1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
#!/bin/sh
date;
#rm -f summary.txt;
max_seconds_training=300;
secs_between_reports=0.1;
number_of_runs=4;
function benchmark_algorithm() {
./quality $algo datasets/$prob.train datasets/$prob.test $prob.$algo.train.out $prob.$algo.test.out $n1 $n2 $sec_train $secs_between_reports $number_of_runs
date;
}
function benchmark_problem() {
rm -f *_fixed.net
#algo="fann_rprop_stepwise"; benchmark_algorithm;
#echo "./quality_fixed $prob.$algo.train.out_fixed_train $prob.$algo.train.out_fixed_test $prob.$algo.fixed_train.out $prob.$algo.fixed_test.out *_fixed.net"
algo="fann_cascade_rprop_one_activation"; benchmark_algorithm;
algo="fann_cascade_rprop_multi_activation"; benchmark_algorithm;
algo="fann_cascade_quickprop_one_activation"; benchmark_algorithm;
algo="fann_cascade_quickprop_multi_activation"; benchmark_algorithm;
#algo="fann_cascade_batch_one_activation"; benchmark_algorithm;
# algo="fann_cascade_batch_multi_activation"; benchmark_algorithm;
algo="fann_rprop"; benchmark_algorithm;
algo="fann_quickprop"; benchmark_algorithm;
#algo="fann_quickprop_stepwise"; benchmark_algorithm;
algo="fann_batch"; benchmark_algorithm;
#algo="fann_batch_stepwise"; benchmark_algorithm;
#algo="fann_incremental"; benchmark_algorithm;
algo="fann_incremental_momentum"; benchmark_algorithm;
#algo="fann_incremental_stepwise"; benchmark_algorithm;
#comment out two following lines if the libraries are not available
algo="lwnn"; benchmark_algorithm;
algo="jneural"; benchmark_algorithm;
}
prob="two-spiral"; n1=20; n2=10; sec_train=$max_seconds_training;
benchmark_problem;
exit;
#comment out some of the lines below if some of the problems should not be benchmarked
prob="abelone"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="bank32fm"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="bank32nh"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="kin32fm"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="census-house"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="building"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="diabetes"; n1=4; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="gene"; n1=4; n2=2; sec_train=$max_seconds_training;
benchmark_problem;
prob="mushroom"; n1=32; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="parity8"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="parity13"; n1=26; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="pumadyn-32fm"; n1=10; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="robot"; n1=96; n2=0; sec_train=$max_seconds_training;
benchmark_problem;
prob="soybean"; n1=16; n2=8; sec_train=$max_seconds_training;
benchmark_problem;
prob="thyroid"; n1=16; n2=8; sec_train=$max_seconds_training;
benchmark_problem;
prob="two-spiral"; n1=20; n2=10; sec_train=$max_seconds_training;
benchmark_problem;
#./performance fann fann_performance.out 1 2048 2 20
#./performance fann_stepwise fann_stepwise_performance.out 1 2048 2 20
#./performance_fixed fann fann_fixed_performance.out 1 2048 2 20
#./performance lwnn lwnn_performance.out 1 2048 2 20
#./performance jneural jneural_performance.out 1 256 2 20
./gnuplot.pl | gnuplot
|