File: benchmark.sh

package info (click to toggle)
libfann 2.1.0~beta%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 14,648 kB
  • ctags: 924
  • sloc: sh: 8,753; ansic: 5,994; cpp: 2,351; makefile: 507; perl: 243; python: 131; sed: 7
file content (99 lines) | stat: -rwxr-xr-x 3,411 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/bin/sh

date;

#rm -f summary.txt;

max_seconds_training=300;
secs_between_reports=0.1;
number_of_runs=4;

function benchmark_algorithm() {
    ./quality $algo datasets/$prob.train datasets/$prob.test $prob.$algo.train.out $prob.$algo.test.out $n1 $n2 $sec_train $secs_between_reports $number_of_runs
    date;
}

function benchmark_problem() {
    rm -f *_fixed.net
    #algo="fann_rprop_stepwise"; benchmark_algorithm;
    #echo "./quality_fixed $prob.$algo.train.out_fixed_train $prob.$algo.train.out_fixed_test $prob.$algo.fixed_train.out $prob.$algo.fixed_test.out *_fixed.net"    	
    algo="fann_cascade_rprop_one_activation"; benchmark_algorithm;
    algo="fann_cascade_rprop_multi_activation"; benchmark_algorithm;
    algo="fann_cascade_quickprop_one_activation"; benchmark_algorithm;
    algo="fann_cascade_quickprop_multi_activation"; benchmark_algorithm;
    #algo="fann_cascade_batch_one_activation"; benchmark_algorithm;
    # algo="fann_cascade_batch_multi_activation"; benchmark_algorithm;
    algo="fann_rprop"; benchmark_algorithm;
    algo="fann_quickprop"; benchmark_algorithm;
    #algo="fann_quickprop_stepwise"; benchmark_algorithm;
    algo="fann_batch"; benchmark_algorithm;
    #algo="fann_batch_stepwise"; benchmark_algorithm;
    #algo="fann_incremental"; benchmark_algorithm;
    algo="fann_incremental_momentum"; benchmark_algorithm;
    #algo="fann_incremental_stepwise"; benchmark_algorithm;

    #comment out two following lines if the libraries are not available
    algo="lwnn"; benchmark_algorithm;
    algo="jneural"; benchmark_algorithm;
}

prob="two-spiral"; n1=20; n2=10; sec_train=$max_seconds_training;
benchmark_problem;
exit;
#comment out some of the lines below if some of the problems should not be benchmarked

prob="abelone"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="bank32fm"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="bank32nh"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="kin32fm"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="census-house"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="building"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="diabetes"; n1=4; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="gene"; n1=4; n2=2; sec_train=$max_seconds_training;
benchmark_problem;

prob="mushroom"; n1=32; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="parity8"; n1=16; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="parity13"; n1=26; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="pumadyn-32fm"; n1=10; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="robot"; n1=96; n2=0; sec_train=$max_seconds_training;
benchmark_problem;

prob="soybean"; n1=16; n2=8; sec_train=$max_seconds_training;
benchmark_problem;

prob="thyroid"; n1=16; n2=8; sec_train=$max_seconds_training;
benchmark_problem;

prob="two-spiral"; n1=20; n2=10; sec_train=$max_seconds_training;
benchmark_problem;

#./performance fann fann_performance.out 1 2048 2 20
#./performance fann_stepwise fann_stepwise_performance.out 1 2048 2 20
#./performance_fixed fann fann_fixed_performance.out 1 2048 2 20
#./performance lwnn lwnn_performance.out 1 2048 2 20
#./performance jneural jneural_performance.out 1 256 2 20

./gnuplot.pl | gnuplot