File: robot.c

package info (click to toggle)
libfann 2.2.0%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 11,780 kB
  • sloc: ansic: 6,033; cpp: 1,436; makefile: 117; sh: 27
file content (69 lines) | stat: -rw-r--r-- 1,998 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
Fast Artificial Neural Network Library (fann)
Copyright (C) 2003-2012 Steffen Nissen (sn@leenissen.dk)

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/

#include <stdio.h>

#include "fann.h"

int main()
{
	const unsigned int num_layers = 3;
	const unsigned int num_neurons_hidden = 96;
	const float desired_error = (const float) 0.001;
	struct fann *ann;
	struct fann_train_data *train_data, *test_data;

	unsigned int i = 0;

	printf("Creating network.\n");

	train_data = fann_read_train_from_file("../datasets/robot.train");

	ann = fann_create_standard(num_layers,
					  train_data->num_input, num_neurons_hidden, train_data->num_output);

	printf("Training network.\n");

	fann_set_training_algorithm(ann, FANN_TRAIN_INCREMENTAL);
	fann_set_learning_momentum(ann, 0.4f);

	fann_train_on_data(ann, train_data, 3000, 10, desired_error);

	printf("Testing network.\n");

	test_data = fann_read_train_from_file("../datasets/robot.test");

	fann_reset_MSE(ann);
	for(i = 0; i < fann_length_train_data(test_data); i++)
	{
		fann_test(ann, test_data->input[i], test_data->output[i]);
	}
	printf("MSE error on test data: %f\n", fann_get_MSE(ann));

	printf("Saving network.\n");

	fann_save(ann, "robot_float.net");

	printf("Cleaning up.\n");
	fann_destroy_train(train_data);
	fann_destroy_train(test_data);
	fann_destroy(ann);

	return 0;
}