File: ArrayIndirectDoublePriorityQueue.drv

package info (click to toggle)
libfastutil-java 6.5.15-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,716 kB
  • ctags: 1,035
  • sloc: java: 9,711; sh: 588; makefile: 423; xml: 211
file content (635 lines) | stat: -rw-r--r-- 24,142 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*		 
 * Copyright (C) 2003-2014 Paolo Boldi and Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

#if #keyclass(Object)
import java.util.Comparator;
import it.unimi.dsi.fastutil.IndirectDoublePriorityQueue;
#endif

/** A type-specific array-based indirect double priority queue.
 *
 * <P>Instances of this class are based on a single array. This implementation
 * is extremely inefficient, but it is difficult to beat when the size of the
 * queue is very small.  The array is enlarged as needed, but it is never
 * shrunk. Use the {@link #trim()} method to reduce its size, if necessary.
 *
 * <P>Either comparator may be <code>null</code>, indicating that natural comparison should take place. Of course,
 * it makes little sense having them equal.
 */

public class ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE KEY_GENERIC extends ARRAY_INDIRECT_PRIORITY_QUEUE KEY_GENERIC implements INDIRECT_DOUBLE_PRIORITY_QUEUE KEY_GENERIC {

	/** The secondary comparator. */
	protected KEY_COMPARATOR KEY_SUPER_GENERIC secondaryComparator;

	/** Creates a new empty queue with a given capacity.
	 *
	 * @param refArray the reference array.
	 * @param capacity the initial capacity of this queue.
	 * @param c the primary comparator used in this queue, or <code>null</code> for the natural order.
	 * @param d the secondary comparator used in this queue, or <code>null</code> for the natural order.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c, KEY_COMPARATOR KEY_SUPER_GENERIC d ) {
		super( refArray, capacity, c );
		secondaryComparator = d;
	}


	/** Creates a new empty queue with a given capacity.
	 *
	 * <P>This constructor uses as secondary comparator the opposite order of <code>c</code>.
	 *
	 * @param refArray the reference array.
	 * @param capacity the initial capacity of this queue.
	 * @param c the primary comparator used in this queue, or <code>null</code> for the natural order.
	 */
	@SuppressWarnings("unchecked")
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
		super( refArray, capacity, c == null ? COMPARATORS.OPPOSITE_COMPARATOR : COMPARATORS.oppositeComparator( c ) );
	}


	/** Creates a new empty queue with a given capacity and natural order as primary comparator.
	 *
	 * <P>This constructor uses as secondary comparator the opposite of the natural order.
	 *
	 * @param refArray the reference array.
	 * @param capacity the initial capacity of this queue.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, int capacity ) {
		this( refArray, capacity, null );
	}


	/** Creates a new empty queue with capacity equal to the length of the reference array.
	 *
	 * @param refArray the reference array.
	 * @param c the primary comparator used in this queue, or <code>null</code> for the natural order.
	 * @param d the secondary comparator used in this queue, or <code>null</code> for the natural order.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, KEY_COMPARATOR KEY_SUPER_GENERIC c, KEY_COMPARATOR KEY_SUPER_GENERIC d ) {
		this( refArray, refArray.length, c, d );
	}

	/** Creates a new empty queue with capacity equal to the length of the reference array.
	 *
	 * <P>This constructor uses as secondary comparator the opposite order of <code>c</code>.
	 *
	 * @param refArray the reference array.
	 * @param c the primary comparator used in this queue, or <code>null</code> for the natural order.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
		this( refArray, refArray.length, c );
	}

	/** Creates a new empty queue with capacity equal to the length of the reference array and natural order as primary comparator.
	 *
	 * <P>This constructor uses as secondary comparator the opposite of the natural order.
	 *
	 * @param refArray the reference array.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray ) {
		this( refArray, refArray.length, null );
	}


	/** Wraps a given array in a queue using the given comparators.
	 *
	 * <P>The queue returned by this method will be backed by the given array.
	 *
	 * @param refArray the reference array.
	 * @param a an array of indices into <code>refArray</code>.
	 * @param size the number of elements to be included in the queue.
	 * @param c the primary comparator used in this queue, or <code>null</code> for the natural order.
	 * @param d the secondary comparator used in this queue, or <code>null</code> for the natural order.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c, final KEY_COMPARATOR KEY_SUPER_GENERIC d ) {
		this( refArray, 0, c, d );
		this.array = a;
		this.size = size;
	}

	/** Wraps a given array in a queue using the given comparators.
	 *
	 * <P>The queue returned by this method will be backed by the given array.
	 *
	 * @param refArray the reference array.
	 * @param a an array of indices into <code>refArray</code>.
	 * @param c the primary comparator used in this queue, or <code>null</code> for the natural order.
	 * @param d the secondary comparator used in this queue, or <code>null</code> for the natural order.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c, final KEY_COMPARATOR KEY_SUPER_GENERIC d ) {
		this( refArray, a, a.length, c, d );
	}


	/** Wraps a given array in a queue using a given comparator and its opposite.
	 *
	 * <P>The queue returned by this method will be backed by the given array.
	 *
	 * @param refArray the reference array.
	 * @param a an array of indices into <code>refArray</code>.
	 * @param size the number of elements to be included in the queue.
	 * @param c the comparator used in this queue, or <code>null</code> for the natural order.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
		this( refArray, 0, c );
		this.array = a;
		this.size = size;
	}


	/** Wraps a given array in a queue using a given comparator and its opposite.
	 *
	 * <P>The queue returned by this method will be backed by the given array.
	 *
	 * @param refArray the reference array.
	 * @param a an array of indices into <code>refArray</code>.
	 * @param c the comparator used in this queue, or <code>null</code> for the natural order.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
		this( refArray, a, a.length, c );
	}

	/** Wraps a given array in a queue using the natural order and its opposite.
	 *
	 * <P>The queue returned by this method will be backed by the given array.
	 *
	 * @param refArray the reference array.
	 * @param a an array of indices into <code>refArray</code>.
	 * @param size the number of elements to be included in the queue.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, int size ) {
		this( refArray, a, size, null );
	}


	/** Wraps a given array in a queue using the natural order and its opposite.
	 *
	 * <P>The queue returned by this method will be backed by the given array.
	 *
	 * @param refArray the reference array.
	 * @param a an array of indices into <code>refArray</code>.
	 */
	public ARRAY_INDIRECT_DOUBLE_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a ) {
		this( refArray, a, a.length );
	}

	/** Returns the index (in {@link #array}) of the smallest element w.r.t. the {@linkplain #secondaryComparator secondary comparator}. */

	@SuppressWarnings("unchecked")
	private int findSecondaryFirst() {
		int i = size;
		int firstIndex = --i;
		KEY_GENERIC_TYPE first = refArray[ array[ firstIndex ] ];

		if ( secondaryComparator == null ) while( i-- != 0 ) { if ( KEY_LESS( refArray[ array[ i ] ], first ) ) first = refArray[ array[ firstIndex = i ] ]; }
		else while( i-- != 0 ) { if ( secondaryComparator.compare( refArray[ array[ i ] ], first ) < 0 ) first = refArray[ array[ firstIndex = i ] ]; }

		return firstIndex;
	}

	@SuppressWarnings("unchecked")
	private int findSecondaryLast() {
		int i = size;
		int lastIndex = --i;
		KEY_GENERIC_TYPE last = refArray[ array[ lastIndex ] ];

		if ( secondaryComparator == null ) while( i-- != 0 ) { if ( KEY_LESS( last, refArray[ array[ i ] ] ) ) last = refArray[ array[ lastIndex = i ] ]; }
		else while( i-- != 0 ) { if ( secondaryComparator.compare( last, refArray[ array[ i ] ] ) < 0 ) last = refArray[ array[ lastIndex = i ] ]; }

		return lastIndex;
	}


	public int secondaryFirst() {
		return array[ findSecondaryFirst() ];
	}


	public int secondaryLast() {
		return array[ findSecondaryLast() ];
	}

	public int secondaryFront( int[] a ) {
		final KEY_GENERIC_TYPE secondaryTop = refArray[ array[ findSecondaryFirst() ] ];
		int i = size, c = 0;
		while( i-- != 0 ) if ( KEY_EQUALS_NOT_NULL( secondaryTop, refArray[ array[ i ] ] ) ) a[ c++ ] = array[ i ];
		return c;
	}

	public void changed( int i ) {}

	/** Returns the secondary comparator of this queue.
	 *
	 * @return the secondary comparator of this queue.
	 * @see #secondaryFirst()
	 */
	public KEY_COMPARATOR KEY_SUPER_GENERIC secondaryComparator() { return secondaryComparator; }

#ifdef TEST

	/** The original class, now just used for testing. */

	private static class TestQueue {

		/** The reference array */
		private KEY_TYPE refArray[];
		/** Its length */
		private int N;
		/** The number of elements in the heaps */
		private int n;
		/** The two comparators */
		private KEY_COMPARATOR primaryComp, secondaryComp;
		/** Two indirect heaps are used, called <code>primary</code> and <code>secondary</code>. Each of them contains
			a permutation of <code>n</code> among the indices 0, 1, ..., <code>N</code>-1 in such a way that the corresponding
			objects be sorted with respect to the two comparators.
			We also need an array <code>inSec[]</code> so that <code>inSec[k]</code> is the index of <code>secondary</code> 
			containing <code>k</code>.
		*/
		private int primary[], secondary[], inSec[];

		/** Builds a double indirect priority queue.
		 *  @param refArray The reference array.
		 *  @param primaryComp The primary comparator.
		 *  @param secondaryComp The secondary comparator.
		 */
		public TestQueue( KEY_TYPE refArray[], KEY_COMPARATOR primaryComp, KEY_COMPARATOR secondaryComp ) {
			this.refArray = refArray;
			this.N = refArray.length;
			assert this.N != 0;
			this.n = 0;
			this.primaryComp = primaryComp;
			this.secondaryComp = secondaryComp;
			this.primary = new int[N];
			this.secondary = new int[N];
			this.inSec = new int[N];
			java.util.Arrays.fill( inSec, -1 );
		}

		/** Adds an index to the queue. Notice that the index should not be already present in the queue.
		 *  @param i The index to be added
		 */
		public void add( int i ) {
			if ( i < 0 || i >= refArray.length ) throw new IndexOutOfBoundsException();
			if ( inSec[ i ] >= 0 ) throw new IllegalArgumentException();
			primary[n] = i;
			secondary[n] = i; inSec[i] = n;
			n++;
			swimPrimary( n-1 );
			swimSecondary( n-1 );
		}

		/** Heapify the primary heap.
		 *  @param i The index of the heap to be heapified.
		 */
		private void heapifyPrimary( int i ) {
			int dep = primary[i];
			int child;

			while ( ( child = 2*i+1 ) < n ) {
				if ( child+1 < n && primaryComp.compare( refArray[primary[child+1]], refArray[primary[child]] ) < 0 ) child++;
				if ( primaryComp.compare( refArray[dep], refArray[primary[child]] ) <= 0 ) break;
				primary[i] = primary[child];
				i = child;
			}
			primary[i] = dep;
		}

		/** Heapify the secondary heap.
		 *  @param i The index of the heap to be heapified.
		 */
		private void heapifySecondary( int i ) {
			int dep = secondary[i];
			int child;

			while ( ( child = 2*i+1 ) < n ) {
				if ( child+1 < n && secondaryComp.compare( refArray[secondary[child+1]], refArray[secondary[child]] ) < 0 ) child++;
				if ( secondaryComp.compare( refArray[dep], refArray[secondary[child]] ) <= 0 ) break;
				secondary[i] = secondary[child]; inSec[secondary[i]] = i;
				i = child;
			}
			secondary[i] = dep; inSec[secondary[i]] = i;
		}

		/** Swim and heapify the primary heap.
		 *  @param i The index to be moved.
		 */
		private void swimPrimary( int i ) {
			int dep = primary[i];
			int parent;

			while ( i != 0 && ( parent = ( i - 1 ) / 2 ) >= 0 ) {
				if ( primaryComp.compare( refArray[primary[parent]], refArray[dep] ) <= 0 ) break;
				primary[i] = primary[parent];
				i = parent;
			}
			primary[i] = dep;
			heapifyPrimary( i );
		}

		/** Swim and heapify the secondary heap.
		 *  @param i The index to be moved.
		 */
		private void swimSecondary( int i ) {
			int dep = secondary[i];
			int parent;

			while ( i != 0 && ( parent = ( i - 1 ) / 2 ) >= 0 ) {
				if ( secondaryComp.compare( refArray[secondary[parent]], refArray[dep] ) <= 0 ) break;
				secondary[i] = secondary[parent]; inSec[secondary[i]] = i;
				i = parent;
			}
			secondary[i] = dep; inSec[secondary[i]] = i;
			heapifySecondary( i );
		}

		/** Returns the minimum element with respect to the primary comparator.
			@return the minimum element.
		*/
		public int top() {
			if ( n == 0 ) throw new java.util.NoSuchElementException();
			return primary[0];
		}

		/** Returns the minimum element with respect to the secondary comparator.
			@return the minimum element.
		*/
		public int secTop() {
			if ( n == 0 ) throw new java.util.NoSuchElementException();
			return secondary[0];
		}

		/** Removes the minimum element with respect to the primary comparator.
		 *  @return the removed element.
		 */
		public void remove() {
			if ( n == 0 ) throw new java.util.NoSuchElementException();
			int result = primary[0];
			int ins = inSec[result];
			inSec[ result ] = -1;
			// Copy a leaf 
			primary[0] = primary[n-1];
			if ( ins == n-1 ) {
				n--;
				heapifyPrimary( 0 );	
				return;
			}
			secondary[ins] = secondary[n-1]; 
			inSec[secondary[ins]] = ins;
			// Heapify
			n--;
			heapifyPrimary( 0 );
			swimSecondary( ins );
		}

		public void clear() {
			while( size() != 0 ) remove();
		}

		public void remove( int index ) {
			if ( n == 0 ) throw new java.util.NoSuchElementException();
			int result = primary[index];
			int ins = inSec[result];
			inSec[ result ] = -1;
			// Copy a leaf 
			primary[index] = primary[n-1];
			if ( ins == n-1 ) {
				n--;
				swimPrimary( index );	
				return;
			}
			secondary[ins] = secondary[n-1]; 
			inSec[secondary[ins]] = ins;
			// Heapify
			n--;
			swimPrimary( index );
			swimSecondary( ins );
		}

		/** Signals that the minimum element with respect to the comparator has changed.
		 */
		public void change() {
			int ins = inSec[primary[0]];
			heapifyPrimary( 0 );
			swimSecondary( ins );
		}

		public void change(int index) {
			int ins = inSec[primary[index]];
			swimPrimary( index );
			swimSecondary( ins );
		}

		/** Returns the number of elements in the queue.
		 *  @return the size of the queue
		 */
		public int size() {
			return n;
		}
	}


	private static long seed = System.currentTimeMillis(); 
	private static java.util.Random r = new java.util.Random( seed );

	private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
		return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
		return r.NEXT_KEY(); 
#elif #keyclass(Object)
		return Integer.toBinaryString( r.nextInt() );
#else 
		return new java.io.Serializable() {};
#endif
	}

	private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
	private static java.text.FieldPosition p = new java.text.FieldPosition( 0 );

	private static String format( double d ) {
		StringBuffer s = new StringBuffer();
		return format.format( d, s, p ).toString();
	}

	private static void speedTest( int n, boolean comp ) {
		System.out.println( "There are presently no speed tests for this class." );
	}


	private static void fatal( String msg ) {
		System.out.println( msg );
		System.exit( 1 );
	}

	private static void ensure( boolean cond, String msg ) {
		if ( cond ) return;
		fatal( msg );
	}

	private static boolean heapEqual( int[] a, int[] b, int sizea, int sizeb ) {
		if ( sizea != sizeb ) return false;
		while( sizea-- != 0 ) if ( a[sizea] != b[sizea] ) return false;
		return true;
	}

	private static boolean invEqual( int inva[], int[] invb ) {
		int i = inva.length;
		while( i-- != 0 ) if ( inva[ i ] != invb[ i ] ) return false;
		return true;
	}



	protected static void test( int n ) {
		long ms;
		Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement;
		int rm = 0, rt = 0;
		KEY_TYPE[] refArray = new KEY_TYPE[ n ];

		for( int i = 0; i < n; i++ ) refArray[ i ] = genKey();
		  
		HEAP_SESQUI_INDIRECT_DOUBLE_PRIORITY_QUEUE m = new HEAP_SESQUI_INDIRECT_DOUBLE_PRIORITY_QUEUE( refArray );
		TestQueue t = new TestQueue( refArray, COMPARATORS.NATURAL_COMPARATOR, COMPARATORS.OPPOSITE_COMPARATOR );

		/* We add pairs to t. */
		for( int i = 0; i < n / 2;  i++ ) {
			t.add( i );
			m.enqueue( i );
		}
		
		ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ in primary heap after creation (" + m + ", " + t + ")" );
		ensure( heapEqual( m.secondaryQueue.heap, t.secondary, m.size(), t.size() ), "Error (" + seed + "): m and t differ in secondary heap after creation (" + m + ", " + t + ")" );
		ensure( invEqual( m.secondaryQueue.inv, t.inSec ), "Error (" + seed + "): m and t differ in inversion arrays after creation (" + java.util.Arrays.toString( m.secondaryQueue.inv ) + ", " + java.util.Arrays.toString( t.inSec ) + ")" );

		/* Now we add and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<2*n;  i++ ) {
			if ( r.nextDouble() < 0.01 ) {
				t.clear();
				m.clear();
				for( int j = 0; j < n / 2;  j++ ) {
					t.add( j );
					m.enqueue( j );
				}
			}

			int T = r.nextInt( 2 * n );

			mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;

			try {
				m.enqueue( T );
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
			catch ( IllegalArgumentException e ) { mThrowsIllegal = e; }

			try {
				t.add( T );
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
			catch ( IllegalArgumentException e ) { tThrowsIllegal = e; }

			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
			ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" );

			ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ in primary heap after enqueue (" + m + ", " + t + ")" );
			ensure( heapEqual( m.secondaryQueue.heap, t.secondary, m.size(), t.size() ), "Error (" + seed + "): m and t differ in secondary heap after enqueue (" + m + ", " + t + ")" );
			ensure( invEqual( m.secondaryQueue.inv, t.inSec ), "Error (" + seed + "): m and t differ in inversion arrays after enqueue (" + java.util.Arrays.toString( m.secondaryQueue.inv ) + ", " + java.util.Arrays.toString( t.inSec ) + ")" );
			
			if ( m.size() != 0 ) {
				ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.first() + ", " + t.top() + ")");
				ensure( m.secondaryFirst() == t.secTop(), "Error (" + seed + "): m and t differ in secondary first element after enqueue (" + m.secondaryFirst() + ", " + t.secTop() + ")");
			}


			mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;

			try {
				rm = m.dequeue();
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
			catch ( IllegalArgumentException e ) { mThrowsIllegal = e; }
			catch ( java.util.NoSuchElementException e ) { mThrowsNoElement = e; }

			try {
				rt = t.top();
				t.remove();
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
			catch ( IllegalArgumentException e ) { tThrowsIllegal = e; }
			catch ( java.util.NoSuchElementException e ) { tThrowsNoElement = e; }

			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
			ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException  (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" );
			ensure( ( mThrowsNoElement == null ) == ( tThrowsNoElement == null ), "Error (" + seed + "): dequeue() divergence in java.util.NoSuchElementException  (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" );
			if ( mThrowsOutOfBounds == null ) ensure( rt == rm , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")" );

			ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ in primary heap after dequeue (" + m + ", " + t + ")" );
			ensure( heapEqual( m.secondaryQueue.heap, t.secondary, m.size(), t.size() ), "Error (" + seed + "): m and t differ in secondary heap after dequeue (" + m + ", " + t + ")" );
			ensure( invEqual( m.secondaryQueue.inv, t.inSec ), "Error (" + seed + "): m and t differ in inversion arrays after dequeue (" + java.util.Arrays.toString( m.secondaryQueue.inv ) + ", " + java.util.Arrays.toString( t.inSec ) + ")" );

			if ( m.size() != 0 ) {
				ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.first() + ", " + t.top() + ")");
				ensure( m.secondaryFirst() == t.secTop(), "Error (" + seed + "): m and t differ in secondary first element after dequeue (" + m.secondaryFirst() + ", " + t.secTop() + ")");
			}

			if ( m.size() != 0 ) {

				refArray[ m.first() ] = genKey();
				
				m.changed();
				t.change();
				
				ensure( m.size() == t.size(), "Error (" + seed + "): m and t differ in size after change (" + m.size() + ", " + t.size() + ")");
				
				ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after change (" + m.first() + ", " + t.top() + ")");
				ensure( m.secondaryFirst() == t.secTop(), "Error (" + seed + "): m and t differ in secondary first element after change (" + m.secondaryFirst() + ", " + t.secTop() + ")");
			}
		}


		/* Now we check that m actually holds the same data. */
		  
		m.clear();
		ensure( m.isEmpty(), "Error (" + seed + "): m is not empty after clear()" );

		System.out.println("Test OK");
	}



	public static void main( String args[] ) {
		int n  = Integer.parseInt(args[1]);
		if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) );
		  

		try {
			if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) );
			else if ( "test".equals( args[0] ) ) test(n);
		} catch( Throwable e ) {
			e.printStackTrace( System.err );
			System.err.println( "seed: " + seed );
		}
	}

#endif

}