1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
|
/*
* Copyright (C) 2002-2014 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*
* For the sorting and binary search code:
*
* Copyright (C) 1999 CERN - European Organization for Nuclear Research.
*
* Permission to use, copy, modify, distribute and sell this software and
* its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation. CERN makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without expressed or implied warranty.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.Arrays;
import it.unimi.dsi.fastutil.Hash;
import java.util.Random;
#if #keys(primitive)
/** A class providing static methods and objects that do useful things with type-specific arrays.
*
* <p>In particular, the <code>ensureCapacity()</code>, <code>grow()</code>,
* <code>trim()</code> and <code>setLength()</code> methods allow to handle
* arrays much like array lists. This can be very useful when efficiency (or
* syntactic simplicity) reasons make array lists unsuitable.
*
* <P>Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO}
* contain several methods make it possible to load and save arrays of primitive types as sequences
* of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text.
*
* @see java.util.Arrays
*/
public class ARRAYS {
#else
import java.util.Comparator;
/** A class providing static methods and objects that do useful things with type-specific arrays.
*
* In particular, the <code>ensureCapacity()</code>, <code>grow()</code>,
* <code>trim()</code> and <code>setLength()</code> methods allow to handle
* arrays much like array lists. This can be very useful when efficiency (or
* syntactic simplicity) reasons make array lists unsuitable.
*
* <P><strong>Warning:</strong> creating arrays
* using {@linkplain java.lang.reflect.Array#newInstance(Class,int) reflection}, as it
* happens in {@link #ensureCapacity(Object[],int,int)} and {@link #grow(Object[],int,int)},
* is <em>significantly slower</em> than using <code>new</code>. This phenomenon is particularly
* evident in the first growth phases of an array reallocated with doubling (or similar) logic.
*
* @see java.util.Arrays
*/
public class ARRAYS {
#endif
private ARRAYS() {}
/** A static, final, empty array. */
public final static KEY_TYPE[] EMPTY_ARRAY = {};
#if #keyclass(Object)
/** Creates a new array using a the given one as prototype.
*
* <P>This method returns a new array of the given length whose element
* are of the same class as of those of <code>prototype</code>. In case
* of an empty array, it tries to return {@link #EMPTY_ARRAY}, if possible.
*
* @param prototype an array that will be used to type the new one.
* @param length the length of the new array.
* @return a new array of given type and length.
*/
@SuppressWarnings("unchecked")
private static <K> K[] newArray( final K[] prototype, final int length ) {
final Class<?> componentType = prototype.getClass().getComponentType();
if ( length == 0 && componentType == Object.class ) return (K[])EMPTY_ARRAY;
return (K[])java.lang.reflect.Array.newInstance( prototype.getClass().getComponentType(), length );
}
#endif
/** Ensures that an array can contain the given number of entries.
*
* <P>If you cannot foresee whether this array will need again to be
* enlarged, you should probably use <code>grow()</code> instead.
*
* @param array an array.
* @param length the new minimum length for this array.
* @return <code>array</code>, if it contains <code>length</code> entries or more; otherwise,
* an array with <code>length</code> entries whose first <code>array.length</code>
* entries are the same as those of <code>array</code>.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] ensureCapacity( final KEY_GENERIC_TYPE[] array, final int length ) {
if ( length > array.length ) {
final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
newArray( array, length );
#else
new KEY_TYPE[ length ];
#endif
System.arraycopy( array, 0, t, 0, array.length );
return t;
}
return array;
}
/** Ensures that an array can contain the given number of entries, preserving just a part of the array.
*
* @param array an array.
* @param length the new minimum length for this array.
* @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary.
* @return <code>array</code>, if it can contain <code>length</code> entries or more; otherwise,
* an array with <code>length</code> entries whose first <code>preserve</code>
* entries are the same as those of <code>array</code>.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] ensureCapacity( final KEY_GENERIC_TYPE[] array, final int length, final int preserve ) {
if ( length > array.length ) {
final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
newArray( array, length );
#else
new KEY_TYPE[ length ];
#endif
System.arraycopy( array, 0, t, 0, preserve );
return t;
}
return array;
}
/** Grows the given array to the maximum between the given length and
* the current length multiplied by two, provided that the given
* length is larger than the current length.
*
* <P>If you want complete control on the array growth, you
* should probably use <code>ensureCapacity()</code> instead.
*
* @param array an array.
* @param length the new minimum length for this array.
* @return <code>array</code>, if it can contain <code>length</code>
* entries; otherwise, an array with
* max(<code>length</code>,<code>array.length</code>/φ) entries whose first
* <code>array.length</code> entries are the same as those of <code>array</code>.
* */
public static KEY_GENERIC KEY_GENERIC_TYPE[] grow( final KEY_GENERIC_TYPE[] array, final int length ) {
if ( length > array.length ) {
final int newLength = (int)Math.max( Math.min( 2L * array.length, Arrays.MAX_ARRAY_SIZE ), length );
final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
newArray( array, newLength );
#else
new KEY_TYPE[ newLength ];
#endif
System.arraycopy( array, 0, t, 0, array.length );
return t;
}
return array;
}
/** Grows the given array to the maximum between the given length and
* the current length multiplied by two, provided that the given
* length is larger than the current length, preserving just a part of the array.
*
* <P>If you want complete control on the array growth, you
* should probably use <code>ensureCapacity()</code> instead.
*
* @param array an array.
* @param length the new minimum length for this array.
* @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary.
* @return <code>array</code>, if it can contain <code>length</code>
* entries; otherwise, an array with
* max(<code>length</code>,<code>array.length</code>/φ) entries whose first
* <code>preserve</code> entries are the same as those of <code>array</code>.
* */
public static KEY_GENERIC KEY_GENERIC_TYPE[] grow( final KEY_GENERIC_TYPE[] array, final int length, final int preserve ) {
if ( length > array.length ) {
final int newLength = (int)Math.max( Math.min( 2L * array.length, Arrays.MAX_ARRAY_SIZE ), length );
final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
newArray( array, newLength );
#else
new KEY_TYPE[ newLength ];
#endif
System.arraycopy( array, 0, t, 0, preserve );
return t;
}
return array;
}
/** Trims the given array to the given length.
*
* @param array an array.
* @param length the new maximum length for the array.
* @return <code>array</code>, if it contains <code>length</code>
* entries or less; otherwise, an array with
* <code>length</code> entries whose entries are the same as
* the first <code>length</code> entries of <code>array</code>.
*
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] trim( final KEY_GENERIC_TYPE[] array, final int length ) {
if ( length >= array.length ) return array;
final KEY_GENERIC_TYPE t[] =
#if #keyclass(Object)
newArray( array, length );
#else
length == 0 ? EMPTY_ARRAY : new KEY_TYPE[ length ];
#endif
System.arraycopy( array, 0, t, 0, length );
return t;
}
/** Sets the length of the given array.
*
* @param array an array.
* @param length the new length for the array.
* @return <code>array</code>, if it contains exactly <code>length</code>
* entries; otherwise, if it contains <em>more</em> than
* <code>length</code> entries, an array with <code>length</code> entries
* whose entries are the same as the first <code>length</code> entries of
* <code>array</code>; otherwise, an array with <code>length</code> entries
* whose first <code>array.length</code> entries are the same as those of
* <code>array</code>.
*
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] setLength( final KEY_GENERIC_TYPE[] array, final int length ) {
if ( length == array.length ) return array;
if ( length < array.length ) return trim( array, length );
return ensureCapacity( array, length );
}
/** Returns a copy of a portion of an array.
*
* @param array an array.
* @param offset the first element to copy.
* @param length the number of elements to copy.
* @return a new array containing <code>length</code> elements of <code>array</code> starting at <code>offset</code>.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] copy( final KEY_GENERIC_TYPE[] array, final int offset, final int length ) {
ensureOffsetLength( array, offset, length );
final KEY_GENERIC_TYPE[] a =
#if #keyclass(Object)
newArray( array, length );
#else
length == 0 ? EMPTY_ARRAY : new KEY_TYPE[ length ];
#endif
System.arraycopy( array, offset, a, 0, length );
return a;
}
/** Returns a copy of an array.
*
* @param array an array.
* @return a copy of <code>array</code>.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] copy( final KEY_GENERIC_TYPE[] array ) {
return array.clone();
}
/** Fills the given array with the given value.
*
* <P>This method uses a backward loop. It is significantly faster than the corresponding
* method in {@link java.util.Arrays}.
*
* @param array an array.
* @param value the new value for all elements of the array.
*/
public static KEY_GENERIC void fill( final KEY_GENERIC_TYPE[] array, final KEY_GENERIC_TYPE value ) {
int i = array.length;
while( i-- != 0 ) array[ i ] = value;
}
/** Fills a portion of the given array with the given value.
*
* <P>If possible (i.e., <code>from</code> is 0) this method uses a
* backward loop. In this case, it is significantly faster than the
* corresponding method in {@link java.util.Arrays}.
*
* @param array an array.
* @param from the starting index of the portion to fill (inclusive).
* @param to the end index of the portion to fill (exclusive).
* @param value the new value for all elements of the specified portion of the array.
*/
public static KEY_GENERIC void fill( final KEY_GENERIC_TYPE[] array, final int from, int to, final KEY_GENERIC_TYPE value ) {
ensureFromTo( array, from, to );
if ( from == 0 ) while( to-- != 0 ) array[ to ] = value;
else for( int i = from; i < to; i++ ) array[ i ] = value;
}
/** Returns true if the two arrays are elementwise equal.
*
* @param a1 an array.
* @param a2 another array.
* @return true if the two arrays are of the same length, and their elements are equal.
* @deprecated Please use the corresponding {@link java.util.Arrays} method, which is intrinsified in recent JVMs.
*/
@Deprecated
public static KEY_GENERIC boolean equals( final KEY_GENERIC_TYPE[] a1, final KEY_GENERIC_TYPE a2[] ) {
int i = a1.length;
if ( i != a2.length ) return false;
while( i-- != 0 ) if (! KEY_EQUALS( a1[ i ], a2[ i ] ) ) return false;
return true;
}
/** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits an array.
*
* <P>This method may be used whenever an array range check is needed.
*
* @param a an array.
* @param from a start index (inclusive).
* @param to an end index (exclusive).
* @throws IllegalArgumentException if <code>from</code> is greater than <code>to</code>.
* @throws ArrayIndexOutOfBoundsException if <code>from</code> or <code>to</code> are greater than the array length or negative.
*/
public static KEY_GENERIC void ensureFromTo( final KEY_GENERIC_TYPE[] a, final int from, final int to ) {
Arrays.ensureFromTo( a.length, from, to );
}
/** Ensures that a range given by an offset and a length fits an array.
*
* <P>This method may be used whenever an array range check is needed.
*
* @param a an array.
* @param offset a start index.
* @param length a length (the number of elements in the range).
* @throws IllegalArgumentException if <code>length</code> is negative.
* @throws ArrayIndexOutOfBoundsException if <code>offset</code> is negative or <code>offset</code>+<code>length</code> is greater than the array length.
*/
public static KEY_GENERIC void ensureOffsetLength( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) {
Arrays.ensureOffsetLength( a.length, offset, length );
}
private static final int SMALL = 7;
private static final int MEDIUM = 50;
private static KEY_GENERIC void swap( final KEY_GENERIC_TYPE x[], final int a, final int b ) {
final KEY_GENERIC_TYPE t = x[ a ];
x[ a ] = x[ b ];
x[ b ] = t;
}
private static KEY_GENERIC void vecSwap( final KEY_GENERIC_TYPE[] x, int a, int b, final int n ) {
for( int i = 0; i < n; i++, a++, b++ ) swap( x, a, b );
}
private static KEY_GENERIC int med3( final KEY_GENERIC_TYPE x[], final int a, final int b, final int c, KEY_COMPARATOR KEY_GENERIC comp ) {
int ab = comp.compare( x[ a ], x[ b ] );
int ac = comp.compare( x[ a ], x[ c ] );
int bc = comp.compare( x[ b ], x[ c ] );
return ( ab < 0 ?
( bc < 0 ? b : ac < 0 ? c : a ) :
( bc > 0 ? b : ac > 0 ? c : a ) );
}
private static KEY_GENERIC void selectionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp ) {
for( int i = from; i < to - 1; i++ ) {
int m = i;
for( int j = i + 1; j < to; j++ ) if ( comp.compare( a[ j ], a[ m ] ) < 0 ) m = j;
if ( m != i ) {
final KEY_GENERIC_TYPE u = a[ i ];
a[ i ] = a[ m ];
a[ m ] = u;
}
}
}
private static KEY_GENERIC void insertionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp ) {
for ( int i = from; ++i < to; ) {
KEY_GENERIC_TYPE t = a[ i ];
int j = i;
for ( KEY_GENERIC_TYPE u = a[ j - 1 ]; comp.compare( t, u ) < 0; u = a[ --j - 1 ] ) {
a[ j ] = u;
if ( from == j - 1 ) {
--j;
break;
}
}
a[ j ] = t;
}
}
@SuppressWarnings("unchecked")
private static KEY_GENERIC void selectionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to ) {
for( int i = from; i < to - 1; i++ ) {
int m = i;
for( int j = i + 1; j < to; j++ ) if ( KEY_LESS( a[ j ], a[ m ] ) ) m = j;
if ( m != i ) {
final KEY_GENERIC_TYPE u = a[ i ];
a[ i ] = a[ m ];
a[ m ] = u;
}
}
}
@SuppressWarnings("unchecked")
private static KEY_GENERIC void insertionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to ) {
for ( int i = from; ++i < to; ) {
KEY_GENERIC_TYPE t = a[ i ];
int j = i;
for ( KEY_GENERIC_TYPE u = a[ j - 1 ]; KEY_LESS( t, u ); u = a[ --j - 1 ] ) {
a[ j ] = u;
if ( from == j - 1 ) {
--j;
break;
}
}
a[ j ] = t;
}
}
/** Sorts the specified range of elements according to the order induced by the specified
* comparator using quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* <p>Note that this implementation does not allocate any object, contrarily to the implementation
* used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
*
*/
public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp ) {
final int len = to - from;
// Selection sort on smallest arrays
if ( len < SMALL ) {
selectionSort( x, from, to, comp );
return;
}
// Choose a partition element, v
int m = from + len / 2; // Small arrays, middle element
if ( len > SMALL ) {
int l = from;
int n = to - 1;
if ( len > MEDIUM ) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3( x, l, l + s, l + 2 * s, comp );
m = med3( x, m - s, m, m + s, comp );
n = med3( x, n - 2 * s, n - s, n, comp );
}
m = med3( x, l, m, n, comp ); // Mid-size, med of 3
}
final KEY_GENERIC_TYPE v = x[ m ];
// Establish Invariant: v* (<v)* (>v)* v*
int a = from, b = a, c = to - 1, d = c;
while(true) {
int comparison;
while ( b <= c && ( comparison = comp.compare( x[ b ], v ) ) <= 0 ) {
if ( comparison == 0 ) swap( x, a++, b );
b++;
}
while (c >= b && ( comparison = comp.compare( x[ c ], v ) ) >=0 ) {
if ( comparison == 0 ) swap( x, c, d-- );
c--;
}
if ( b > c ) break;
swap( x, b++, c-- );
}
// Swap partition elements back to middle
int s, n = to;
s = Math.min( a - from, b - a );
vecSwap( x, from, b - s, s );
s = Math.min( d - c, n - d - 1 );
vecSwap( x, b, n - s, s );
// Recursively sort non-partition-elements
if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s, comp );
if ( ( s = d - c ) > 1 ) quickSort( x, n - s, n, comp );
}
/** Sorts an array according to the order induced by the specified
* comparator using quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* <p>Note that this implementation does not allocate any object, contrarily to the implementation
* used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x the array to be sorted.
* @param comp the comparator to determine the sorting order.
*
*/
public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final KEY_COMPARATOR KEY_GENERIC comp ) {
quickSort( x, 0, x.length, comp );
}
@SuppressWarnings("unchecked")
private static KEY_GENERIC int med3( final KEY_GENERIC_TYPE x[], final int a, final int b, final int c ) {
int ab = KEY_CMP( x[ a ], x[ b ] );
int ac = KEY_CMP( x[ a ], x[ c ] );
int bc = KEY_CMP( x[ b ], x[ c ] );
return ( ab < 0 ?
( bc < 0 ? b : ac < 0 ? c : a ) :
( bc > 0 ? b : ac > 0 ? c : a ) );
}
/** Sorts the specified range of elements according to the natural ascending order using quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* <p>Note that this implementation does not allocate any object, contrarily to the implementation
* used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
@SuppressWarnings("unchecked")
public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final int from, final int to ) {
final int len = to - from;
// Selection sort on smallest arrays
if ( len < SMALL ) {
selectionSort( x, from, to );
return;
}
// Choose a partition element, v
int m = from + len / 2; // Small arrays, middle element
if ( len > SMALL ) {
int l = from;
int n = to - 1;
if ( len > MEDIUM ) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3( x, l, l + s, l + 2 * s );
m = med3( x, m - s, m, m + s );
n = med3( x, n - 2 * s, n - s, n );
}
m = med3( x, l, m, n ); // Mid-size, med of 3
}
final KEY_GENERIC_TYPE v = x[ m ];
// Establish Invariant: v* (<v)* (>v)* v*
int a = from, b = a, c = to - 1, d = c;
while(true) {
int comparison;
while ( b <= c && ( comparison = KEY_CMP( x[ b ], v ) ) <= 0 ) {
if ( comparison == 0 ) swap( x, a++, b );
b++;
}
while (c >= b && ( comparison = KEY_CMP( x[ c ], v ) ) >=0 ) {
if ( comparison == 0 ) swap( x, c, d-- );
c--;
}
if ( b > c ) break;
swap( x, b++, c-- );
}
// Swap partition elements back to middle
int s, n = to;
s = Math.min( a - from, b - a );
vecSwap( x, from, b - s, s );
s = Math.min( d - c, n - d - 1 );
vecSwap( x, b, n - s, s );
// Recursively sort non-partition-elements
if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s );
if ( ( s = d - c ) > 1 ) quickSort( x, n - s, n );
}
/** Sorts an array according to the natural ascending order using quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* <p>Note that this implementation does not allocate any object, contrarily to the implementation
* used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x the array to be sorted.
*
*/
public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x ) {
quickSort( x, 0, x.length );
}
/** Sorts the specified range of elements according to the natural ascending order using mergesort, using a given pre-filled support array.
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
* of the sort. Moreover, no support arrays will be allocated.
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param supp a support array containing at least <code>to</code> elements, and whose entries are identical to those
* of {@code a} in the specified range.
*/
@SuppressWarnings("unchecked")
public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to, final KEY_GENERIC_TYPE supp[] ) {
int len = to - from;
// Insertion sort on smallest arrays
if ( len < SMALL ) {
insertionSort( a, from, to );
return;
}
// Recursively sort halves of a into supp
final int mid = ( from + to ) >>> 1;
mergeSort( supp, from, mid, a );
mergeSort( supp, mid, to, a );
// If list is already sorted, just copy from supp to a. This is an
// optimization that results in faster sorts for nearly ordered lists.
if ( KEY_LESSEQ( supp[ mid - 1 ], supp[ mid ] ) ) {
System.arraycopy( supp, from, a, from, len );
return;
}
// Merge sorted halves (now in supp) into a
for( int i = from, p = from, q = mid; i < to; i++ ) {
if ( q >= to || p < mid && KEY_LESSEQ( supp[ p ], supp[ q ] ) ) a[ i ] = supp[ p++ ];
else a[ i ] = supp[ q++ ];
}
}
/** Sorts the specified range of elements according to the natural ascending order using mergesort.
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
* of the sort. An array as large as <code>a</code> will be allocated by this method.
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to ) {
mergeSort( a, from, to, a.clone() );
}
/** Sorts an array according to the natural ascending order using mergesort.
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
* of the sort. An array as large as <code>a</code> will be allocated by this method.
* @param a the array to be sorted.
*/
public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[] ) {
mergeSort( a, 0, a.length );
}
/** Sorts the specified range of elements according to the order induced by the specified
* comparator using mergesort, using a given pre-filled support array.
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
* of the sort. Moreover, no support arrays will be allocated.
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
* @param supp a support array containing at least <code>to</code> elements, and whose entries are identical to those
* of {@code a} in the specified range.
*/
@SuppressWarnings("unchecked")
public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to, KEY_COMPARATOR KEY_GENERIC comp, final KEY_GENERIC_TYPE supp[] ) {
int len = to - from;
// Insertion sort on smallest arrays
if ( len < SMALL ) {
insertionSort( a, from, to, comp );
return;
}
// Recursively sort halves of a into supp
final int mid = ( from + to ) >>> 1;
mergeSort( supp, from, mid, comp, a );
mergeSort( supp, mid, to, comp, a );
// If list is already sorted, just copy from supp to a. This is an
// optimization that results in faster sorts for nearly ordered lists.
if ( comp.compare( supp[ mid - 1 ], supp[ mid ] ) <= 0 ) {
System.arraycopy( supp, from, a, from, len );
return;
}
// Merge sorted halves (now in supp) into a
for( int i = from, p = from, q = mid; i < to; i++ ) {
if ( q >= to || p < mid && comp.compare( supp[ p ], supp[ q ] ) <= 0 ) a[ i ] = supp[ p++ ];
else a[ i ] = supp[ q++ ];
}
}
/** Sorts the specified range of elements according to the order induced by the specified
* comparator using mergesort.
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
* of the sort. An array as large as <code>a</code> will be allocated by this method.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
*/
public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to, KEY_COMPARATOR KEY_GENERIC comp ) {
mergeSort( a, from, to, comp, a.clone() );
}
/** Sorts an array according to the order induced by the specified
* comparator using mergesort.
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
* of the sort. An array as large as <code>a</code> will be allocated by this method.
* @param a the array to be sorted.
* @param comp the comparator to determine the sorting order.
*/
public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], KEY_COMPARATOR KEY_GENERIC comp ) {
mergeSort( a, 0, a.length, comp );
}
#if ! #keyclass(Boolean)
/**
* Searches a range of the specified array for the specified value using
* the binary search algorithm. The range must be sorted prior to making this call.
* If it is not sorted, the results are undefined. If the range contains multiple elements with
* the specified value, there is no guarantee which one will be found.
*
* @param a the array to be searched.
* @param from the index of the first element (inclusive) to be searched.
* @param to the index of the last element (exclusive) to be searched.
* @param key the value to be searched for.
* @return index of the search key, if it is contained in the array;
* otherwise, <samp>(-(<i>insertion point</i>) - 1)</samp>. The <i>insertion
* point</i> is defined as the the point at which the value would
* be inserted into the array: the index of the first
* element greater than the key, or the length of the array, if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
@SuppressWarnings({"unchecked","rawtypes"})
public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, int from, int to, final KEY_GENERIC_TYPE key ) {
KEY_GENERIC_TYPE midVal;
to--;
while (from <= to) {
final int mid = (from + to) >>> 1;
midVal = a[ mid ];
#if #keys(primitive)
if (midVal < key) from = mid + 1;
else if (midVal > key) to = mid - 1;
else return mid;
#else
final int cmp = ((Comparable)midVal).compareTo( key );
if ( cmp < 0 ) from = mid + 1;
else if (cmp > 0) to = mid - 1;
else return mid;
#endif
}
return -( from + 1 );
}
/**
* Searches an array for the specified value using
* the binary search algorithm. The range must be sorted prior to making this call.
* If it is not sorted, the results are undefined. If the range contains multiple elements with
* the specified value, there is no guarantee which one will be found.
*
* @param a the array to be searched.
* @param key the value to be searched for.
* @return index of the search key, if it is contained in the array;
* otherwise, <samp>(-(<i>insertion point</i>) - 1)</samp>. The <i>insertion
* point</i> is defined as the the point at which the value would
* be inserted into the array: the index of the first
* element greater than the key, or the length of the array, if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE key ) {
return binarySearch( a, 0, a.length, key );
}
/**
* Searches a range of the specified array for the specified value using
* the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call.
* If it is not sorted, the results are undefined. If the range contains multiple elements with
* the specified value, there is no guarantee which one will be found.
*
* @param a the array to be searched.
* @param from the index of the first element (inclusive) to be searched.
* @param to the index of the last element (exclusive) to be searched.
* @param key the value to be searched for.
* @param c a comparator.
* @return index of the search key, if it is contained in the array;
* otherwise, <samp>(-(<i>insertion point</i>) - 1)</samp>. The <i>insertion
* point</i> is defined as the the point at which the value would
* be inserted into the array: the index of the first
* element greater than the key, or the length of the array, if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, int from, int to, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c ) {
KEY_GENERIC_TYPE midVal;
to--;
while (from <= to) {
final int mid = (from + to) >>> 1;
midVal = a[ mid ];
final int cmp = c.compare( midVal, key );
if ( cmp < 0 ) from = mid + 1;
else if (cmp > 0) to = mid - 1;
else return mid; // key found
}
return -( from + 1 );
}
/**
* Searches an array for the specified value using
* the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call.
* If it is not sorted, the results are undefined. If the range contains multiple elements with
* the specified value, there is no guarantee which one will be found.
*
* @param a the array to be searched.
* @param key the value to be searched for.
* @param c a comparator.
* @return index of the search key, if it is contained in the array;
* otherwise, <samp>(-(<i>insertion point</i>) - 1)</samp>. The <i>insertion
* point</i> is defined as the the point at which the value would
* be inserted into the array: the index of the first
* element greater than the key, or the length of the array, if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c ) {
return binarySearch( a, 0, a.length, key, c );
}
#if #keys(primitive)
/** The size of a digit used during radix sort (must be a power of 2). */
private static final int DIGIT_BITS = 8;
/** The mask to extract a digit of {@link #DIGIT_BITS} bits. */
private static final int DIGIT_MASK = ( 1 << DIGIT_BITS ) - 1;
/** The number of digits per element. */
private static final int DIGITS_PER_ELEMENT = KEY_CLASS.SIZE / DIGIT_BITS;
/** This method fixes negative numbers so that the combination exponent/significand is lexicographically sorted. */
#if #keyclass(Double)
private static final long fixDouble( final double d ) {
final long l = Double.doubleToLongBits( d );
return l >= 0 ? l : l ^ 0x7FFFFFFFFFFFFFFFL;
}
#elif #keyclass(Float)
private static final long fixFloat( final float f ) {
final long i = Float.floatToIntBits( f );
return i >= 0 ? i : i ^ 0x7FFFFFFF;
}
#endif
/** Sorts the specified array using radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order.
* It will allocate a support array of bytes with the same number of elements as the array to be sorted.
*
* @param a the array to be sorted.
*/
public static void radixSort( final KEY_TYPE[] a ) {
radixSort( a, 0, a.length );
}
/** Sorts the specified array using radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order.
* It will allocate a support array of bytes with the same number of elements as the array to be sorted.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static void radixSort( final KEY_TYPE[] a, final int from, final int to ) {
final int maxLevel = DIGITS_PER_ELEMENT - 1;
final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( DIGITS_PER_ELEMENT - 1 ) + 1;
final int[] offsetStack = new int[ stackSize ];
int offsetPos = 0;
final int[] lengthStack = new int[ stackSize ];
int lengthPos = 0;
final int[] levelStack = new int[ stackSize ];
int levelPos = 0;
offsetStack[ offsetPos++ ] = from;
lengthStack[ lengthPos++ ] = to - from;
levelStack[ levelPos++ ] = 0;
final int[] count = new int[ 1 << DIGIT_BITS ];
final int[] pos = new int[ 1 << DIGIT_BITS ];
final byte[] digit = new byte[ to - from ];
while( offsetPos > 0 ) {
final int first = offsetStack[ --offsetPos ];
final int length = lengthStack[ --lengthPos ];
final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
final int signMask = 0;
#else
final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
if ( length < MEDIUM ) {
selectionSort( a, first, first + length );
continue;
}
final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key
// Count keys.
for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( ( KEY2LEXINT( a[ first + i ] ) >>> shift ) & DIGIT_MASK ) ^ signMask );
for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
// Compute cumulative distribution and push non-singleton keys on stack.
int lastUsed = -1;
for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
if ( count[ i ] != 0 ) {
lastUsed = i;
if ( level < maxLevel && count[ i ] > 1 ){
//System.err.println( " Pushing " + new StackEntry( first + pos[ i - 1 ], first + pos[ i ], level + 1 ) );
offsetStack[ offsetPos++ ] = p + first;
lengthStack[ lengthPos++ ] = count[ i ];
levelStack[ levelPos++ ] = level + 1;
}
}
pos[ i ] = ( p += count[ i ] );
}
// When all slots are OK, the last slot is necessarily OK.
final int end = length - count[ lastUsed ];
count[ lastUsed ] = 0;
// i moves through the start of each block
for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
KEY_TYPE t = a[ i + first ];
c = digit[ i ] & 0xFF;
while( ( d = --pos[ c ] ) > i ) {
final KEY_TYPE z = t;
final int zz = c;
t = a[ d + first ];
c = digit[ d ] & 0xFF;
a[ d + first ] = z;
digit[ d ] = (byte)zz;
}
a[ i + first ] = t;
}
}
}
private static KEY_GENERIC void insertionSortIndirect( final int[] perm, final KEY_TYPE[] a, final int from, final int to ) {
for ( int i = from; ++i < to; ) {
int t = perm[ i ];
int j = i;
for ( int u = perm[ j - 1 ]; KEY_LESS( a[ t ], a[ u ] ); u = perm[ --j - 1 ] ) {
perm[ j ] = u;
if ( from == j - 1 ) {
--j;
break;
}
}
perm[ j ] = t;
}
}
/** Sorts the specified array using indirect radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implement an <em>indirect</em> sort. The elements of <code>perm</code> (which must
* be exactly the numbers in the interval <code>[0..perm.length)</code>) will be permuted so that
* <code>a[ perm[ i ] ] <= a[ perm[ i + 1 ] ]</code>.
*
* <p>This implementation is significantly faster than quicksort (unstable) or mergesort (stable)
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order.
* It will allocate a support array of bytes with the same number of elements as the array to be sorted,
* and, in the stable case, a further support array as large as <code>perm</code> (note that the stable
* version is slightly faster).
*
* @param perm a permutation array indexing <code>a</code>.
* @param a the array to be sorted.
* @param stable whether the sorting algorithm should be stable.
*/
public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final boolean stable ) {
radixSortIndirect( perm, a, 0, perm.length, stable );
}
/** Sorts the specified array using indirect radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implement an <em>indirect</em> sort. The elements of <code>perm</code> (which must
* be exactly the numbers in the interval <code>[0..perm.length)</code>) will be permuted so that
* <code>a[ perm[ i ] ] <= a[ perm[ i + 1 ] ]</code>.
*
* <p>This implementation is significantly faster than quicksort (unstable) or mergesort (stable)
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order.
* It will allocate a support array of bytes with the same number of elements as the array to be sorted,
* and, in the stable case, a further support array as large as <code>perm</code> (note that the stable
* version is slightly faster).
*
* @param perm a permutation array indexing <code>a</code>.
* @param a the array to be sorted.
* @param from the index of the first element of <code>perm</code> (inclusive) to be permuted.
* @param to the index of the last element of <code>perm</code> (exclusive) to be permuted.
* @param stable whether the sorting algorithm should be stable.
*/
public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final int from, final int to, final boolean stable ) {
final int maxLevel = DIGITS_PER_ELEMENT - 1;
final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( DIGITS_PER_ELEMENT - 1 ) + 1;
final int[] offsetStack = new int[ stackSize ];
int offsetPos = 0;
final int[] lengthStack = new int[ stackSize ];
int lengthPos = 0;
final int[] levelStack = new int[ stackSize ];
int levelPos = 0;
offsetStack[ offsetPos++ ] = from;
lengthStack[ lengthPos++ ] = to - from;
levelStack[ levelPos++ ] = 0;
final int[] count = new int[ 1 << DIGIT_BITS ];
final int[] pos = stable ? null : new int[ 1 << DIGIT_BITS ];
final int[] support = stable ? new int[ perm.length ] : null;
final byte[] digit = new byte[ to - from ];
while( offsetPos > 0 ) {
final int first = offsetStack[ --offsetPos ];
final int length = lengthStack[ --lengthPos ];
final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
final int signMask = 0;
#else
final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
if ( length < MEDIUM ) {
insertionSortIndirect( perm, a, first, first + length );
continue;
}
final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key
// Count keys.
for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( ( KEY2LEXINT( a[ perm[ first + i ] ] ) >>> shift ) & DIGIT_MASK ) ^ signMask );
for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
// Compute cumulative distribution and push non-singleton keys on stack.
int lastUsed = -1;
for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
if ( count[ i ] != 0 ) {
lastUsed = i;
if ( level < maxLevel && count[ i ] > 1 ){
offsetStack[ offsetPos++ ] = p + first;
lengthStack[ lengthPos++ ] = count[ i ];
levelStack[ levelPos++ ] = level + 1;
}
}
if ( stable ) count[ i ] = p += count[ i ];
else pos[ i ] = ( p += count[ i ] );
}
if ( stable ) {
for( int i = length; i-- != 0; ) support[ --count[ digit[ i ] & 0xFF ] ] = perm[ first + i ];
System.arraycopy( support, 0, perm, first, length );
it.unimi.dsi.fastutil.ints.IntArrays.fill( count, 0 );
}
else {
// When all slots are OK, the last slot is necessarily OK.
final int end = length - count[ lastUsed ];
count[ lastUsed ] = 0;
// i moves through the start of each block
for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
int t = perm[ i + first ];
c = digit[ i ] & 0xFF;
while( ( d = --pos[ c ] ) > i ) {
final int z = t;
final int zz = c;
t = perm[ d + first ];
c = digit[ d ] & 0xFF;
perm[ d + first ] = z;
digit[ d ] = (byte)zz;
}
perm[ i + first ] = t;
}
}
}
}
private static void selectionSort( final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to ) {
for( int i = from; i < to - 1; i++ ) {
int m = i;
for( int j = i + 1; j < to; j++ )
if ( a[ j ] < a[ m ] || a[ j ] == a[ m ] && b[ j ] < b[ m ] ) m = j;
if ( m != i ) {
KEY_TYPE t = a[ i ];
a[ i ] = a[ m ];
a[ m ] = t;
t = b[ i ];
b[ i ] = b[ m ];
b[ m ] = t;
}
}
}
/** Sorts the specified pair of arrays lexicographically using radix sort.
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implements a <em>lexicographical</em> sorting of the arguments. Pairs of elements
* in the same position in the two provided arrays will be considered a single key, and permuted
* accordingly. In the end, either <code>a[ i ] < a[ i + 1 ]</code> or <code>a[ i ] == a[ i + 1 ]</code> and <code>b[ i ] <= b[ i + 1 ]</code>.
*
* <p>This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
*
* @param a the first array to be sorted.
* @param b the second array to be sorted.
*/
public static void radixSort( final KEY_TYPE[] a, final KEY_TYPE[] b ) {
radixSort( a, b, 0, a.length );
}
/** Sorts the specified pair of arrays lexicographically using radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implements a <em>lexicographical</em> sorting of the arguments. Pairs of elements
* in the same position in the two provided arrays will be considered a single key, and permuted
* accordingly. In the end, either <code>a[ i ] < a[ i + 1 ]</code> or <code>a[ i ] == a[ i + 1 ]</code> and <code>b[ i ] <= b[ i + 1 ]</code>.
*
* <p>This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
*
* @param a the first array to be sorted.
* @param b the second array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static void radixSort( final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to ) {
final int layers = 2;
if ( a.length != b.length ) throw new IllegalArgumentException( "Array size mismatch." );
final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;
final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1;
final int[] offsetStack = new int[ stackSize ];
int offsetPos = 0;
final int[] lengthStack = new int[ stackSize ];
int lengthPos = 0;
final int[] levelStack = new int[ stackSize ];
int levelPos = 0;
offsetStack[ offsetPos++ ] = from;
lengthStack[ lengthPos++ ] = to - from;
levelStack[ levelPos++ ] = 0;
final int[] count = new int[ 1 << DIGIT_BITS ];
final int[] pos = new int[ 1 << DIGIT_BITS ];
final byte[] digit = new byte[ to - from ];
while( offsetPos > 0 ) {
final int first = offsetStack[ --offsetPos ];
final int length = lengthStack[ --lengthPos ];
final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
final int signMask = 0;
#else
final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
if ( length < MEDIUM ) {
selectionSort( a, b, first, first + length );
continue;
}
final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array
final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key
// Count keys.
for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( ( KEY2LEXINT( k[ first + i ] ) >>> shift ) & DIGIT_MASK ) ^ signMask );
for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
// Compute cumulative distribution and push non-singleton keys on stack.
int lastUsed = -1;
for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
if ( count[ i ] != 0 ) {
lastUsed = i;
if ( level < maxLevel && count[ i ] > 1 ){
offsetStack[ offsetPos++ ] = p + first;
lengthStack[ lengthPos++ ] = count[ i ];
levelStack[ levelPos++ ] = level + 1;
}
}
pos[ i ] = ( p += count[ i ] );
}
// When all slots are OK, the last slot is necessarily OK.
final int end = length - count[ lastUsed ];
count[ lastUsed ] = 0;
// i moves through the start of each block
for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
KEY_TYPE t = a[ i + first ];
KEY_TYPE u = b[ i + first ];
c = digit[ i ] & 0xFF;
while( ( d = --pos[ c ] ) > i ) {
KEY_TYPE z = t;
final int zz = c;
t = a[ d + first ];
a[ d + first ] = z;
z = u;
u = b[ d + first ];
b[ d + first ] = z;
c = digit[ d ] & 0xFF;
digit[ d ] = (byte)zz;
}
a[ i + first ] = t;
b[ i + first ] = u;
}
}
}
private static KEY_GENERIC void insertionSortIndirect( final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to ) {
for ( int i = from; ++i < to; ) {
int t = perm[ i ];
int j = i;
for ( int u = perm[ j - 1 ]; KEY_LESS( a[ t ], a[ u ] ) || KEY_CMP_EQ( a[ t ], a[ u ] ) && KEY_LESS( b[ t ], b[ u ] ); u = perm[ --j - 1 ] ) {
perm[ j ] = u;
if ( from == j - 1 ) {
--j;
break;
}
}
perm[ j ] = t;
}
}
/** Sorts the specified pair of arrays lexicographically using indirect radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implement an <em>indirect</em> sort. The elements of <code>perm</code> (which must
* be exactly the numbers in the interval <code>[0..perm.length)</code>) will be permuted so that
* <code>a[ perm[ i ] ] <= a[ perm[ i + 1 ] ]</code>.
*
* <p>This implementation is significantly faster than quicksort (unstable) or mergesort (stable)
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order.
* It will allocate a support array of bytes with the same number of elements as the array to be sorted,
* and, in the stable case, a further support array as large as <code>perm</code> (note that the stable
* version is slightly faster).
*
* @param perm a permutation array indexing <code>a</code>.
* @param a the array to be sorted.
* @param b the second array to be sorted.
* @param stable whether the sorting algorithm should be stable.
*/
public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final boolean stable ) {
radixSortIndirect( perm, a, b, 0, perm.length, stable );
}
/** Sorts the specified pair of arrays lexicographically using indirect radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implement an <em>indirect</em> sort. The elements of <code>perm</code> (which must
* be exactly the numbers in the interval <code>[0..perm.length)</code>) will be permuted so that
* <code>a[ perm[ i ] ] <= a[ perm[ i + 1 ] ]</code>.
*
* <p>This implementation is significantly faster than quicksort (unstable) or mergesort (stable)
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order.
* It will allocate a support array of bytes with the same number of elements as the array to be sorted,
* and, in the stable case, a further support array as large as <code>perm</code> (note that the stable
* version is slightly faster).
*
* @param perm a permutation array indexing <code>a</code>.
* @param a the array to be sorted.
* @param b the second array to be sorted.
* @param from the index of the first element of <code>perm</code> (inclusive) to be permuted.
* @param to the index of the last element of <code>perm</code> (exclusive) to be permuted.
* @param stable whether the sorting algorithm should be stable.
*/
public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to, final boolean stable ) {
final int layers = 2;
if ( a.length != b.length ) throw new IllegalArgumentException( "Array size mismatch." );
final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;
final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1;
final int[] offsetStack = new int[ stackSize ];
int offsetPos = 0;
final int[] lengthStack = new int[ stackSize ];
int lengthPos = 0;
final int[] levelStack = new int[ stackSize ];
int levelPos = 0;
offsetStack[ offsetPos++ ] = from;
lengthStack[ lengthPos++ ] = to - from;
levelStack[ levelPos++ ] = 0;
final int[] count = new int[ 1 << DIGIT_BITS ];
final int[] pos = stable ? null : new int[ 1 << DIGIT_BITS ];
final int[] support = stable ? new int[ perm.length ] : null;
final byte[] digit = new byte[ to - from ];
while( offsetPos > 0 ) {
final int first = offsetStack[ --offsetPos ];
final int length = lengthStack[ --lengthPos ];
final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
final int signMask = 0;
#else
final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
if ( length < MEDIUM ) {
insertionSortIndirect( perm, a, b, first, first + length );
continue;
}
final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array
final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key
// Count keys.
for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( ( KEY2LEXINT( k[ perm[ first + i ] ] ) >>> shift ) & DIGIT_MASK ) ^ signMask );
for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
// Compute cumulative distribution and push non-singleton keys on stack.
int lastUsed = -1;
for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
if ( count[ i ] != 0 ) {
lastUsed = i;
if ( level < maxLevel && count[ i ] > 1 ){
offsetStack[ offsetPos++ ] = p + first;
lengthStack[ lengthPos++ ] = count[ i ];
levelStack[ levelPos++ ] = level + 1;
}
}
if ( stable ) count[ i ] = p += count[ i ];
else pos[ i ] = ( p += count[ i ] );
}
if ( stable ) {
for( int i = length; i-- != 0; ) support[ --count[ digit[ i ] & 0xFF ] ] = perm[ first + i ];
System.arraycopy( support, 0, perm, first, length );
it.unimi.dsi.fastutil.ints.IntArrays.fill( count, 0 );
}
else {
// When all slots are OK, the last slot is necessarily OK.
final int end = length - count[ lastUsed ];
count[ lastUsed ] = 0;
// i moves through the start of each block
for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
int t = perm[ i + first ];
c = digit[ i ] & 0xFF;
while( ( d = --pos[ c ] ) > i ) {
final int z = t;
final int zz = c;
t = perm[ d + first ];
c = digit[ d ] & 0xFF;
perm[ d + first ] = z;
digit[ d ] = (byte)zz;
}
perm[ i + first ] = t;
}
}
}
}
private static void selectionSort( final KEY_TYPE[][] a, final int from, final int to, final int level ) {
final int layers = a.length;
final int firstLayer = level / DIGITS_PER_ELEMENT;
for( int i = from; i < to - 1; i++ ) {
int m = i;
for( int j = i + 1; j < to; j++ ) {
for( int p = firstLayer; p < layers; p++ ) {
if ( a[ p ][ j ] < a[ p ][ m ] ) {
m = j;
break;
}
else if ( a[ p ][ j ] > a[ p ][ m ] ) break;
}
}
if ( m != i ) {
for( int p = layers; p-- != 0; ) {
final KEY_TYPE u = a[ p ][ i ];
a[ p ][ i ] = a[ p ][ m ];
a[ p ][ m ] = u;
}
}
}
}
/** Sorts the specified array of arrays lexicographically using radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implements a <em>lexicographical</em> sorting of the provided arrays. Tuples of elements
* in the same position will be considered a single key, and permuted
* accordingly.
*
* <p>This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
*
* @param a an array containing arrays of equal length to be sorted lexicographically in parallel.
*/
public static void radixSort( final KEY_TYPE[][] a ) {
radixSort( a, 0, a[ 0 ].length );
}
/** Sorts the specified array of arrays lexicographically using radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implements a <em>lexicographical</em> sorting of the provided arrays. Tuples of elements
* in the same position will be considered a single key, and permuted
* accordingly.
*
* <p>This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
*
* @param a an array containing arrays of equal length to be sorted lexicographically in parallel.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static void radixSort( final KEY_TYPE[][] a, final int from, final int to ) {
final int layers = a.length;
final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;
for( int p = layers, l = a[ 0 ].length; p-- != 0; ) if ( a[ p ].length != l ) throw new IllegalArgumentException( "The array of index " + p + " has not the same length of the array of index 0." );
final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1;
final int[] offsetStack = new int[ stackSize ];
int offsetPos = 0;
final int[] lengthStack = new int[ stackSize ];
int lengthPos = 0;
final int[] levelStack = new int[ stackSize ];
int levelPos = 0;
offsetStack[ offsetPos++ ] = from;
lengthStack[ lengthPos++ ] = to - from;
levelStack[ levelPos++ ] = 0;
final int[] count = new int[ 1 << DIGIT_BITS ];
final int[] pos = new int[ 1 << DIGIT_BITS ];
final byte[] digit = new byte[ to - from ];
final KEY_TYPE[] t = new KEY_TYPE[ layers ];
while( offsetPos > 0 ) {
final int first = offsetStack[ --offsetPos ];
final int length = lengthStack[ --lengthPos ];
final int level = levelStack[ --levelPos ];
#if #keyclass(Character)
final int signMask = 0;
#else
final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
if ( length < MEDIUM ) {
selectionSort( a, first, first + length, level );
continue;
}
final KEY_TYPE[] k = a[ level / DIGITS_PER_ELEMENT ]; // This is the key array
final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key
// Count keys.
for( int i = length; i-- != 0; ) digit[ i ] = (byte)( ( KEY2LEXINT( k[ first + i ] ) >>> shift & DIGIT_MASK ) ^ signMask );
for( int i = length; i-- != 0; ) count[ digit[ i ] & 0xFF ]++;
// Compute cumulative distribution and push non-singleton keys on stack.
int lastUsed = -1;
for( int i = 0, p = 0; i < 1 << DIGIT_BITS; i++ ) {
if ( count[ i ] != 0 ) {
lastUsed = i;
if ( level < maxLevel && count[ i ] > 1 ){
offsetStack[ offsetPos++ ] = p + first;
lengthStack[ lengthPos++ ] = count[ i ];
levelStack[ levelPos++ ] = level + 1;
}
}
pos[ i ] = ( p += count[ i ] );
}
// When all slots are OK, the last slot is necessarily OK.
final int end = length - count[ lastUsed ];
count[ lastUsed ] = 0;
// i moves through the start of each block
for( int i = 0, c = -1, d; i < end; i += count[ c ], count[ c ] = 0 ) {
for( int p = layers; p-- != 0; ) t[ p ] = a[ p ][ i + first ];
c = digit[ i ] & 0xFF;
while( ( d = --pos[ c ] ) > i ) {
for( int p = layers; p-- != 0; ) {
final KEY_TYPE u = t[ p ];
t[ p ] = a[ p ][ d + first ];
a[ p ][ d + first ] = u;
}
final int zz = c;
c = digit[ d ] & 0xFF;
digit[ d ] = (byte)zz;
}
for( int p = layers; p-- != 0; ) a[ p ][ i + first ] = t[ p ];
}
}
}
#endif
#endif
/** Shuffles the specified array fragment using the specified pseudorandom number generator.
*
* @param a the array to be shuffled.
* @param from the index of the first element (inclusive) to be shuffled.
* @param to the index of the last element (exclusive) to be shuffled.
* @param random a pseudorandom number generator (please use a <a href="http://dsiutils.dsi.unimi.it/docs/it/unimi/dsi/util/XorShiftStarRandom.html">XorShift*</a> generator).
* @return <code>a</code>.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] shuffle( final KEY_GENERIC_TYPE[] a, final int from, final int to, final Random random ) {
for( int i = to - from; i-- != 0; ) {
final int p = random.nextInt( i + 1 );
final KEY_GENERIC_TYPE t = a[ from + i ];
a[ from + i ] = a[ from + p ];
a[ from + p ] = t;
}
return a;
}
/** Shuffles the specified array using the specified pseudorandom number generator.
*
* @param a the array to be shuffled.
* @param random a pseudorandom number generator (please use a <a href="http://dsiutils.dsi.unimi.it/docs/it/unimi/dsi/util/XorShiftStarRandom.html">XorShift*</a> generator).
* @return <code>a</code>.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] shuffle( final KEY_GENERIC_TYPE[] a, final Random random ) {
for( int i = a.length; i-- != 0; ) {
final int p = random.nextInt( i + 1 );
final KEY_GENERIC_TYPE t = a[ i ];
a[ i ] = a[ p ];
a[ p ] = t;
}
return a;
}
/** Reverses the order of the elements in the specified array.
*
* @param a the array to be reversed.
* @return <code>a</code>.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] reverse( final KEY_GENERIC_TYPE[] a ) {
final int length = a.length;
for( int i = length / 2; i-- != 0; ) {
final KEY_GENERIC_TYPE t = a[ length - i - 1 ];
a[ length - i - 1 ] = a[ i ];
a[ i ] = t;
}
return a;
}
/** Reverses the order of the elements in the specified array fragment.
*
* @param a the array to be reversed.
* @param from the index of the first element (inclusive) to be reversed.
* @param to the index of the last element (exclusive) to be reversed.
* @return <code>a</code>.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] reverse( final KEY_GENERIC_TYPE[] a, final int from, final int to ) {
final int length = to - from;
for( int i = length / 2; i-- != 0; ) {
final KEY_GENERIC_TYPE t = a[ from + length - i - 1 ];
a[ from + length - i - 1 ] = a[ from + i ];
a[ from + i ] = t;
}
return a;
}
/** A type-specific content-based hash strategy for arrays. */
private static final class ArrayHashStrategy KEY_GENERIC implements Hash.Strategy<KEY_GENERIC_TYPE[]>, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353129L;
public int hashCode( final KEY_GENERIC_TYPE[] o ) {
return java.util.Arrays.hashCode( o );
}
public boolean equals( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE[] b ) {
return java.util.Arrays.equals( a, b );
}
}
/** A type-specific content-based hash strategy for arrays.
*
* <P>This hash strategy may be used in custom hash collections whenever keys are
* arrays, and they must be considered equal by content. This strategy
* will handle <code>null</code> correctly, and it is serializable.
*/
#if #keys(primitive)
public final static Hash.Strategy<KEY_TYPE[]> HASH_STRATEGY = new ArrayHashStrategy();
#else
@SuppressWarnings({"rawtypes"})
public final static Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy();
#endif
}
|