1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
/*
*
* Fast Artificial Neural Network (fann) C++ Wrapper Sample
*
* C++ wrapper XOR sample with functionality similar to xor_train.c
*
* Copyright (C) 2004-2006 created by freegoldbar (at) yahoo dot com
*
* This wrapper is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This wrapper is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "floatfann.h"
#include "fann_cpp.h"
#include <ios>
#include <iostream>
#include <iomanip>
using std::cout;
using std::cerr;
using std::endl;
using std::setw;
using std::left;
using std::right;
using std::showpos;
using std::noshowpos;
// Callback function that simply prints the information to cout
int print_callback(FANN::neural_net &net, FANN::training_data &train,
unsigned int max_epochs, unsigned int epochs_between_reports,
float desired_error, unsigned int epochs, void *user_data)
{
cout << "Epochs " << setw(8) << epochs << ". "
<< "Current Error: " << left << net.get_MSE() << right << endl;
return 0;
}
// Test function that demonstrates usage of the fann C++ wrapper
void xor_test()
{
cout << endl << "XOR test started." << endl;
const float learning_rate = 0.7f;
const unsigned int num_layers = 3;
const unsigned int num_input = 2;
const unsigned int num_hidden = 3;
const unsigned int num_output = 1;
const float desired_error = 0.001f;
const unsigned int max_iterations = 300000;
const unsigned int iterations_between_reports = 1000;
cout << endl << "Creating network." << endl;
FANN::neural_net net;
net.create_standard(num_layers, num_input, num_hidden, num_output);
net.set_learning_rate(learning_rate);
net.set_activation_steepness_hidden(1.0);
net.set_activation_steepness_output(1.0);
net.set_activation_function_hidden(FANN::SIGMOID_SYMMETRIC_STEPWISE);
net.set_activation_function_output(FANN::SIGMOID_SYMMETRIC_STEPWISE);
// Set additional properties such as the training algorithm
//net.set_training_algorithm(FANN::TRAIN_QUICKPROP);
// Output network type and parameters
cout << endl << "Network Type : ";
switch (net.get_network_type())
{
case FANN::LAYER:
cout << "LAYER" << endl;
break;
case FANN::SHORTCUT:
cout << "SHORTCUT" << endl;
break;
default:
cout << "UNKNOWN" << endl;
break;
}
net.print_parameters();
cout << endl << "Training network." << endl;
FANN::training_data data;
if (data.read_train_from_file("xor.data"))
{
// Initialize and train the network with the data
net.init_weights(data);
cout << "Max Epochs " << setw(8) << max_iterations << ". "
<< "Desired Error: " << left << desired_error << right << endl;
net.set_callback(print_callback, NULL);
net.train_on_data(data, max_iterations,
iterations_between_reports, desired_error);
cout << endl << "Testing network." << endl;
for (unsigned int i = 0; i < data.length_train_data(); ++i)
{
// Run the network on the test data
fann_type *calc_out = net.run(data.get_input()[i]);
cout << "XOR test (" << showpos << data.get_input()[i][0] << ", "
<< data.get_input()[i][1] << ") -> " << *calc_out
<< ", should be " << data.get_output()[i][0] << ", "
<< "difference = " << noshowpos
<< fann_abs(*calc_out - data.get_output()[i][0]) << endl;
}
cout << endl << "Saving network." << endl;
// Save the network in floating point and fixed point
net.save("xor_float.net");
unsigned int decimal_point = net.save_to_fixed("xor_fixed.net");
data.save_train_to_fixed("xor_fixed.data", decimal_point);
cout << endl << "XOR test completed." << endl;
}
}
/* Startup function. Syncronizes C and C++ output, calls the test function
and reports any exceptions */
int main(int argc, char **argv)
{
try
{
std::ios::sync_with_stdio(); // Syncronize cout and printf output
xor_test();
}
catch (...)
{
cerr << endl << "Abnormal exception." << endl;
}
return 0;
}
/******************************************************************************/
|