1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/*
* Copyright (c) 2011 Intel Corporation. All rights reserved.
* Copyright (c) 2016 Cisco Systems, Inc . All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _OFI_INDEXER_H_
#define _OFI_INDEXER_H_
#include "config.h"
#include <sys/types.h>
#include <stdbool.h>
#include <string.h>
#include <inttypes.h>
#include <ofi_osd.h>
/*
* Indexer:
* The indexer is used to associate a pointer with an integer value.
* This allows passing the integer to other users, including remote
* peers or processes. The integer can be used by the owner of the
* indexer to retrieve the stored pointer. The integer value is selected
* by the indexer by selecting the first available unused value.
*
* The pointers are stored using a double-lookup array, which grows
* dynamically. This helps conserve memory when only a few objects are
* stored in the indexer.
*
* Synchronization must be provided by the caller. Caller must
* initialize the indexer by setting free_list and size to 0.
*/
struct ofi_idx_entry {
void *item;
int next;
};
/* User's index is a bit field of format: [chunk_id:offset] */
#define OFI_IDX_CHUNK_BITS 10
#define OFI_IDX_OFFSET_BITS 10
#define OFI_IDX_CHUNK_SIZE (1 << OFI_IDX_OFFSET_BITS)
#define OFI_IDX_MAX_CHUNKS (1 << OFI_IDX_CHUNK_BITS)
#define OFI_IDX_MAX_INDEX ((OFI_IDX_MAX_CHUNKS * OFI_IDX_CHUNK_SIZE) - 1)
struct indexer
{
struct ofi_idx_entry *chunk[OFI_IDX_MAX_CHUNKS];
int free_list;
/* Array size (used): [0, OFI_IDX_MAX_CHUNKS) */
int size;
};
#define ofi_idx_chunk_id(index) (index >> OFI_IDX_OFFSET_BITS)
#define ofi_idx_offset(index) (index & (OFI_IDX_CHUNK_SIZE - 1))
int ofi_idx_insert(struct indexer *idx, void *item);
void *ofi_idx_remove(struct indexer *idx, int index);
void *ofi_idx_remove_ordered(struct indexer *idx, int index);
void ofi_idx_replace(struct indexer *idx, int index, void *item);
void ofi_idx_reset(struct indexer *idx);
static inline int ofi_idx_is_valid(struct indexer *idx, int index)
{
return (index > 0) && (index < idx->size * OFI_IDX_CHUNK_SIZE);
}
static inline struct ofi_idx_entry *
ofi_idx_chunk(struct indexer *idx, int index)
{
assert(ofi_idx_is_valid(idx, index));
return idx->chunk[ofi_idx_chunk_id(index)];
}
static inline void *ofi_idx_at(struct indexer *idx, int index)
{
return (ofi_idx_chunk(idx, index) + ofi_idx_offset(index))->item;
}
static inline void *ofi_idx_lookup(struct indexer *idx, int index)
{
return ofi_idx_is_valid(idx, index) ? ofi_idx_at(idx, index) : NULL;
}
static inline bool ofi_idx_free_list_empty(struct indexer *idx)
{
return (idx->free_list == 0);
}
/*
* Byte Indexer Map:
* Indexer & map with an index that fits into a byte. Index 0 is invalid.
*
* Synchronization must be provided by the caller. Caller must
* initialize structure to 0.
*/
enum ofi_byte_idx_type {
OFI_BYTE_IDX_UNKNOWN,
OFI_BYTE_IDX_INDEX,
OFI_BYTE_IDX_MAP,
};
struct ofi_byte_idx
{
struct ofi_idx_entry *data;
uint8_t free_list;
OFI_DBG_VAR(enum ofi_byte_idx_type, type)
};
bool ofi_byte_idx_grow(struct ofi_byte_idx *idx);
static inline uint8_t ofi_byte_idx_insert(struct ofi_byte_idx *idx, void *item)
{
uint8_t index;
assert(idx->type == OFI_BYTE_IDX_UNKNOWN ||
idx->type == OFI_BYTE_IDX_INDEX);
OFI_DBG_SET(idx->type, OFI_BYTE_IDX_INDEX);
index = idx->free_list;
if (index == 0) {
if (!ofi_byte_idx_grow(idx))
return 0;
index = idx->free_list;
}
idx->free_list = (uint8_t) idx->data[index].next;
idx->data[index].item = item;
idx->data[index].next = -1;
return index;
}
static inline void *ofi_byte_idx_remove(struct ofi_byte_idx *idx, uint8_t index)
{
void *item;
assert(idx->type == OFI_BYTE_IDX_INDEX);
if (idx->data[index].next != -1)
return NULL;
item = idx->data[index].item;
idx->data[index].item = NULL;
idx->data[index].next = idx->free_list;
idx->free_list = index;
return item;
}
static inline void *ofi_byte_idx_at(struct ofi_byte_idx *idx, uint8_t index)
{
return idx->data[index].item;
}
static inline void *ofi_byte_idx_lookup(struct ofi_byte_idx *idx, uint8_t index)
{
return (idx->data && idx->data[index].next == -1) ?
idx->data[index].item : NULL;
}
static inline uint8_t
ofi_byte_idx_set(struct ofi_byte_idx *idx, uint8_t index, void *item)
{
assert(idx->type == OFI_BYTE_IDX_UNKNOWN ||
idx->type == OFI_BYTE_IDX_MAP);
OFI_DBG_SET(idx->type, OFI_BYTE_IDX_MAP);
if (!idx->data && !ofi_byte_idx_grow(idx))
return 0;
assert(idx->data[index].next != -1);
idx->data[index].item = item;
idx->data[index].next = -1;
return index;
}
static inline void *
ofi_byte_idx_clear(struct ofi_byte_idx *idx, uint8_t index)
{
void *item;
assert(idx->type == OFI_BYTE_IDX_MAP);
assert(idx->data);
assert(idx->data[index].next == -1);
item = idx->data[index].item;
idx->data[index].item = NULL;
idx->data[index].next = 0;
return item;
}
/*
* Index map:
* The index map is similar in concept to the indexer. It allows the user
* to associate an integer with a pointer. The difference between the index
* map and indexer, is that the user of the index map selects the index. This
* results in the index map behaving the same as a standard array.
*
* The index map stores pointers using a double-lookup table. This minimizes
* the memory footprint relative to using a standard array when the selected
* integer values are sparse.
*
* Synchronization must be provided by the caller. Caller must initialize
* the index map by setting it to 0.
*/
struct index_map
{
void **chunk[OFI_IDX_MAX_CHUNKS];
int count[OFI_IDX_MAX_CHUNKS];
};
int ofi_idm_set(struct index_map *idm, int index, void *item);
void *ofi_idm_clear(struct index_map *idm, int index);
void ofi_idm_reset(struct index_map *idm, void (*callback)(void *item));
static inline void **ofi_idm_chunk(struct index_map *idm, int index)
{
assert(idm->chunk);
return idm->chunk[ofi_idx_chunk_id(index)];
}
static inline void *ofi_idm_at(struct index_map *idm, int index)
{
void **chunk;
chunk = ofi_idm_chunk(idm, index);
assert(chunk && idm->count[ofi_idx_chunk_id(index)]);
return chunk[ofi_idx_offset(index)];
}
static inline void *ofi_idm_lookup(struct index_map *idm, int index)
{
return ((index <= OFI_IDX_MAX_INDEX) && ofi_idm_chunk(idm, index)) ?
ofi_idm_at(idm, index) : NULL;
}
struct ofi_dyn_arr
{
char *chunk[OFI_IDX_MAX_CHUNKS];
size_t item_size;
void (*init)(struct ofi_dyn_arr *arr, void *item);
};
static inline void
ofi_array_init(struct ofi_dyn_arr *arr, size_t item_size,
void (*init)(struct ofi_dyn_arr *arr, void *item))
{
memset(arr, 0, sizeof(*arr));
arr->item_size = item_size;
arr->init = init;
}
int ofi_array_grow(struct ofi_dyn_arr *arr, int index);
/* Returning non-zero from callback breaks iteration */
int ofi_array_iter(struct ofi_dyn_arr *arr, void *context,
int (*callback)(struct ofi_dyn_arr *arr, void *item,
void *context));
void ofi_array_destroy(struct ofi_dyn_arr *arr);
static inline char *ofi_array_chunk(struct ofi_dyn_arr *arr, int index)
{
assert(arr->chunk);
return arr->chunk[ofi_idx_chunk_id(index)];
}
static inline void *
ofi_array_item(struct ofi_dyn_arr *arr, char *chunk, int offset)
{
return chunk + arr->item_size * offset;
}
static inline void *ofi_array_at(struct ofi_dyn_arr *arr, int index)
{
assert(index <= OFI_IDX_MAX_INDEX);
if (!ofi_array_chunk(arr, index)) {
if (ofi_array_grow(arr, index) < 0)
return NULL;
}
return ofi_array_item(arr, ofi_array_chunk(arr, index),
ofi_idx_offset(index));
}
#endif /* _OFI_INDEXER_H_ */
|