,\nmax_cb_tm: %d,\nprio: %d,\ncbtime: %f,\nis_running: %d.\n\n",
 41: SvPVX(watcher−>base.desc),
 42: watcher−>base.max_cb_tm,
 43: watcher−>base.prio,
 44: watcher−>base.cbtime,
 45: watcher−>base.running
 46:);
 47:
 48: /* get interval */
 49: GEventAPI−>sv_2interval(
 50: "label",

Event driven programming in Perl using the Event module

54 6. Using the C API

http://www.perldoc.com/perl5.6/pod/perlapi.html

 51: watcher−>interval,
 52: &interval
 53:);
 54:
 55: /* inspect Event data: specific watcher attributes */
 56: printf(
 57: "Watcher (timer attributes):\ninterval: %f.\n\n",
 58: interval
 59:);
 60:
 61: /* stop repeating after several calls */
 62: if (++calls>10)
 63: {
 64: WaREPEAT_off(timer);
 65: printf("Timer stops repeating.\n");
 66: }
 67: }

Lines 49 to 53 show how an API function is called to map data. Please refer to the tables above for details on calling
other API functions.

Line 64 uses an API macro to modify a timer flag.

Not all mapping has to be done for Event data − line 41 demonstrates a transformation by a Perl API macro.

To do something similar for other watcher types, the appropriate structures and structure elements have to be used
according to the tables above.

6.3. C watcher, C callback

In this "pure" solution the event handling is done on C side almost completely. (We do not manage the loop
ourselves, this shall be done on Perl side still.) Doing so presumes more knowledge both of Event and Perl internals,
and you will have to read the Event sources at a certain point. The advantage of this approach is a maximum of
speed. Let's walk through an example.

The Perl side of the script is now very small, we just embed C, let the C side install a timer and start the loop.

 01: # pragma
 02: use strict;
 03:
 04: # load modules
 05: use Inline with => 'Event';
 06: use Inline C => 'DATA';
 07:
 08: # install timer
 09: start_timer();
 10:
 11: #start the loop
 12: Event::loop;
 13:
 14: __END__

The only new thing is a call to a C function start_timer in line 9. This call replaces the timer setup which we did in
Perl before. We will investigate this function on C side. And there we are − on C side now. First a watcher variable is
declared. In this first solution, this is done globally to let it stay alive after watcher setup.

 16: __C__
 17:
 18: /* declare watcher variable */
 19: pe_timer * timer;

The variables type reflects what watcher we are going to deal with.

At this point, we are ready to write the callback function.

 21: /* callback */

Event driven programming in Perl using the Event module

6.3. C watcher, C callback 55

 22: static void c_callback(pe_event * event)
 23: {

The callback is declared static because we do not want to use it on Perl side. Nevertheless, from a callback authors
view there is no difference to a callback function to be invoked from Perl side, so one and the same C callback can be
used on both sides. If you want to provide it all overall just omit static.

Note: in the background, calls from Perl and C side are different, but Inlines transparent parameter typemapping for
Perl side calls results in the fact that we receive event data as pe_event * in both cases.

 24: /* declare variables, get the watcher */
 25: pe_timer * watcher=(pe_timer *)event−>up;
 26: double interval;
 27:
 28: printf("Here is the C callback!\n");
 29:
 30: /* inspect Event data: event */
 31: printf(
 32: "Event:\nhits: %d,\nprio: %d.\n\n",
 33: event−>hits,
 34: event−>prio
 35:);
 36:
 37: /* inspect Event data: base watcher attributes */
 38: printf(
 39: "Watcher (common attributes):\ndesc: %s,\nmax_cb_tm: %d,\nprio: %d,\ncbtime: %f,\nis_running: %d.\n\n",
 40: SvPVX(watcher−>base.desc),
 41: watcher−>base.max_cb_tm,
 42: watcher−>base.prio,
 43: watcher−>base.cbtime,
 44: watcher−>base.running
 45:);
 46:
 47: /* get interval */
 48: GEventAPI−>sv_2interval("label", watcher−>interval, &interval);
 49:
 50: /* inspect Event data: specific watcher attributes */
 51: printf(
 52: "Watcher (timer specific attributes):\ninterval: %f.\n\n",
 53: interval
 54:);
 55: }

Finally, the watcher has to be set up. This is the code:

 57: void start_timer()
 58: {
 59: if (!timer)
 60: {
 61: /* make new watcher */
 62: timer=GEventAPI−>new_timer(0, 0);
 63:
 64: /* set it up */
 65: timer−>base.ext_data=(void*)timer;
 66: timer−>base.callback=(void*)c_callback;
 67:
 68: sv_setpv(timer−>base.desc, "timer setup in C");
 69:
 70: WaREPEAT_on(timer);
 71:
 72: timer−>tm.at=2.0;
 73: timer−>interval=newSVnv(2.0);
 74: }
 75:
 76: /* start the watcher */
 77: GEventAPI−>start((pe_watcher*)timer, 0);
 78: }

Event driven programming in Perl using the Event module

56 6.3. C watcher, C callback

First, the watcher data structure has to be made. Because Event implements several different watchers, the API
provides various functions to instantiate the specific data structures. There is one initial function for each watcher
type. In the timers case, this function is called new_timer(), used in line 62.

Because we are on C side now, we are responsible to perform most of the necessary steps in watcher setup
ourselves. First, there is an important base watcher data ext_data, which has to be set up by the watcher instance.

Then the callback hint is stored which is done by assigning a pointer to the callback function to the appropriate
watcher data (line 66).

The watcher description is an SV and therefore has to be set up by a Perl API function (line 68). sv_setpv() copies
the description string to the watchers description field. This optional information can be stored in watchers of all types.

The following assignments are timer specific. We want this timer to repeat (line 70). The API macro
WaREPEAT_on() sets the repeat flag. Please note that different to the Perl side this flag is not managed
"automagically" (depending on which interval attribute is used). If the timer shall repeat, the flag has to be set
explicitly.

On Perl side, one can set either the at or the interval attribute. On C side, you have to set at (line 72). This data
field is a double indicating when the next timer event will happen. It depends on the timers behaviour how to setup
this: for a non repeating timer, pass the events time (which can be calculated as the sum of the current time and the
remaing delay), for a repeating timer, only pass the interval because Event will add the current time itself. The current
time, by the way, can be get by calling the API function NVtime().

The interval value is only necessary if the timer repeats. It is an SV expected to hold a double, and because of
this, the best way to set it up is to make a new SV for a double and to assign it. This is done by using Perls API
function newSVnv() (line 73).

Finally, the new watcher can be started by calling GEventAPI−>start() (line 77). This function can be used for all
watcher types.

That's all!

6.4. C watcher and Perl callback

This is a team for all Event users who want still use Perl functions on callback side, but wish to accelerate watcher
installation and maintenance.

After all we've seen before, this is a simple final step. It can directly be derived from the "all C" solution. The Perl side
is very similar, except that it now contains a usual watcher callback.

 01: # pragma
 02: use strict;
 03:
 04: # load module
 05: use Inline with => Event;
 06: use Inline C => 'DATA';
 07:
 08: # install a timer
 09: start_timer();
 10: # start the loop
 11: Event::loop;
 12:
 13: # Perl callback
 14: sub callback($)
 15: {
 16: # get event
 17: my ($event)=@_;
 18:
 19: print sprintf(
 20: "Here is the Perl callback (%s), %d event(s) were detected. The events priority was %d, the watchers priority is %d.\n",
 21: $event−>w−>desc,
 22: $event−>hits,
 23: $event−>prio,

Event driven programming in Perl using the Event module

6.4. C watcher and Perl callback 57

 24: $event−>w−>prio,
 25:);
 26: }
 27:
 28: __END__

Note that there's nothing special in this callback. It could have been written for an "all Perl" solution.

Now on C side, we walk the well known path by declaring a watcher instance ...

 30: __C__
 31:
 32: /* declare variables */
 33: pe_timer * timer;

Well known until we come to the callback. What, a C callback here? Is this not the chapter about C watchers and
Perl callbacks, of which we already wrote one? Yes, this is true, but we need an additional step to pass event data to
Perl. Fortunately, it's quite short:

 38: static void c_callback(pe_event * event)
 39: {
 40: dSP;
 41: PUSHMARK(SP);
 42: XPUSHs(GEventAPI−>event_2sv(event));
 43: PUTBACK;
 44: call_pv("main::callback", 0);
 45: }

You may just copy this function, it should work for all watcher types and all Perl callbacks (except that you may want
to adapt the callback name in line 44).

As usual, static hides the function from Perl side access.

The callback initially takes the received pe_event structure and converts it to a Perl Event::Event object by the API
call event_2sv() (line 42). This object is put on Perls stack then (lines 40 to 43). Finally, we invoke the
Perl callback (line 44), passing it's name just as a string. (The package name could even be omitted because we
already are in the main package here.)

The performed way of a Perl function call is documented in general in Perls perlcall manpage.

Well, the new part is done! All that remains is watcher setup, and this is performed the same way as in an "all C"
solution.

 47: void start_timer()
 48: {
 49: if (!timer)
 50: {
 51: /* make new watcher */
 52: timer=GEventAPI−>new_timer(0, 0);
 53:
 54: /* set it up */
 55: sv_setpv(timer−>base.desc, "timer setup in C");
 56: timer−>base.callback=(void*)c_callback;
 57: timer−>base.ext_data=(void*)timer;
 58: timer−>interval=newSVnv(2.0);
 59: timer−>tm.at=2.0;
 60: WaREPEAT_on(timer);
 61: }
 62:
 63: /* start the watcher */
 64: GEventAPI−>start((pe_watcher*)timer, 0);
 65: }

Now you may assemble these script snippets to see the example run. ;−)

Event driven programming in Perl using the Event module

58 6.4. C watcher and Perl callback

7. Application examples
The following projects on base of Event were reported in the Event mailinglist and at conferences:

Application

A bankers trading system.

The state machine library POE (to be found on CPAN) uses Event as one of several event libraries.

A system watching utility checking logfiles, ports, network, processes and more. If an event is detected, an alarm
is send to either a mailbox or a tool like Tivoli. This system is reported to be flexible, completely configurable and
modular built on base of user defined agents. The author wrote: "The Event module allows me to service all agents
in a controlled & timely manner ... Watching a few active log files & testing each record against 20−30 regex's,
checking the process list & netstat every minute, opening a couple of application ports & passing some info from
time−to−time, & keeping an eye on paging −− in total, costs about a minute of CPU a day. The benefits are many."

A news scanner contacting hundreds of servers simultaniously to get the maximal band width.

database frontends

web backends

client/server architectures

7. Application examples 59

Event driven programming in Perl using the Event module

60 7. Application examples

8. Outlook
Event is constantly improved. Joshua N. Pritikin provides excellent maintenance and listens very carefully to users.
He often publishes patches and fixes within hours. Some weeks ago he announced a business caused change into a
Windows environment which might possibly result in a Windows port of his module.

The Perl porters group which is the core team in Perl development already started to discuss the need of an event
handling model built into Perl itself. The discussion seems to be in an early state and it is still unclear if this extension
will base on Event. But in spite of this discussion, Event allows flexible event driven programming in Perl already
today.

8. Outlook 61

Event driven programming in Perl using the Event module

62 8. Outlook

A. Data
Information Details

name Event.pm by Joshua N. Pritikin (JPRIT).

version This tutorial is based on version 0.80.

modules
manpage

http://theoryx5.uwinnipeg.ca/CPAN/data/Event/Event.html

implementation mostly in C for maximal performance. Lots of "Perl magic".

limits Event loops are threadsafe as long as Event is used in only one thread. Better thread support is
already planned.

known bugs If a script using Event dies, perls final memory cleanup process can fail sometimes. If the script is
started standalone this only causes some curious error messages which you might never seen
before. Take care if the script call is embedded into another program. The reasons of this failure
are still unclear but perl itself seems to support it by an own already reported bug.

platforms UNIX (various derivates), a Windows port seems to be possible in the future.

support and
discussion

mailinglist perl−loop@perl.org.

A.1. About this document

Credits Thanks to Joshua N. Pritikin for Event, his constant and immediate module maintenance, and for his patient
and immediate support in all questions I asked for this document; to Brian Ingerson for the Inline module (which
immediately inspired me to add the C API chapter) and his help in figuring out how to make it work together with
Event. Special thanks to him for the Inline extensions of tranparent module typemapping (introduced with
Inline 0.30). Thanks to Marc Lehmann for his review of the first version of the German Workshop talk (the root of this
tutorial).

This tutorial is intended to be helpful. Please send comments, questions and suggestions to
perl@jochen−stenzel.de or discuss them in Events mailing list.

(c) J. Stenzel (perl@jochen−stenzel.de) 2000.

A. Data 63

http://theoryx5.uwinnipeg.ca/CPAN/data/Event/Event.html
mailto:perl-loop@perl.org
mailto:perl@jochen-stenzel.de

Event driven programming in Perl using the Event module

64 A. Data

