1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
dnl AC_NEED_BYTEORDER_H ( HEADER-TO-GENERATE )
dnl Copyright 2001-2002 by Dan Fandrich <dan@coneharvesters.com>
dnl This file may be copied and used freely without restrictions. No warranty
dnl is expressed or implied.
dnl
dnl Create a header file that guarantees that byte swapping macros of the
dnl ntohl variety as well as the extended types included in OpenBSD and
dnl NetBSD such as le32toh are defined. If possible, the standard ntohl
dnl are overloaded as they are optimized for the given platform, but when
dnl this is not possible (e.g. on a big-endian machine) they are defined
dnl in this file.
dnl Look for a symbol in a header file
dnl AC_HAVE_SYMBOL ( IDENTIFIER, HEADER-FILE, ACTION-IF-FOUND, ACTION-IF-NOT-FOUND )
AC_DEFUN([AC_HAVE_SYMBOL],
[
AC_MSG_CHECKING(for $1 in $2)
AC_EGREP_CPP([symbol is present|\<$1\>],[
#include <$2>
#ifdef $1
symbol is present
#endif
],
[AC_MSG_RESULT(yes)
$3
],
[AC_MSG_RESULT(no)
$4
])])
dnl Create a header file that defines extended byte swapping macros
AC_DEFUN([AC_NEED_BYTEORDER_H],
[
changequote(, )dnl
ac_dir=`echo $1|sed 's%/[^/][^/]*$%%'`
changequote([, ])dnl
if test "$ac_dir" != "$1" && test "$ac_dir" != .; then
# The file is in a subdirectory.
test ! -d "$ac_dir" && mkdir "$ac_dir"
fi
# We're only interested in the target CPU, but it's not always set
effective_target="$target"
if test "x$effective_target" = xNONE -o "x$effective_target" = x ; then
effective_target="$host"
fi
AC_SUBST(effective_target)
cat > "$1" << EOF
/* This file is generated automatically by configure */
/* It is valid only for the system type ${effective_target} */
#ifndef __BYTEORDER_H
#define __BYTEORDER_H
EOF
dnl First, do an endian check
AC_C_BIGENDIAN
dnl Look for NetBSD-style extended byte swapping macros
AC_HAVE_SYMBOL(le32toh,machine/endian.h,
[HAVE_LE32TOH=1
cat >> "$1" << EOF
/* extended byte swapping macros are already available */
#include <machine/endian.h>
EOF],
[
dnl Look for standard byte swapping macros
AC_HAVE_SYMBOL(ntohl,arpa/inet.h,
[cat >> "$1" << EOF
/* ntohl and relatives live here */
#include <arpa/inet.h>
EOF],
[AC_HAVE_SYMBOL(ntohl,netinet/in.h,
[cat >> "$1" << EOF
/* ntohl and relatives live here */
#include <netinet/in.h>
EOF],true)])
])
dnl Look for generic byte swapping macros
dnl OpenBSD
AC_HAVE_SYMBOL(swap32,machine/endian.h,
[cat >> "$1" << EOF
/* swap32 and swap16 are defined in machine/endian.h */
EOF],
[
dnl Linux GLIBC
AC_HAVE_SYMBOL(bswap_32,byteswap.h,
[cat >> "$1" << EOF
/* Define generic byte swapping functions */
#include <byteswap.h>
#define swap16(x) bswap_16(x)
#define swap32(x) bswap_32(x)
#define swap64(x) bswap_64(x)
EOF],
[
dnl NetBSD
AC_HAVE_SYMBOL(bswap32,machine/endian.h,
dnl We're already including machine/endian.h if this test succeeds
[cat >> "$1" << EOF
/* Define generic byte swapping functions */
EOF
if test "$HAVE_LE32TOH" != "1"; then
echo '#include <machine/endian.h>'>> "$1"
fi
cat >> "$1" << EOF
#define swap16(x) bswap16(x)
#define swap32(x) bswap32(x)
#define swap64(x) bswap64(x)
EOF],
[
dnl FreeBSD
AC_HAVE_SYMBOL(__byte_swap_long,sys/types.h,
[cat >> "$1" << EOF
/* Define generic byte swapping functions */
#include <sys/types.h>
#define swap16(x) __byte_swap_word(x)
#define swap32(x) __byte_swap_long(x)
/* No optimized 64 bit byte swapping macro is available */
#define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\
((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\
((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\
((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\
((x) >> 8) & 0x00000000ff000000ULL | \\
((x) >> 24) & 0x0000000000ff0000ULL | \\
((x) >> 40) & 0x000000000000ff00ULL | \\
((x) >> 56) & 0x00000000000000ffULL))
EOF],
[
dnl OS X
AC_HAVE_SYMBOL(NXSwapLong,machine/byte_order.h,
[cat >> "$1" << EOF
/* Define generic byte swapping functions */
#include <machine/byte_order.h>
#define swap16(x) NXSwapShort(x)
#define swap32(x) NXSwapLong(x)
#define swap64(x) NXSwapLongLong(x)
EOF],
[
if test $ac_cv_c_bigendian = yes; then
cat >> "$1" << EOF
/* No other byte swapping functions are available on this big-endian system */
#define swap16(x) ((uint16_t)(((x) << 8) | ((uint16_t)(x) >> 8)))
#define swap32(x) ((uint32_t)(((uint32_t)(x) << 24) & 0xff000000UL | \\
((uint32_t)(x) << 8) & 0x00ff0000UL | \\
((x) >> 8) & 0x0000ff00UL | \\
((x) >> 24) & 0x000000ffUL))
#define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\
((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\
((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\
((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\
((x) >> 8) & 0x00000000ff000000ULL | \\
((x) >> 24) & 0x0000000000ff0000ULL | \\
((x) >> 40) & 0x000000000000ff00ULL | \\
((x) >> 56) & 0x00000000000000ffULL))
EOF
else
cat >> "$1" << EOF
/* Use these as generic byteswapping macros on this little endian system */
#define swap16(x) ntohs(x)
#define swap32(x) ntohl(x)
/* No optimized 64 bit byte swapping macro is available */
#define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\
((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\
((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\
((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\
((x) >> 8) & 0x00000000ff000000ULL | \\
((x) >> 24) & 0x0000000000ff0000ULL | \\
((x) >> 40) & 0x000000000000ff00ULL | \\
((x) >> 56) & 0x00000000000000ffULL))
EOF
fi
])
])
])
])
])
[
if test "$HAVE_LE32TOH" != "1"; then
cat >> "$1" << EOF
/* The byte swapping macros have the form: */
/* EENN[a]toh or htoEENN[a] where EE is be (big endian) or */
/* le (little-endian), NN is 16 or 32 (number of bits) and a, */
/* if present, indicates that the endian side is a pointer to an */
/* array of uint8_t bytes instead of an integer of the specified length. */
/* h refers to the host's ordering method. */
/* So, to convert a 32-bit integer stored in a buffer in little-endian */
/* format into a uint32_t usable on this machine, you could use: */
/* uint32_t value = le32atoh(&buf[3]); */
/* To put that value back into the buffer, you could use: */
/* htole32a(&buf[3], value); */
/* Define aliases for the standard byte swapping macros */
/* Arguments to these macros must be properly aligned on natural word */
/* boundaries in order to work properly on all architectures */
#define htobe16(x) htons(x)
#define htobe32(x) htonl(x)
#define be16toh(x) ntohs(x)
#define be32toh(x) ntohl(x)
#define HTOBE16(x) (x) = htobe16(x)
#define HTOBE32(x) (x) = htobe32(x)
#define BE32TOH(x) (x) = be32toh(x)
#define BE16TOH(x) (x) = be16toh(x)
EOF
if test $ac_cv_c_bigendian = yes; then
cat >> "$1" << EOF
/* Define our own extended byte swapping macros for big-endian machines */
#define htole16(x) swap16(x)
#define htole32(x) swap32(x)
#define le16toh(x) swap16(x)
#define le32toh(x) swap32(x)
#define htobe64(x) (x)
#define be64toh(x) (x)
#define HTOLE16(x) (x) = htole16(x)
#define HTOLE32(x) (x) = htole32(x)
#define LE16TOH(x) (x) = le16toh(x)
#define LE32TOH(x) (x) = le32toh(x)
#define HTOBE64(x) (void) (x)
#define BE64TOH(x) (void) (x)
EOF
else
cat >> "$1" << EOF
/* On little endian machines, these macros are null */
#define htole16(x) (x)
#define htole32(x) (x)
#define htole64(x) (x)
#define le16toh(x) (x)
#define le32toh(x) (x)
#define le64toh(x) (x)
#define HTOLE16(x) (void) (x)
#define HTOLE32(x) (void) (x)
#define HTOLE64(x) (void) (x)
#define LE16TOH(x) (void) (x)
#define LE32TOH(x) (void) (x)
#define LE64TOH(x) (void) (x)
/* These don't have standard aliases */
#define htobe64(x) swap64(x)
#define be64toh(x) swap64(x)
#define HTOBE64(x) (x) = htobe64(x)
#define BE64TOH(x) (x) = be64toh(x)
EOF
fi
fi
cat >> "$1" << EOF
/* Define the C99 standard length-specific integer types */
#include <_stdint.h>
EOF
case "${effective_target}" in
i[3456]86-*)
cat >> "$1" << EOF
/* Here are some macros to create integers from a byte array */
/* These are used to get and put integers from/into a uint8_t array */
/* with a specific endianness. This is the most portable way to generate */
/* and read messages to a network or serial device. Each member of a */
/* packet structure must be handled separately. */
/* The i386 and compatibles can handle unaligned memory access, */
/* so use the optimized macros above to do this job */
#define be16atoh(x) be16toh(*(uint16_t*)(x))
#define be32atoh(x) be32toh(*(uint32_t*)(x))
#define be64atoh(x) be64toh(*(uint64_t*)(x))
#define le16atoh(x) le16toh(*(uint16_t*)(x))
#define le32atoh(x) le32toh(*(uint32_t*)(x))
#define le64atoh(x) le64toh(*(uint64_t*)(x))
#define htobe16a(a,x) *(uint16_t*)(a) = htobe16(x)
#define htobe32a(a,x) *(uint32_t*)(a) = htobe32(x)
#define htobe64a(a,x) *(uint64_t*)(a) = htobe64(x)
#define htole16a(a,x) *(uint16_t*)(a) = htole16(x)
#define htole32a(a,x) *(uint32_t*)(a) = htole32(x)
#define htole64a(a,x) *(uint64_t*)(a) = htole64(x)
EOF
;;
*)
cat >> "$1" << EOF
/* Here are some macros to create integers from a byte array */
/* These are used to get and put integers from/into a uint8_t array */
/* with a specific endianness. This is the most portable way to generate */
/* and read messages to a network or serial device. Each member of a */
/* packet structure must be handled separately. */
/* Non-optimized but portable macros */
#define be16atoh(x) ((uint16_t)(((x)[0]<<8)|(x)[1]))
#define be32atoh(x) ((uint32_t)(((x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]))
#define be64atoh(x) ((uint64_t)(((x)[0]<<56)|((x)[1]<<48)|((x)[2]<<40)| \\
((x)[3]<<32)|((x)[4]<<24)|((x)[5]<<16)|((x)[6]<<8)|(x)[7]))
#define le16atoh(x) ((uint16_t)(((x)[1]<<8)|(x)[0]))
#define le32atoh(x) ((uint32_t)(((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0]))
#define le64atoh(x) ((uint64_t)(((x)[7]<<56)|((x)[6]<<48)|((x)[5]<<40)| \\
((x)[4]<<32)|((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0]))
#define htobe16a(a,x) (a)[0]=(uint8_t)((x)>>8), (a)[1]=(uint8_t)(x)
#define htobe32a(a,x) (a)[0]=(uint8_t)((x)>>24), (a)[1]=(uint8_t)((x)>>16), \\
(a)[2]=(uint8_t)((x)>>8), (a)[3]=(uint8_t)(x)
#define htobe64a(a,x) (a)[0]=(uint8_t)((x)>>56), (a)[1]=(uint8_t)((x)>>48), \\
(a)[2]=(uint8_t)((x)>>40), (a)[3]=(uint8_t)((x)>>32), \\
(a)[4]=(uint8_t)((x)>>24), (a)[5]=(uint8_t)((x)>>16), \\
(a)[6]=(uint8_t)((x)>>8), (a)[7]=(uint8_t)(x)
#define htole16a(a,x) (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x)
#define htole32a(a,x) (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\
(a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x)
#define htole64a(a,x) (a)[7]=(uint8_t)((x)>>56), (a)[6]=(uint8_t)((x)>>48), \\
(a)[5]=(uint8_t)((x)>>40), (a)[4]=(uint8_t)((x)>>32), \\
(a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\
(a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x)
EOF
;;
esac
]
cat >> "$1" << EOF
#endif /*__BYTEORDER_H*/
EOF])
|