File: Arrays.drv

package info (click to toggle)
libfastutil-java 6.5.15-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,716 kB
  • ctags: 1,035
  • sloc: java: 9,711; sh: 588; makefile: 423; xml: 211
file content (1755 lines) | stat: -rw-r--r-- 70,338 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
/*		 
 * Copyright (C) 2002-2014 Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 *
 *
 *
 * For the sorting and binary search code:
 *
 * Copyright (C) 1999 CERN - European Organization for Nuclear Research.
 *
 *   Permission to use, copy, modify, distribute and sell this software and
 *   its documentation for any purpose is hereby granted without fee,
 *   provided that the above copyright notice appear in all copies and that
 *   both that copyright notice and this permission notice appear in
 *   supporting documentation. CERN makes no representations about the
 *   suitability of this software for any purpose. It is provided "as is"
 *   without expressed or implied warranty. 
 */

package PACKAGE;

import it.unimi.dsi.fastutil.Arrays;
import it.unimi.dsi.fastutil.Hash;
import java.util.Random;

#if #keys(primitive)

/** A class providing static methods and objects that do useful things with type-specific arrays.
 *
 * <p>In particular, the <code>ensureCapacity()</code>, <code>grow()</code>,
 * <code>trim()</code> and <code>setLength()</code> methods allow to handle
 * arrays much like array lists. This can be very useful when efficiency (or
 * syntactic simplicity) reasons make array lists unsuitable.
 *
 * <P>Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO}
 * contain several methods make it possible to load and save arrays of primitive types as sequences
 * of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text.
 *
 * @see java.util.Arrays
 */

public class ARRAYS {

#else

import java.util.Comparator;

/** A class providing static methods and objects that do useful things with type-specific arrays.
 *
 * In particular, the <code>ensureCapacity()</code>, <code>grow()</code>,
 * <code>trim()</code> and <code>setLength()</code> methods allow to handle
 * arrays much like array lists. This can be very useful when efficiency (or
 * syntactic simplicity) reasons make array lists unsuitable.
 *
 * <P><strong>Warning:</strong> creating arrays 
 * using {@linkplain java.lang.reflect.Array#newInstance(Class,int) reflection}, as it
 * happens in {@link #ensureCapacity(Object[],int,int)} and {@link #grow(Object[],int,int)},
 * is <em>significantly slower</em> than using <code>new</code>. This phenomenon is particularly
 * evident in the first growth phases of an array reallocated with doubling (or similar) logic.
 *
 * @see java.util.Arrays
 */

public class ARRAYS {

#endif
	private ARRAYS() {}

	/** A static, final, empty array. */
	public final static KEY_TYPE[] EMPTY_ARRAY = {};


#if #keyclass(Object)
	/** Creates a new array using a the given one as prototype. 
	 *
	 * <P>This method returns a new array of the given length whose element
	 * are of the same class as of those of <code>prototype</code>. In case
	 * of an empty array, it tries to return {@link #EMPTY_ARRAY}, if possible.
	 *
	 * @param prototype an array that will be used to type the new one.
	 * @param length the length of the new array.
	 * @return a new array of given type and length.
	 */

	@SuppressWarnings("unchecked")
	private static <K> K[] newArray( final K[] prototype, final int length ) {
		final Class<?> componentType = prototype.getClass().getComponentType();
		if ( length == 0 && componentType == Object.class ) return (K[])EMPTY_ARRAY;
		return (K[])java.lang.reflect.Array.newInstance( prototype.getClass().getComponentType(), length );
	}
#endif

	/** Ensures that an array can contain the given number of entries.
	 *
	 * <P>If you cannot foresee whether this array will need again to be
	 * enlarged, you should probably use <code>grow()</code> instead.
	 *
	 * @param array an array.
	 * @param length the new minimum length for this array.
	 * @return <code>array</code>, if it contains <code>length</code> entries or more; otherwise,
	 * an array with <code>length</code> entries whose first <code>array.length</code>
	 * entries are the same as those of <code>array</code>.
	 */
	public static KEY_GENERIC KEY_GENERIC_TYPE[] ensureCapacity( final KEY_GENERIC_TYPE[] array, final int length ) {
		if ( length > array.length ) {
			final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
				newArray( array, length );
#else
				new KEY_TYPE[ length ];
#endif
			System.arraycopy( array, 0, t, 0, array.length );
			return t;
		}
		return array;
	}

	/** Ensures that an array can contain the given number of entries, preserving just a part of the array.
	 *
	 * @param array an array.
	 * @param length the new minimum length for this array.
	 * @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary.
	 * @return <code>array</code>, if it can contain <code>length</code> entries or more; otherwise,
	 * an array with <code>length</code> entries whose first <code>preserve</code>
	 * entries are the same as those of <code>array</code>.
	 */
	public static KEY_GENERIC KEY_GENERIC_TYPE[] ensureCapacity( final KEY_GENERIC_TYPE[] array, final int length, final int preserve ) {
		if ( length > array.length ) {
			final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
				newArray( array, length );
#else
				new KEY_TYPE[ length ];
#endif
			System.arraycopy( array, 0, t, 0, preserve );
			return t;
		}
		return array;
	}

	/** Grows the given array to the maximum between the given length and
	 * the current length multiplied by two, provided that the given
	 * length is larger than the current length.
	 *
	 * <P>If you want complete control on the array growth, you
	 * should probably use <code>ensureCapacity()</code> instead.
	 *
	 * @param array an array.
	 * @param length the new minimum length for this array.
	 * @return <code>array</code>, if it can contain <code>length</code>
	 * entries; otherwise, an array with
	 * max(<code>length</code>,<code>array.length</code>/&phi;) entries whose first
	 * <code>array.length</code> entries are the same as those of <code>array</code>.
	 * */

	public static KEY_GENERIC KEY_GENERIC_TYPE[] grow( final KEY_GENERIC_TYPE[] array, final int length ) {
		if ( length > array.length ) {
			final int newLength = (int)Math.max( Math.min( 2L * array.length, Arrays.MAX_ARRAY_SIZE ), length );
			final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
				newArray( array, newLength );
#else
				new KEY_TYPE[ newLength ];
#endif
			System.arraycopy( array, 0, t, 0, array.length );
			return t;
		}
		return array;
	}

	/** Grows the given array to the maximum between the given length and
	 * the current length multiplied by two, provided that the given
	 * length is larger than the current length, preserving just a part of the array.
	 *
	 * <P>If you want complete control on the array growth, you
	 * should probably use <code>ensureCapacity()</code> instead.
	 *
	 * @param array an array.
	 * @param length the new minimum length for this array.
	 * @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary.
	 * @return <code>array</code>, if it can contain <code>length</code>
	 * entries; otherwise, an array with
	 * max(<code>length</code>,<code>array.length</code>/&phi;) entries whose first
	 * <code>preserve</code> entries are the same as those of <code>array</code>.
	 * */

	public static KEY_GENERIC KEY_GENERIC_TYPE[] grow( final KEY_GENERIC_TYPE[] array, final int length, final int preserve ) {

		if ( length > array.length ) {
			final int newLength = (int)Math.max( Math.min( 2L * array.length, Arrays.MAX_ARRAY_SIZE ), length );

			final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
				newArray( array, newLength );
#else
				new KEY_TYPE[ newLength ];
#endif
			System.arraycopy( array, 0, t, 0, preserve );

			return t;
		}
		return array;

	}

	/** Trims the given array to the given length.
	 *
	 * @param array an array.
	 * @param length the new maximum length for the array.
	 * @return <code>array</code>, if it contains <code>length</code>
	 * entries or less; otherwise, an array with
	 * <code>length</code> entries whose entries are the same as
	 * the first <code>length</code> entries of <code>array</code>.
	 * 
	 */

	public static KEY_GENERIC KEY_GENERIC_TYPE[] trim( final KEY_GENERIC_TYPE[] array, final int length ) {
		if ( length >= array.length ) return array;
		final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
			newArray( array, length );
#else
			length == 0 ? EMPTY_ARRAY : new KEY_TYPE[ length ];
#endif
		System.arraycopy( array, 0, t, 0, length );
		return t;
	}

	/** Sets the length of the given array.
	 *
	 * @param array an array.
	 * @param length the new length for the array.
	 * @return <code>array</code>, if it contains exactly <code>length</code>
	 * entries; otherwise, if it contains <em>more</em> than
	 * <code>length</code> entries, an array with <code>length</code> entries
	 * whose entries are the same as the first <code>length</code> entries of
	 * <code>array</code>; otherwise, an array with <code>length</code> entries
	 * whose first <code>array.length</code> entries are the same as those of
	 * <code>array</code>.
	 * 
	 */

	public static KEY_GENERIC KEY_GENERIC_TYPE[] setLength( final KEY_GENERIC_TYPE[] array, final int length ) {
		if ( length == array.length ) return array;
		if ( length < array.length ) return trim( array, length );
		return ensureCapacity( array, length );
	}

	/** Returns a copy of a portion of an array.
	 *
	 * @param array an array.
	 * @param offset the first element to copy.
	 * @param length the number of elements to copy.
	 * @return a new array containing <code>length</code> elements of <code>array</code> starting at <code>offset</code>.
	 */

	public static KEY_GENERIC KEY_GENERIC_TYPE[] copy( final KEY_GENERIC_TYPE[] array, final int offset, final int length ) {
		ensureOffsetLength( array, offset, length );
		final KEY_GENERIC_TYPE[] a = 
#if #keyclass(Object)
			newArray( array, length );
#else
			length == 0 ? EMPTY_ARRAY : new KEY_TYPE[ length ];
#endif
		System.arraycopy( array, offset, a, 0, length );
		return a;
	}

	/** Returns a copy of an array.
	 *
	 * @param array an array.
	 * @return a copy of <code>array</code>.
	 */

	public static KEY_GENERIC KEY_GENERIC_TYPE[] copy( final KEY_GENERIC_TYPE[] array ) {
		return array.clone();
	}

	/** Fills the given array with the given value.
	 *
	 * <P>This method uses a backward loop. It is significantly faster than the corresponding
	 * method in {@link java.util.Arrays}.
	 *
	 * @param array an array.
	 * @param value the new value for all elements of the array.
	 */

	public static KEY_GENERIC void fill( final KEY_GENERIC_TYPE[] array, final KEY_GENERIC_TYPE value ) {
		int i = array.length;
		while( i-- != 0 ) array[ i ] = value;
	}

	/** Fills a portion of the given array with the given value.
	 *
	 * <P>If possible (i.e., <code>from</code> is 0) this method uses a
	 * backward loop. In this case, it is significantly faster than the
	 * corresponding method in {@link java.util.Arrays}.
	 *
	 * @param array an array.
	 * @param from the starting index of the portion to fill (inclusive).
	 * @param to the end index of the portion to fill (exclusive).
	 * @param value the new value for all elements of the specified portion of the array.
	 */

	public static KEY_GENERIC void fill( final KEY_GENERIC_TYPE[] array, final int from, int to, final KEY_GENERIC_TYPE value ) {
		ensureFromTo( array, from, to );
		if ( from == 0 ) while( to-- != 0 ) array[ to ] = value;
		else for( int i = from; i < to; i++ ) array[ i ] = value;
	}



	/** Returns true if the two arrays are elementwise equal.
	 *
	 * @param a1 an array.
	 * @param a2 another array.
	 * @return true if the two arrays are of the same length, and their elements are equal.
	 * @deprecated Please use the corresponding {@link java.util.Arrays} method, which is intrinsified in recent JVMs.
	 */

	@Deprecated
	public static KEY_GENERIC boolean equals( final KEY_GENERIC_TYPE[] a1, final KEY_GENERIC_TYPE a2[] ) {
		int i = a1.length;
		if ( i != a2.length ) return false;
		while( i-- != 0 ) if (! KEY_EQUALS( a1[ i ], a2[ i ] ) ) return false;
		return true;
	}




	/** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits an array.
	 *
	 * <P>This method may be used whenever an array range check is needed.
	 *
	 * @param a an array.
	 * @param from a start index (inclusive).
	 * @param to an end index (exclusive).
	 * @throws IllegalArgumentException if <code>from</code> is greater than <code>to</code>.
	 * @throws ArrayIndexOutOfBoundsException if <code>from</code> or <code>to</code> are greater than the array length or negative.
	 */
	public static KEY_GENERIC void ensureFromTo( final KEY_GENERIC_TYPE[] a, final int from, final int to ) {
		Arrays.ensureFromTo( a.length, from, to );
	}

	/** Ensures that a range given by an offset and a length fits an array.
	 *
	 * <P>This method may be used whenever an array range check is needed.
	 *
	 * @param a an array.
	 * @param offset a start index.
	 * @param length a length (the number of elements in the range).
	 * @throws IllegalArgumentException if <code>length</code> is negative.
	 * @throws ArrayIndexOutOfBoundsException if <code>offset</code> is negative or <code>offset</code>+<code>length</code> is greater than the array length.
	 */
	public static KEY_GENERIC void ensureOffsetLength( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) {
		Arrays.ensureOffsetLength( a.length, offset, length );
	}

	private static final int SMALL = 7;
	private static final int MEDIUM = 50;

	private static KEY_GENERIC void swap( final KEY_GENERIC_TYPE x[], final int a, final int b ) {
		final KEY_GENERIC_TYPE t = x[ a ];
		x[ a ] = x[ b ];
		x[ b ] = t;
	}

	private static KEY_GENERIC void vecSwap( final KEY_GENERIC_TYPE[] x, int a, int b, final int n ) {
		for( int i = 0; i < n; i++, a++, b++ ) swap( x, a, b );
	}
 
	private static KEY_GENERIC int med3( final KEY_GENERIC_TYPE x[], final int a, final int b, final int c, KEY_COMPARATOR KEY_GENERIC comp ) {
		int ab = comp.compare( x[ a ], x[ b ] );
		int ac = comp.compare( x[ a ], x[ c ] );
		int bc = comp.compare( x[ b ], x[ c ] );
		return ( ab < 0 ?
			( bc < 0 ? b : ac < 0 ? c : a ) :
			( bc > 0 ? b : ac > 0 ? c : a ) );
	}


	private static KEY_GENERIC void selectionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp ) {
		for( int i = from; i < to - 1; i++ ) {
			int m = i;
			for( int j = i + 1; j < to; j++ ) if ( comp.compare( a[ j ], a[ m ] ) < 0 ) m = j;
			if ( m != i ) {
				final KEY_GENERIC_TYPE u = a[ i ];
				a[ i ] = a[ m ];
				a[ m ] = u;
			}
		}
	}


	private static KEY_GENERIC void insertionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp  ) {
		for ( int i = from; ++i < to; ) { 
			KEY_GENERIC_TYPE t = a[ i ];
			int j = i;
			for ( KEY_GENERIC_TYPE u = a[ j - 1 ]; comp.compare( t, u ) < 0; u = a[ --j - 1 ] ) {
				a[ j ] = u;
				if ( from == j - 1 ) {
					--j;
					break;
				}
			}
			a[ j ] = t;
		}
	}

	@SuppressWarnings("unchecked")
	private static KEY_GENERIC void selectionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to ) {
		for( int i = from; i < to - 1; i++ ) {
			int m = i;
			for( int j = i + 1; j < to; j++ ) if ( KEY_LESS( a[ j ], a[ m ] ) ) m = j;
			if ( m != i ) {
				final KEY_GENERIC_TYPE u = a[ i ];
				a[ i ] = a[ m ];
				a[ m ] = u;
			}
		}
	}
	
	@SuppressWarnings("unchecked")
	private static KEY_GENERIC void insertionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to ) {
		for ( int i = from; ++i < to; ) { 
			KEY_GENERIC_TYPE t = a[ i ];
			int j = i;
			for ( KEY_GENERIC_TYPE u = a[ j - 1 ]; KEY_LESS( t, u ); u = a[ --j - 1 ] ) {
				a[ j ] = u;
				if ( from == j - 1 ) {
					--j;
					break;
				}
			}
			a[ j ] = t;
		}
	}


	/** Sorts the specified range of elements according to the order induced by the specified
	 * comparator using quicksort. 
	 * 
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * <p>Note that this implementation does not allocate any object, contrarily to the implementation
	 * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
	 * 
	 * @param x the array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 * @param comp the comparator to determine the sorting order.
	 * 
	 */
	public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp ) {
		final int len = to - from;
		
		// Selection sort on smallest arrays
		if ( len < SMALL ) {
			selectionSort( x, from, to, comp );
			return;
		}

		// Choose a partition element, v
		int m = from + len / 2;	 // Small arrays, middle element
		if ( len > SMALL ) {
			int l = from;
			int n = to - 1;
			if ( len > MEDIUM ) {		// Big arrays, pseudomedian of 9
				int s = len / 8;
				l = med3( x, l, l + s, l + 2 * s, comp );
				m = med3( x, m - s, m, m + s, comp );
				n = med3( x, n - 2 * s, n - s, n, comp );
			}
			m = med3( x, l, m, n, comp ); // Mid-size, med of 3
		}
		
		final KEY_GENERIC_TYPE v = x[ m ];

		// Establish Invariant: v* (<v)* (>v)* v*
		int a = from, b = a, c = to - 1, d = c;
		while(true) {
			int comparison;
			while ( b <= c && ( comparison = comp.compare( x[ b ], v ) ) <= 0 ) {
				if ( comparison == 0 ) swap( x, a++, b );
				b++;
			}
			while (c >= b && ( comparison = comp.compare( x[ c ], v ) ) >=0 ) {
				if ( comparison == 0 ) swap( x, c, d-- );
				c--;
			}
			if ( b > c ) break;
			swap( x, b++, c-- );
		}

		// Swap partition elements back to middle
		int s, n = to;
		s = Math.min( a - from, b - a );
		vecSwap( x, from, b - s, s );
		s = Math.min( d - c, n - d - 1 );
		vecSwap( x, b, n - s, s );

		// Recursively sort non-partition-elements
		if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s, comp );
		if ( ( s = d - c ) > 1 ) quickSort( x, n - s, n, comp );

	}

	/** Sorts an array according to the order induced by the specified
	 * comparator using quicksort. 
	 * 
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 * 
	 * <p>Note that this implementation does not allocate any object, contrarily to the implementation
	 * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
	 * 
	 * @param x the array to be sorted.
	 * @param comp the comparator to determine the sorting order.
	 * 
	 */
	public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final KEY_COMPARATOR KEY_GENERIC comp ) {
		quickSort( x, 0, x.length, comp );	
	}
	

	@SuppressWarnings("unchecked")
	private static KEY_GENERIC int med3( final KEY_GENERIC_TYPE x[], final int a, final int b, final int c ) {
		int ab = KEY_CMP( x[ a ], x[ b ] );
		int ac = KEY_CMP( x[ a ], x[ c ] );
		int bc = KEY_CMP( x[ b ], x[ c ] );
		return ( ab < 0 ?
			( bc < 0 ? b : ac < 0 ? c : a ) :
			( bc > 0 ? b : ac > 0 ? c : a ) );
	}


	/** Sorts the specified range of elements according to the natural ascending order using quicksort.
	 * 
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 * 
	 * <p>Note that this implementation does not allocate any object, contrarily to the implementation
	 * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
	 * 
	 * @param x the array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 */

	@SuppressWarnings("unchecked")
	public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final int from, final int to ) {
		final int len = to - from;

		// Selection sort on smallest arrays
		if ( len < SMALL ) {
			selectionSort( x, from, to );
			return;
		}

		// Choose a partition element, v
		int m = from + len / 2;	 // Small arrays, middle element
		if ( len > SMALL ) {
			int l = from;
			int n = to - 1;
			if ( len > MEDIUM ) {		// Big arrays, pseudomedian of 9
				int s = len / 8;
				l = med3( x, l, l + s, l + 2 * s );
				m = med3( x, m - s, m, m + s );
				n = med3( x, n - 2 * s, n - s, n );
			}
			m = med3( x, l, m, n ); // Mid-size, med of 3
		}
		
		final KEY_GENERIC_TYPE v = x[ m ];

		// Establish Invariant: v* (<v)* (>v)* v*
		int a = from, b = a, c = to - 1, d = c;
		while(true) {
			int comparison;
			while ( b <= c && ( comparison = KEY_CMP( x[ b ], v ) ) <= 0 ) {
				if ( comparison == 0 ) swap( x, a++, b );
				b++;
			}
			while (c >= b && ( comparison = KEY_CMP( x[ c ], v ) ) >=0 ) {
				if ( comparison == 0 ) swap( x, c, d-- );
				c--;
			}
			if ( b > c ) break;
			swap( x, b++, c-- );
		}

		// Swap partition elements back to middle
		int s, n = to;
		s = Math.min( a - from, b - a );
		vecSwap( x, from, b - s, s );
		s = Math.min( d - c, n - d - 1 );
		vecSwap( x, b, n - s, s );

		// Recursively sort non-partition-elements
		if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s );
		if ( ( s = d - c ) > 1 ) quickSort( x, n - s, n );

	}

	/** Sorts an array according to the natural ascending order using quicksort.
	 * 
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 * 
	 * <p>Note that this implementation does not allocate any object, contrarily to the implementation
	 * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
	 * 
	 * @param x the array to be sorted.
	 * 
	 */
	public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x ) {
		quickSort( x, 0, x.length );	
	}
	
	/** Sorts the specified range of elements according to the natural ascending order using mergesort, using a given pre-filled support array.
	 * 
	 * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
	 * of the sort. Moreover, no support arrays will be allocated. 
	 
	 * @param a the array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 * @param supp a support array containing at least <code>to</code> elements, and whose entries are identical to those
	 * of {@code a} in the specified range.
	 */

	@SuppressWarnings("unchecked")
	public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to, final KEY_GENERIC_TYPE supp[] ) {
		int len = to - from;
		
		// Insertion sort on smallest arrays
		if ( len < SMALL ) {
			insertionSort( a, from, to );
			return;
		}
	
		// Recursively sort halves of a into supp
		final int mid = ( from + to ) >>> 1;
		mergeSort( supp, from, mid, a );
		mergeSort( supp, mid, to, a );
	
		// If list is already sorted, just copy from supp to a.  This is an
		// optimization that results in faster sorts for nearly ordered lists.
		if ( KEY_LESSEQ( supp[ mid - 1 ], supp[ mid ] ) ) {
			System.arraycopy( supp, from, a, from, len );
			return;
		}
	
		// Merge sorted halves (now in supp) into a
		for( int i = from, p = from, q = mid; i < to; i++ ) {
			if ( q >= to || p < mid && KEY_LESSEQ( supp[ p ], supp[ q ] ) ) a[ i ] = supp[ p++ ];
			else a[ i ] = supp[ q++ ];
		}
	}

	/** Sorts the specified range of elements according to the natural ascending order using mergesort.
	 * 
	 * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
	 * of the sort. An array as large as <code>a</code> will be allocated by this method.
	 
	 * @param a the array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 */
	public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to ) {
		mergeSort( a, from, to, a.clone() );
	}

	/**	Sorts an array according to the natural ascending order using mergesort.
	 * 
	 * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
	 * of the sort. An array as large as <code>a</code> will be allocated by this method.
	 
	 * @param a the array to be sorted.
	 */
	public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[] ) {
		mergeSort( a, 0, a.length );
	}

	/** Sorts the specified range of elements according to the order induced by the specified
	 * comparator using mergesort, using a given pre-filled support array.
	 * 
	 * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
	 * of the sort. Moreover, no support arrays will be allocated.
	 
	 * @param a the array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 * @param comp the comparator to determine the sorting order.
	 * @param supp a support array containing at least <code>to</code> elements, and whose entries are identical to those
	 * of {@code a} in the specified range.
	 */
	@SuppressWarnings("unchecked")
	public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to, KEY_COMPARATOR KEY_GENERIC comp, final KEY_GENERIC_TYPE supp[] ) {
		int len = to - from;
		
		// Insertion sort on smallest arrays
		if ( len < SMALL ) {
			insertionSort( a, from, to, comp );
			return;
    	}
	
		// Recursively sort halves of a into supp
		final int mid = ( from + to ) >>> 1;
		mergeSort( supp, from, mid, comp, a );
		mergeSort( supp, mid, to, comp, a );
	
		// If list is already sorted, just copy from supp to a.  This is an
		// optimization that results in faster sorts for nearly ordered lists.
		if ( comp.compare( supp[ mid - 1 ], supp[ mid ] ) <= 0 ) {
			System.arraycopy( supp, from, a, from, len );
			return;
		}
	
		// Merge sorted halves (now in supp) into a
		for( int i = from, p = from, q = mid; i < to; i++ ) {
			if ( q >= to || p < mid && comp.compare( supp[ p ], supp[ q ] ) <= 0 ) a[ i ] = supp[ p++ ];
			else a[ i ] = supp[ q++ ];
		}
	}

	/** Sorts the specified range of elements according to the order induced by the specified
	 * comparator using mergesort.
	 * 
	 * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
	 * of the sort. An array as large as <code>a</code> will be allocated by this method.
	 *
	 * @param a the array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 * @param comp the comparator to determine the sorting order.
	 */
	public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to, KEY_COMPARATOR KEY_GENERIC comp ) {
		mergeSort( a, from, to, comp, a.clone() );
	}

	/** Sorts an array according to the order induced by the specified
	 * comparator using mergesort.
	 * 
	 * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
	 * of the sort.  An array as large as <code>a</code> will be allocated by this method.
	 
	 * @param a the array to be sorted.
	 * @param comp the comparator to determine the sorting order.
	 */
	public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], KEY_COMPARATOR KEY_GENERIC comp ) {
		mergeSort( a, 0, a.length, comp );
	}

#if ! #keyclass(Boolean)

	/**
	 * Searches a range of the specified array for the specified value using 
	 * the binary search algorithm. The range must be sorted prior to making this call. 
	 * If it is not sorted, the results are undefined. If the range contains multiple elements with 
	 * the specified value, there is no guarantee which one will be found.
	 *
	 * @param a the array to be searched.
	 * @param from  the index of the first element (inclusive) to be searched.
	 * @param to  the index of the last element (exclusive) to be searched.
	 * @param key the value to be searched for.
	 * @return index of the search key, if it is contained in the array;
	 *             otherwise, <samp>(-(<i>insertion point</i>) - 1)</samp>.  The <i>insertion
	 *             point</i> is defined as the the point at which the value would
	 *             be inserted into the array: the index of the first
	 *             element greater than the key, or the length of the array, if all
	 *             elements in the array are less than the specified key.  Note
	 *             that this guarantees that the return value will be &gt;= 0 if
	 *             and only if the key is found.
	 * @see java.util.Arrays
	 */
	@SuppressWarnings({"unchecked","rawtypes"})
	public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, int from, int to, final KEY_GENERIC_TYPE key ) {
		KEY_GENERIC_TYPE midVal;
		to--;
		while (from <= to) {
			final int mid = (from + to) >>> 1;
			midVal = a[ mid ];
#if #keys(primitive)
			if (midVal < key) from = mid + 1;
			else if (midVal > key) to = mid - 1;
			else return mid;
#else
			final int cmp = ((Comparable)midVal).compareTo( key );
			if ( cmp < 0 ) from = mid + 1;
			else if (cmp > 0) to = mid - 1;
			else return mid;
#endif
        }
		return -( from + 1 );
	}

	/**
	 * Searches an array for the specified value using 
	 * the binary search algorithm. The range must be sorted prior to making this call. 
	 * If it is not sorted, the results are undefined. If the range contains multiple elements with 
	 * the specified value, there is no guarantee which one will be found.
	 *
	 * @param a the array to be searched.
	 * @param key the value to be searched for.
	 * @return index of the search key, if it is contained in the array;
	 *             otherwise, <samp>(-(<i>insertion point</i>) - 1)</samp>.  The <i>insertion
	 *             point</i> is defined as the the point at which the value would
	 *             be inserted into the array: the index of the first
	 *             element greater than the key, or the length of the array, if all
	 *             elements in the array are less than the specified key.  Note
	 *             that this guarantees that the return value will be &gt;= 0 if
	 *             and only if the key is found.
	 * @see java.util.Arrays
	 */
	public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE key ) {
		return binarySearch( a, 0, a.length, key );
	}

	/**
	 * Searches a range of the specified array for the specified value using 
	 * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call. 
	 * If it is not sorted, the results are undefined. If the range contains multiple elements with 
	 * the specified value, there is no guarantee which one will be found.
	 *
	 * @param a the array to be searched.
	 * @param from  the index of the first element (inclusive) to be searched.
	 * @param to  the index of the last element (exclusive) to be searched.
	 * @param key the value to be searched for.
	 * @param c a comparator.
	 * @return index of the search key, if it is contained in the array;
	 *             otherwise, <samp>(-(<i>insertion point</i>) - 1)</samp>.  The <i>insertion
	 *             point</i> is defined as the the point at which the value would
	 *             be inserted into the array: the index of the first
	 *             element greater than the key, or the length of the array, if all
	 *             elements in the array are less than the specified key.  Note
	 *             that this guarantees that the return value will be &gt;= 0 if
	 *             and only if the key is found.
	 * @see java.util.Arrays
	 */
	public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, int from, int to, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c ) {
		KEY_GENERIC_TYPE midVal;
		to--;
		while (from <= to) {
			final int mid = (from + to) >>> 1;
			midVal = a[ mid ];
			final int cmp = c.compare( midVal, key );
			if ( cmp < 0 ) from = mid + 1;
			else if (cmp > 0) to = mid - 1;
			else return mid; // key found
		}
		return -( from + 1 );
	}

	/**
	 * Searches an array for the specified value using 
	 * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call. 
	 * If it is not sorted, the results are undefined. If the range contains multiple elements with 
	 * the specified value, there is no guarantee which one will be found.
	 *
	 * @param a the array to be searched.
	 * @param key the value to be searched for.
	 * @param c a comparator.
	 * @return index of the search key, if it is contained in the array;
	 *             otherwise, <samp>(-(<i>insertion point</i>) - 1)</samp>.  The <i>insertion
	 *             point</i> is defined as the the point at which the value would
	 *             be inserted into the array: the index of the first
	 *             element greater than the key, or the length of the array, if all
	 *             elements in the array are less than the specified key.  Note
	 *             that this guarantees that the return value will be &gt;= 0 if
	 *             and only if the key is found.
	 * @see java.util.Arrays
	 */
	public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c ) {
		return binarySearch( a, 0, a.length, key, c );
	}


#if #keys(primitive)
	/** The size of a digit used during radix sort (must be a power of 2). */
	private static final int DIGIT_BITS = 8;
	/** The mask to extract a digit of {@link #DIGIT_BITS} bits. */
	private static final int DIGIT_MASK = ( 1 << DIGIT_BITS ) - 1;
	/** The number of digits per element. */
	private static final int DIGITS_PER_ELEMENT = KEY_CLASS.SIZE / DIGIT_BITS;

	/** This method fixes negative numbers so that the combination exponent/significand is lexicographically sorted. */
#if #keyclass(Double)
	private static final long fixDouble( final double d ) {
		final long l = Double.doubleToLongBits( d );
		return l >= 0 ? l : l ^ 0x7FFFFFFFFFFFFFFFL;
	}	   
#elif #keyclass(Float)
	private static final long fixFloat( final float f ) {
		final long i = Float.floatToIntBits( f );
		return i >= 0 ? i : i ^ 0x7FFFFFFF;
	}
#endif


	/** Sorts the specified array using radix sort.
	 * 
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This implementation is significantly faster than quicksort 
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. 
	 * It will allocate a support array of bytes with the same number of elements as the array to be sorted.
	 * 
	 * @param a the array to be sorted.
	 */
	public static void radixSort( final KEY_TYPE[] a ) {
		radixSort( a, 0, a.length );
	}

	/** Sorts the specified array using radix sort.
	 * 
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This implementation is significantly faster than quicksort 
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. 
	 * It will allocate a support array of bytes with the same number of elements as the array to be sorted.
	 * 
	 * @param a the array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 */
	public static void radixSort( final KEY_TYPE[] a, final int from, final int to ) {
		final int maxLevel = DIGITS_PER_ELEMENT - 1;

		final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( DIGITS_PER_ELEMENT - 1 ) + 1;
		final int[] offsetStack = new int[ stackSize ];
		int offsetPos = 0;
		final int[] lengthStack = new int[ stackSize ];
		int lengthPos = 0;
		final int[] levelStack = new int[ stackSize ];
		int levelPos = 0;
		
		offsetStack[ offsetPos++ ] = from;
		lengthStack[ lengthPos++ ] = to - from;
		levelStack[ levelPos++ ] = 0;

		final int[] count = new int[ 1 << DIGIT_BITS ];
		final int[] pos = new int[ 1 << DIGIT_BITS ];
		final byte[] digit = new byte[ to - from ];

		while( offsetPos > 0 ) {
			final int first = offsetStack[ --offsetPos ];
			final int length = lengthStack[ --lengthPos ];
			final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
			final int signMask = 0;
#else
			final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
			
			if ( length < MEDIUM ) {
				selectionSort( a, first, first + length );
				continue;
			}
			
			final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key

			// Count keys.

			for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( ( KEY2LEXINT( a[ first + i ] ) >>> shift ) & DIGIT_MASK ) ^ signMask );
			for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
			// Compute cumulative distribution and push non-singleton keys on stack.
			int lastUsed = -1;
			
			for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
				if ( count[ i ] != 0 ) {
					lastUsed = i;
					if ( level < maxLevel && count[ i ] > 1 ){
						//System.err.println( " Pushing " + new StackEntry( first + pos[ i - 1 ], first + pos[ i ], level + 1 ) );
						offsetStack[ offsetPos++ ] = p + first;
						lengthStack[ lengthPos++ ] = count[ i ];
						levelStack[ levelPos++ ] = level + 1;
					}
				}
				pos[ i ] = ( p += count[ i ] );
			}
			
			// When all slots are OK, the last slot is necessarily OK.
			final int end = length - count[ lastUsed ];
			count[ lastUsed ] = 0;

			// i moves through the start of each block
			for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
				KEY_TYPE t = a[ i + first ];
				c = digit[ i ] & 0xFF;
				while( ( d = --pos[ c ] ) > i ) {
					final KEY_TYPE z = t;
					final int zz = c;
					t = a[ d + first ];
					c = digit[ d ] & 0xFF;
					a[ d + first ] = z;
					digit[ d ] = (byte)zz;
				}

				a[ i + first ] = t;
			}
		}
	}



	private static KEY_GENERIC void insertionSortIndirect( final int[] perm, final KEY_TYPE[] a, final int from, final int to ) {
		for ( int i = from; ++i < to; ) { 
			int t = perm[ i ];
			int j = i;
			for ( int u = perm[ j - 1 ]; KEY_LESS( a[ t ], a[ u ] ); u = perm[ --j - 1 ] ) {
				perm[ j ] = u;
				if ( from == j - 1 ) {
					--j;
					break;
				}
			}
			perm[ j ] = t;
		}
	}

	/** Sorts the specified array using indirect radix sort.
	 * 
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implement an <em>indirect</em> sort. The elements of <code>perm</code> (which must
	 * be exactly the numbers in the interval <code>[0..perm.length)</code>) will be permuted so that
	 * <code>a[ perm[ i ] ] <= a[ perm[ i + 1 ] ]</code>.
	 *
	 * <p>This implementation is significantly faster than quicksort (unstable) or mergesort (stable)
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. 
	 * It will allocate a support array of bytes with the same number of elements as the array to be sorted,
	 * and, in the stable case, a further support array as large as <code>perm</code> (note that the stable
	 * version is slightly faster).
	 * 
	 * @param perm a permutation array indexing <code>a</code>.
	 * @param a the array to be sorted.
	 * @param stable whether the sorting algorithm should be stable.
	 */
	public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final boolean stable ) {
		radixSortIndirect( perm, a, 0, perm.length, stable );
	}

	/** Sorts the specified array using indirect radix sort.
	 * 
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implement an <em>indirect</em> sort. The elements of <code>perm</code> (which must
	 * be exactly the numbers in the interval <code>[0..perm.length)</code>) will be permuted so that
	 * <code>a[ perm[ i ] ] <= a[ perm[ i + 1 ] ]</code>.
	 *
	 * <p>This implementation is significantly faster than quicksort (unstable) or mergesort (stable)
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. 
	 * It will allocate a support array of bytes with the same number of elements as the array to be sorted,
	 * and, in the stable case, a further support array as large as <code>perm</code> (note that the stable
	 * version is slightly faster).
	 * 
	 * @param perm a permutation array indexing <code>a</code>.
	 * @param a the array to be sorted.
	 * @param from the index of the first element of <code>perm</code> (inclusive) to be permuted.
	 * @param to the index of the last element of <code>perm</code> (exclusive) to be permuted.
	 * @param stable whether the sorting algorithm should be stable.
	 */
	public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final int from, final int to, final boolean stable ) {
		final int maxLevel = DIGITS_PER_ELEMENT - 1;

		final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( DIGITS_PER_ELEMENT - 1 ) + 1;
		final int[] offsetStack = new int[ stackSize ];
		int offsetPos = 0;
		final int[] lengthStack = new int[ stackSize ];
		int lengthPos = 0;
		final int[] levelStack = new int[ stackSize ];
		int levelPos = 0;
		
		offsetStack[ offsetPos++ ] = from;
		lengthStack[ lengthPos++ ] = to - from;
		levelStack[ levelPos++ ] = 0;

		final int[] count = new int[ 1 << DIGIT_BITS ];
		final int[] pos = stable ? null : new int[ 1 << DIGIT_BITS ];
		final int[] support = stable ? new int[ perm.length ] : null;
		final byte[] digit = new byte[ to - from ];

		while( offsetPos > 0 ) {
			final int first = offsetStack[ --offsetPos ];
			final int length = lengthStack[ --lengthPos ];
			final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
			final int signMask = 0;
#else
			final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
			
			if ( length < MEDIUM ) {
				insertionSortIndirect( perm, a, first, first + length );
				continue;
			}
			
			final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key

			// Count keys.
			for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( ( KEY2LEXINT( a[ perm[ first + i ] ] ) >>> shift ) & DIGIT_MASK ) ^ signMask );
			for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
			// Compute cumulative distribution and push non-singleton keys on stack.
			int lastUsed = -1;
			
			for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
				if ( count[ i ] != 0 ) {
					lastUsed = i;
					if ( level < maxLevel && count[ i ] > 1 ){
						offsetStack[ offsetPos++ ] = p + first;
						lengthStack[ lengthPos++ ] = count[ i ];
						levelStack[ levelPos++ ] = level + 1;
					}
				}
				if ( stable ) count[ i ] = p += count[ i ];
				else pos[ i ] = ( p += count[ i ] );
			}
			
			if ( stable ) {
				for( int i = length; i-- != 0; ) support[ --count[ digit[ i ] & 0xFF ] ] = perm[ first + i ];
				System.arraycopy( support, 0, perm, first, length );
				it.unimi.dsi.fastutil.ints.IntArrays.fill( count, 0 );
			}
			else {
				// When all slots are OK, the last slot is necessarily OK.
				final int end = length - count[ lastUsed ];
				count[ lastUsed ] = 0;
				// i moves through the start of each block
				for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
					int t = perm[ i + first ];
					c = digit[ i ] & 0xFF;
					while( ( d = --pos[ c ] ) > i ) {
						final int z = t;
						final int zz = c;
						t = perm[ d + first ];
						c = digit[ d ] & 0xFF;
						perm[ d + first ] = z;
						digit[ d ] = (byte)zz;
					}

					perm[ i + first ] = t;
				}
			}
		}
	}



	private static void selectionSort( final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to ) {
		for( int i = from; i < to - 1; i++ ) {
			int m = i;
			for( int j = i + 1; j < to; j++ ) 
				if ( a[ j ] < a[ m ] || a[ j ] == a[ m ] && b[ j ] < b[ m ] ) m = j;
			
			if ( m != i ) {
				KEY_TYPE t = a[ i ];
				a[ i ] = a[ m ];
				a[ m ] = t;
				t = b[ i ];
				b[ i ] = b[ m ];
				b[ m ] = t;
			}
		}
	}

	/** Sorts the specified pair of arrays lexicographically using radix sort.
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implements a <em>lexicographical</em> sorting of the arguments. Pairs of elements
	 * in the same position in the two provided arrays will be considered a single key, and permuted
	 * accordingly. In the end, either <code>a[ i ] < a[ i + 1 ]</code> or <code>a[ i ] == a[ i + 1 ]</code> and <code>b[ i ] <= b[ i + 1 ]</code>.
	 *
	 * <p>This implementation is significantly faster than quicksort 
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
	 * 
	 * @param a the first array to be sorted.
	 * @param b the second array to be sorted.
	 */

	public static void radixSort( final KEY_TYPE[] a, final KEY_TYPE[] b ) {
		radixSort( a, b, 0, a.length );
	}
	
	/** Sorts the specified pair of arrays lexicographically using radix sort.
	 * 
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implements a <em>lexicographical</em> sorting of the arguments. Pairs of elements
	 * in the same position in the two provided arrays will be considered a single key, and permuted
	 * accordingly. In the end, either <code>a[ i ] < a[ i + 1 ]</code> or <code>a[ i ] == a[ i + 1 ]</code> and <code>b[ i ] <= b[ i + 1 ]</code>.
	 *
	 * <p>This implementation is significantly faster than quicksort 
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
	 * 
	 * @param a the first array to be sorted.
	 * @param b the second array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 */
	public static void radixSort( final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to ) {
		final int layers = 2;
		if ( a.length != b.length ) throw new IllegalArgumentException( "Array size mismatch." );
		final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;
		
		final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1;
		final int[] offsetStack = new int[ stackSize ];
		int offsetPos = 0;
		final int[] lengthStack = new int[ stackSize ];
		int lengthPos = 0;
		final int[] levelStack = new int[ stackSize ];
		int levelPos = 0;
		
		offsetStack[ offsetPos++ ] = from;
		lengthStack[ lengthPos++ ] = to - from;
		levelStack[ levelPos++ ] = 0;

		final int[] count = new int[ 1 << DIGIT_BITS ];
		final int[] pos = new int[ 1 << DIGIT_BITS ];
		final byte[] digit = new byte[ to - from ];

		while( offsetPos > 0 ) {
			final int first = offsetStack[ --offsetPos ];
			final int length = lengthStack[ --lengthPos ];
			final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
			final int signMask = 0;
#else
			final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
			
			if ( length < MEDIUM ) {
				selectionSort( a, b, first, first + length );
				continue;
			}
			
			final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array
			final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key

			// Count keys.
			for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( ( KEY2LEXINT( k[ first + i ] ) >>> shift ) & DIGIT_MASK ) ^ signMask );
			for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
			// Compute cumulative distribution and push non-singleton keys on stack.
			int lastUsed = -1;

			for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
				if ( count[ i ] != 0 ) {
					lastUsed = i;
					if ( level < maxLevel && count[ i ] > 1 ){
						offsetStack[ offsetPos++ ] = p + first;
						lengthStack[ lengthPos++ ] = count[ i ];
						levelStack[ levelPos++ ] = level + 1;
					}
				}
				pos[ i ] = ( p += count[ i ] );
			}

			// When all slots are OK, the last slot is necessarily OK.
			final int end = length - count[ lastUsed ];
			count[ lastUsed ] = 0;
			
			// i moves through the start of each block
			for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
				KEY_TYPE t = a[ i + first ];
				KEY_TYPE u = b[ i + first ];
				c = digit[ i ] & 0xFF;
				while( ( d = --pos[ c ] ) > i ) {
					KEY_TYPE z = t;
					final int zz = c;
					t = a[ d + first ];
					a[ d + first ] = z;
					z = u;
					u = b[ d + first ];
					b[ d + first ] = z;
					c = digit[ d ] & 0xFF;
					digit[ d ] = (byte)zz;
				}

				a[ i + first ] = t;
				b[ i + first ] = u;
			}
		}
	}




	private static KEY_GENERIC void insertionSortIndirect( final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to ) {
		for ( int i = from; ++i < to; ) { 
			int t = perm[ i ];
			int j = i;
			for ( int u = perm[ j - 1 ]; KEY_LESS( a[ t ], a[ u ] ) || KEY_CMP_EQ( a[ t ], a[ u ] ) && KEY_LESS( b[ t ], b[ u ] ); u = perm[ --j - 1 ] ) {
				perm[ j ] = u;
				if ( from == j - 1 ) {
					--j;
					break;
				}
			}
			perm[ j ] = t;
		}
	}

	/** Sorts the specified pair of arrays lexicographically using indirect radix sort.
	 * 
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implement an <em>indirect</em> sort. The elements of <code>perm</code> (which must
	 * be exactly the numbers in the interval <code>[0..perm.length)</code>) will be permuted so that
	 * <code>a[ perm[ i ] ] <= a[ perm[ i + 1 ] ]</code>.
	 *
	 * <p>This implementation is significantly faster than quicksort (unstable) or mergesort (stable)
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. 
	 * It will allocate a support array of bytes with the same number of elements as the array to be sorted,
	 * and, in the stable case, a further support array as large as <code>perm</code> (note that the stable
	 * version is slightly faster).
	 * 
	 * @param perm a permutation array indexing <code>a</code>.
	 * @param a the array to be sorted.
	 * @param b the second array to be sorted.
	 * @param stable whether the sorting algorithm should be stable.
	 */
	public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final boolean stable ) {
		radixSortIndirect( perm, a, b, 0, perm.length, stable );
	}

	/** Sorts the specified pair of arrays lexicographically using indirect radix sort.
	 * 
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implement an <em>indirect</em> sort. The elements of <code>perm</code> (which must
	 * be exactly the numbers in the interval <code>[0..perm.length)</code>) will be permuted so that
	 * <code>a[ perm[ i ] ] <= a[ perm[ i + 1 ] ]</code>.
	 *
	 * <p>This implementation is significantly faster than quicksort (unstable) or mergesort (stable)
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. 
	 * It will allocate a support array of bytes with the same number of elements as the array to be sorted,
	 * and, in the stable case, a further support array as large as <code>perm</code> (note that the stable
	 * version is slightly faster).
	 * 
	 * @param perm a permutation array indexing <code>a</code>.
	 * @param a the array to be sorted.
	 * @param b the second array to be sorted.
	 * @param from the index of the first element of <code>perm</code> (inclusive) to be permuted.
	 * @param to the index of the last element of <code>perm</code> (exclusive) to be permuted.
	 * @param stable whether the sorting algorithm should be stable.
	 */
	public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to, final boolean stable ) {
		final int layers = 2;
		if ( a.length != b.length ) throw new IllegalArgumentException( "Array size mismatch." );
		final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;
		
		final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1;
		final int[] offsetStack = new int[ stackSize ];
		int offsetPos = 0;
		final int[] lengthStack = new int[ stackSize ];
		int lengthPos = 0;
		final int[] levelStack = new int[ stackSize ];
		int levelPos = 0;
		
		offsetStack[ offsetPos++ ] = from;
		lengthStack[ lengthPos++ ] = to - from;
		levelStack[ levelPos++ ] = 0;

		final int[] count = new int[ 1 << DIGIT_BITS ];
		final int[] pos = stable ? null : new int[ 1 << DIGIT_BITS ];
		final int[] support = stable ? new int[ perm.length ] : null;
		final byte[] digit = new byte[ to - from ];

		while( offsetPos > 0 ) {
			final int first = offsetStack[ --offsetPos ];
			final int length = lengthStack[ --lengthPos ];
			final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
			final int signMask = 0;
#else
			final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
			
			if ( length < MEDIUM ) {
				insertionSortIndirect( perm, a, b, first, first + length );
				continue;
			}
			
			final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array
			final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key

			// Count keys.
			for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( ( KEY2LEXINT( k[ perm[ first + i ] ] ) >>> shift ) & DIGIT_MASK ) ^ signMask );
			for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
			// Compute cumulative distribution and push non-singleton keys on stack.
			int lastUsed = -1;
			
			for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
				if ( count[ i ] != 0 ) {
					lastUsed = i;
					if ( level < maxLevel && count[ i ] > 1 ){
						offsetStack[ offsetPos++ ] = p + first;
						lengthStack[ lengthPos++ ] = count[ i ];
						levelStack[ levelPos++ ] = level + 1;
					}
				}
				if ( stable ) count[ i ] = p += count[ i ];
				else pos[ i ] = ( p += count[ i ] );
			}
			
			if ( stable ) {
				for( int i = length; i-- != 0; ) support[ --count[ digit[ i ] & 0xFF ] ] = perm[ first + i ];
				System.arraycopy( support, 0, perm, first, length );
				it.unimi.dsi.fastutil.ints.IntArrays.fill( count, 0 );
			}
			else {
				// When all slots are OK, the last slot is necessarily OK.
				final int end = length - count[ lastUsed ];
				count[ lastUsed ] = 0;
				// i moves through the start of each block
				for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
					int t = perm[ i + first ];
					c = digit[ i ] & 0xFF;
					while( ( d = --pos[ c ] ) > i ) {
						final int z = t;
						final int zz = c;
						t = perm[ d + first ];
						c = digit[ d ] & 0xFF;
						perm[ d + first ] = z;
						digit[ d ] = (byte)zz;
					}

					perm[ i + first ] = t;
				}
			}
		}
	}




	private static void selectionSort( final KEY_TYPE[][] a, final int from, final int to, final int level ) {
		final int layers = a.length;
		final int firstLayer = level / DIGITS_PER_ELEMENT;

		for( int i = from; i < to - 1; i++ ) {
			int m = i;
			for( int j = i + 1; j < to; j++ ) {
				for( int p = firstLayer; p < layers; p++ ) {
					if ( a[ p ][ j ] < a[ p ][ m ] ) {
						m = j;
						break;
					}
					else if ( a[ p ][ j ] > a[ p ][ m ] ) break;
				}
			}
			if ( m != i ) {
				for( int p = layers; p-- != 0; ) {
					final KEY_TYPE u = a[ p ][ i ];
					a[ p ][ i ] = a[ p ][ m ];
					a[ p ][ m ] = u;
				}
			}
		}
	}


	
	/** Sorts the specified array of arrays lexicographically using radix sort.
	 * 
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implements a <em>lexicographical</em> sorting of the provided arrays. Tuples of elements
	 * in the same position will be considered a single key, and permuted
	 * accordingly.
	 *
	 * <p>This implementation is significantly faster than quicksort 
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
	 * 
	 * @param a an array containing arrays of equal length to be sorted lexicographically in parallel.
	 */
	public static void radixSort( final KEY_TYPE[][] a ) {
		radixSort( a, 0, a[ 0 ].length );
	}

	/** Sorts the specified array of arrays lexicographically using radix sort.
	 * 
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implements a <em>lexicographical</em> sorting of the provided arrays. Tuples of elements
	 * in the same position will be considered a single key, and permuted
	 * accordingly.
	 *
	 * <p>This implementation is significantly faster than quicksort 
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
	 * 
	 * @param a an array containing arrays of equal length to be sorted lexicographically in parallel.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 */
	public static void radixSort( final KEY_TYPE[][] a, final int from, final int to ) {
		final int layers = a.length;
		final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;
		for( int p = layers, l = a[ 0 ].length; p-- != 0; ) if ( a[ p ].length != l ) throw new IllegalArgumentException( "The array of index " + p + " has not the same length of the array of index 0." );

		final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1;
		final int[] offsetStack = new int[ stackSize ];
		int offsetPos = 0;
		final int[] lengthStack = new int[ stackSize ];
		int lengthPos = 0;
		final int[] levelStack = new int[ stackSize ];
		int levelPos = 0;
		
		offsetStack[ offsetPos++ ] = from;
		lengthStack[ lengthPos++ ] = to - from;
		levelStack[ levelPos++ ] = 0;

		final int[] count = new int[ 1 << DIGIT_BITS ];
		final int[] pos = new int[ 1 << DIGIT_BITS ];
		final byte[] digit = new byte[ to - from ];
		final KEY_TYPE[] t = new KEY_TYPE[ layers ];

		while( offsetPos > 0 ) {
			final int first = offsetStack[ --offsetPos ];
			final int length = lengthStack[ --lengthPos ];
			final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
			final int signMask = 0;
#else
			final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
			
			if ( length < MEDIUM ) {
				selectionSort( a, first, first + length, level );
				continue;
			}
			
			final KEY_TYPE[] k = a[ level / DIGITS_PER_ELEMENT ]; // This is the key array
			final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key

			// Count keys.
			for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( KEY2LEXINT( k[ first + i ] ) >>> shift & DIGIT_MASK ) ^ signMask );
			for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
			// Compute cumulative distribution and push non-singleton keys on stack.
			int lastUsed = -1;
			
			for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
				if ( count[ i ] != 0 ) {
					lastUsed = i;
					if ( level < maxLevel && count[ i ] > 1 ){
						offsetStack[ offsetPos++ ] = p + first;
						lengthStack[ lengthPos++ ] = count[ i ];
						levelStack[ levelPos++ ] = level + 1;
					}
				}
				pos[ i ] = ( p += count[ i ] );
			}

			// When all slots are OK, the last slot is necessarily OK.
			final int end = length - count[ lastUsed ];
			count[ lastUsed ] = 0;

			// i moves through the start of each block
			for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
				for( int p = layers; p-- != 0; ) t[ p ] = a[ p ][ i + first ];
				c = digit[ i ] & 0xFF;
				
				 while( ( d = --pos[ c ] ) > i ) {
					for( int p = layers; p-- != 0; ) {
						final KEY_TYPE u = t[ p ];
						t[ p ] = a[ p ][ d + first ];
						a[ p ][ d + first ] = u;
					}
					final int zz = c;
					c = digit[ d ] & 0xFF;
					digit[ d ] = (byte)zz;
				}

				for( int p = layers; p-- != 0; ) a[ p ][ i + first ] = t[ p ];
			}
		}
	}


#endif

#endif

	/** Shuffles the specified array fragment using the specified pseudorandom number generator.
	 * 
	 * @param a the array to be shuffled.
	 * @param from the index of the first element (inclusive) to be shuffled.
	 * @param to the index of the last element (exclusive) to be shuffled.
	 * @param random a pseudorandom number generator (please use a <a href="http://dsiutils.dsi.unimi.it/docs/it/unimi/dsi/util/XorShiftStarRandom.html">XorShift*</a> generator).
	 * @return <code>a</code>.
	 */
	public static KEY_GENERIC KEY_GENERIC_TYPE[] shuffle( final KEY_GENERIC_TYPE[] a, final int from, final int to, final Random random ) {
		for( int i = to - from; i-- != 0; ) {
			final int p = random.nextInt( i + 1 ); 
			final KEY_GENERIC_TYPE t = a[ from + i ];
			a[ from + i ] = a[ from + p ];
			a[ from + p ] = t;
		}
		return a;
	}

	/** Shuffles the specified array using the specified pseudorandom number generator.
	 * 
	 * @param a the array to be shuffled.
	 * @param random a pseudorandom number generator (please use a <a href="http://dsiutils.dsi.unimi.it/docs/it/unimi/dsi/util/XorShiftStarRandom.html">XorShift*</a> generator).
	 * @return <code>a</code>.
	 */
	public static KEY_GENERIC KEY_GENERIC_TYPE[] shuffle( final KEY_GENERIC_TYPE[] a, final Random random ) {
		for( int i = a.length; i-- != 0; ) {
			final int p = random.nextInt( i + 1 ); 
			final KEY_GENERIC_TYPE t = a[ i ];
			a[ i ] = a[ p ];
			a[ p ] = t;
		}
		return a;
	}

	/** Reverses the order of the elements in the specified array.
	 * 
	 * @param a the array to be reversed.
	 * @return <code>a</code>.
	 */
	public static KEY_GENERIC KEY_GENERIC_TYPE[] reverse( final KEY_GENERIC_TYPE[] a ) {
		final int length = a.length;
		for( int i = length / 2; i-- != 0; ) {
			final KEY_GENERIC_TYPE t = a[ length - i - 1 ];
			a[ length - i - 1 ] = a[ i ];
			a[ i ] = t;
		}
		return a;
	}

	/** Reverses the order of the elements in the specified array fragment.
	 * 
	 * @param a the array to be reversed.
	 * @param from the index of the first element (inclusive) to be reversed.
	 * @param to the index of the last element (exclusive) to be reversed.
	 * @return <code>a</code>.
	 */
	public static KEY_GENERIC KEY_GENERIC_TYPE[] reverse( final KEY_GENERIC_TYPE[] a, final int from, final int to ) {
		final int length = to - from;
		for( int i = length / 2; i-- != 0; ) {
			final KEY_GENERIC_TYPE t = a[ from + length - i - 1 ];
			a[ from + length - i - 1 ] = a[ from + i ];
			a[ from + i ] = t;
		}
		return a;
	}

	/** A type-specific content-based hash strategy for arrays. */

	private static final class ArrayHashStrategy KEY_GENERIC implements Hash.Strategy<KEY_GENERIC_TYPE[]>, java.io.Serializable {
		private static final long serialVersionUID = -7046029254386353129L;

		public int hashCode( final KEY_GENERIC_TYPE[] o ) {
			return java.util.Arrays.hashCode( o );
		}
		
		public boolean equals( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE[] b ) {
			return java.util.Arrays.equals( a, b );
		}
	}

	/** A type-specific content-based hash strategy for arrays.
	 *
	 * <P>This hash strategy may be used in custom hash collections whenever keys are
	 * arrays, and they must be considered equal by content. This strategy
	 * will handle <code>null</code> correctly, and it is serializable.
	 */

#if #keys(primitive)
	public final static Hash.Strategy<KEY_TYPE[]> HASH_STRATEGY = new ArrayHashStrategy();
#else
	@SuppressWarnings({"rawtypes"})
	public final static Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy();
#endif

}