File: cascade_train.py

package info (click to toggle)
libfann 2.1.0~beta~dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 14,616 kB
  • ctags: 915
  • sloc: sh: 8,712; ansic: 5,994; cpp: 2,351; makefile: 485; perl: 243; python: 133; sed: 7
file content (63 lines) | stat: -rwxr-xr-x 1,799 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/python
from pyfann import libfann

num_neurons_hidden = 4
num_output = 1

desired_error = 0.0001
max_neurons = 40
neurons_between_reports = 1
steepnesses = [0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1]

train_data = libfann.training_data()
train_data.read_train_from_file("../../benchmarks/datasets/two-spiral.train")
test_data = libfann.training_data()
test_data.read_train_from_file("../../benchmarks/datasets/two-spiral.test")

train_data.scale_train_data(0, 1)
test_data.scale_train_data(0, 1)

ann = libfann.neural_net()
ann.create_shortcut_array([len(train_data.get_input()[0]), len(train_data.get_output()[0])])

ann.set_training_algorithm(libfann.TRAIN_RPROP);



ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC);
ann.set_activation_function_output(libfann.LINEAR_PIECE);
ann.set_activation_steepness_hidden(0.5);
ann.set_activation_steepness_output(0.5);

ann.set_train_error_function(libfann.ERRORFUNC_LINEAR);

ann.set_rprop_increase_factor(1.2);
ann.set_rprop_decrease_factor(0.5);
ann.set_rprop_delta_min(0.0);
ann.set_rprop_delta_max(50.0);

ann.set_cascade_output_change_fraction(0.01);
ann.set_cascade_output_stagnation_epochs(12);
ann.set_cascade_candidate_change_fraction(0.01);
ann.set_cascade_candidate_stagnation_epochs(12);
ann.set_cascade_weight_multiplier(0.4);
ann.set_cascade_candidate_limit(1000.0);
ann.set_cascade_max_out_epochs(150);
ann.set_cascade_max_cand_epochs(150);
ann.set_cascade_activation_steepnesses(steepnesses);
ann.set_cascade_num_candidate_groups(1);


ann.print_parameters();


ann.cascadetrain_on_data(train_data, max_neurons, neurons_between_reports, desired_error);

ann.print_connections();

print "\nTrain error: %f, Test error: %f\n\n" %( ann.test_data(train_data),ann.test_data(test_data))


ann.save("nets/xor_float.net");