File: BigArrayBigList.drv

package info (click to toggle)
libfastutil-java 6.5.15-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,716 kB
  • ctags: 1,035
  • sloc: java: 9,711; sh: 588; makefile: 423; xml: 211
file content (1166 lines) | stat: -rw-r--r-- 42,540 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
/*		 
 * Copyright (C) 2002-2014 Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;

#if #keys(primitive)

/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing. 
 *
 * <P>This class implements a lightweight, fast, open, optimized,
 * reuse-oriented version of big-array-based big lists. Instances of this class
 * represent a big list with a big array that is enlarged as needed when new entries
 * are created (by doubling the current length), but is
 * <em>never</em> made smaller (even on a {@link #clear()}). A family of
 * {@linkplain #trim() trimming methods} lets you control the size of the
 * backing big array; this is particularly useful if you reuse instances of this class.
 * Range checks are equivalent to those of {@link java.util}'s classes, but
 * they are delayed as much as possible. The backing big array is exposed by the
 * {@link #elements()} method.
 *
 * <p>This class implements the bulk methods <code>removeElements()</code>,
 * <code>addElements()</code> and <code>getElements()</code> using
 * high-performance system calls (e.g., {@link
 * System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of
 * expensive loops.
 *
 * @see java.util.ArrayList
 */

public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
	private static final long serialVersionUID = -7046029254386353130L;


#else

/** A type-specific big-array-based big list; provides some additional methods that use polymorphism to avoid (un)boxing. 
 *
 * <P>This class implements a lightweight, fast, open, optimized,
 * reuse-oriented version of big-array-based big lists. Instances of this class
 * represent a big list with a big array that is enlarged as needed when new entries
 * are created (by doubling the current length), but is
 * <em>never</em> made smaller (even on a {@link #clear()}). A family of
 * {@linkplain #trim() trimming methods} lets you control the size of the
 * backing big array; this is particularly useful if you reuse instances of this class.
 * Range checks are equivalent to those of {@link java.util}'s classes, but
 * they are delayed as much as possible. 
 *
 * <p>The backing big array is exposed by the {@link #elements()} method. If an instance
 * of this class was created {@linkplain #wrap(Object[][],long) by wrapping}, 
 * backing-array reallocations will be performed using reflection, so that
 * {@link #elements()} can return a big array of the same type of the original big array; the comments
 * about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here.
 *
 * <p>This class implements the bulk methods <code>removeElements()</code>,
 * <code>addElements()</code> and <code>getElements()</code> using
 * high-performance system calls (e.g., {@link
 * System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of
 * expensive loops.
 *
 * @see java.util.ArrayList
 */

public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
	private static final long serialVersionUID = -7046029254386353131L;


#endif

	/** The initial default capacity of a big-array big list. */
	public final static int DEFAULT_INITIAL_CAPACITY = 16;

#if ! #keys(primitive)
	/** Whether the backing big array was passed to <code>wrap()</code>. In
	 * this case, we must reallocate with the same type of big array. */
	protected final boolean wrapped;
#endif

	/** The backing big array. */
	protected transient KEY_GENERIC_TYPE a[][];

	/** The current actual size of the big list (never greater than the backing-array length). */
	protected long size;

	private static final boolean ASSERTS = ASSERTS_VALUE;

	/** Creates a new big-array big list using a given array.
	 *
	 * <P>This constructor is only meant to be used by the wrapping methods.
	 *
	 * @param a the big array that will be used to back this big-array big list.
	 */

	@SuppressWarnings("unused")
	protected BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][], boolean dummy ) {
		this.a = a;
#if ! #keys(primitive)
		this.wrapped = true;
#endif
	}

	/** Creates a new big-array big list with given capacity.
	 *
	 * @param capacity the initial capacity of the array list (may be 0).
	 */

	@SuppressWarnings("unchecked")
	public BIG_ARRAY_BIG_LIST( final long capacity ) {
		if ( capacity < 0 ) throw new IllegalArgumentException( "Initial capacity (" + capacity + ") is negative" );

		a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( capacity );
#if ! #keys(primitive)
		wrapped = false;
#endif
	}

	/** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity.
	 */
	 
	public BIG_ARRAY_BIG_LIST() {
		this( DEFAULT_INITIAL_CAPACITY );
	}

	/** Creates a new big-array big list and fills it with a given type-specific collection.
	 *
	 * @param c a type-specific collection that will be used to fill the array list.
	 */
	 
	public BIG_ARRAY_BIG_LIST( final COLLECTION KEY_EXTENDS_GENERIC c ) {
		this( c.size() );
		for( KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext(); ) add( i.NEXT_KEY() );
	}

	/** Creates a new big-array big list and fills it with a given type-specific list.
	 *
	 * @param l a type-specific list that will be used to fill the array list.
	 */
	 
	public BIG_ARRAY_BIG_LIST( final BIG_LIST KEY_EXTENDS_GENERIC l ) {
		this( l.size64() );
		l.getElements( 0, a, 0, size = l.size64() );
	}

	/** Creates a new big-array big list and fills it with the elements of a given big array.
	 *
	 * <p>Note that this constructor makes it easy to build big lists from literal arrays
	 * declared as <code><var>type</var>[][] {{ <var>init_values</var> }}</code>.
	 * The only constraint is that the number of initialisation values is
	 * below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
	 *
	 * @param a a big array whose elements will be used to fill the array list.
	 */
	 
	public BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][] ) {
		this( a, 0, BIG_ARRAYS.length( a ) );
	}

	/** Creates a new big-array big list and fills it with the elements of a given big array.
	 *
	 * <p>Note that this constructor makes it easy to build big lists from literal arrays
	 * declared as <code><var>type</var>[][] {{ <var>init_values</var> }}</code>.
	 * The only constraint is that the number of initialisation values is
	 * below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
	 *
	 * @param a a big array whose elements will be used to fill the array list.
	 * @param offset the first element to use.
	 * @param length the number of elements to use.
	 */
	 
	public BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][], final long offset, final long length ) {
		this( length );
		BIG_ARRAYS.copy( a, offset, this.a, 0, length );
		size = length;
	}

	/** Creates a new big-array big list and fills it with the elements returned by an iterator..
	 *
	 * @param i an iterator whose returned elements will fill the array list.
	 */
	 
	public BIG_ARRAY_BIG_LIST( final Iterator<? extends KEY_GENERIC_CLASS> i ) {
		this();
		while( i.hasNext() ) this.add( i.next() );
	}

	/** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator..
	 *
	 * @param i a type-specific iterator whose returned elements will fill the array list.
	 */
	 
	public BIG_ARRAY_BIG_LIST( final KEY_ITERATOR KEY_EXTENDS_GENERIC i ) {
		this();
		while( i.hasNext() ) this.add( i.NEXT_KEY() );
	}

#if #keys(primitive)
	/** Returns the backing big array of this big list.
	 *
	 * @return the backing big array.
	 */

	public KEY_GENERIC_TYPE[][] elements() {
		return a;
	}
#else
	/** Returns the backing big array of this big list.
	 *
	 * <P>If this big-array big list was created by wrapping a given big array, it is guaranteed
	 * that the type of the returned big array will be the same. Otherwise, the returned
	 * big array will be an big array of objects.
	 *
	 * @return the backing big array.
	 */

	public KEY_GENERIC_TYPE[][] elements() {
		return a;
	}
#endif

	/** Wraps a given big array into a big-array list of given size.
	 *
	 * @param a a big array to wrap.
	 * @param length the length of the resulting big-array list.
	 * @return a new big-array list of the given size, wrapping the given big array.
	 */

	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[][], final long length ) {
		if ( length > BIG_ARRAYS.length( a ) ) throw new IllegalArgumentException( "The specified length (" + length + ") is greater than the array size (" + BIG_ARRAYS.length( a ) + ")" );
		final BIG_ARRAY_BIG_LIST KEY_GENERIC l = new BIG_ARRAY_BIG_LIST KEY_GENERIC( a, false );
		l.size = length;
		return l;
	}

	/** Wraps a given big array into a big-array big list.
	 *
	 * @param a a big array to wrap.
	 * @return a new big-array big list wrapping the given array.
	 */

	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[][] ) {
		return wrap( a, BIG_ARRAYS.length( a ) );
	}


	/** Ensures that this big-array big list can contain the given number of entries without resizing.
	 *
	 * @param capacity the new minimum capacity for this big-array big list.
	 */
	@SuppressWarnings("unchecked")
	public void ensureCapacity( final long capacity ) {
#if #keys(primitive)
		a = BIG_ARRAYS.ensureCapacity( a, capacity, size );
#else
		if ( wrapped ) a = BIG_ARRAYS.ensureCapacity( a, capacity, size );
		else {
			if ( capacity > BIG_ARRAYS.length( a ) ) {
				final Object t[][] = BIG_ARRAYS.newBigArray( capacity );
				BIG_ARRAYS.copy( a, 0, t, 0, size );
				a = (KEY_GENERIC_TYPE[][])t;
			}
		}
#endif
		if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
	}

	/** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing,
	 * and in case enlarging it at least by a factor of two.
	 *
	 * @param capacity the new minimum capacity for this big-array big list.
	 */
	@SuppressWarnings("unchecked")
	private void grow( final long capacity ) {
#if #keys(primitive)
		a = BIG_ARRAYS.grow( a, capacity, size );
#else
		if ( wrapped ) a =  BIG_ARRAYS.grow( a, capacity, size );
		else {
			if ( capacity > BIG_ARRAYS.length( a ) ) {
				final int newLength = (int)Math.max( Math.min( 2 * BIG_ARRAYS.length( a ), it.unimi.dsi.fastutil.Arrays.MAX_ARRAY_SIZE ), capacity );
				final Object t[][] = BIG_ARRAYS.newBigArray( newLength );
				BIG_ARRAYS.copy( a, 0, t, 0, size );
				a = (KEY_GENERIC_TYPE[][])t;
			}			
		}
#endif
		if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
	}

	public void add( final long index, final KEY_GENERIC_TYPE k ) {
		ensureIndex( index );
		grow( size + 1 );
		if ( index != size ) BIG_ARRAYS.copy( a, index, a, index + 1, size - index );
		BIG_ARRAYS.set( a, index, k );
		size++;
		if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
	}

	public boolean add( final KEY_GENERIC_TYPE k ) {
		grow( size + 1 );
		BIG_ARRAYS.set( a, size++, k );
		if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
		return true;
	}

	public KEY_GENERIC_TYPE GET_KEY( final long index ) {
		if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" );
		return BIG_ARRAYS.get( a, index );
	}

	public long indexOf( final KEY_TYPE k ) {
		for( long i = 0; i < size; i++ ) if ( KEY_EQUALS( k, BIG_ARRAYS.get( a, i ) ) ) return i;
		return -1;
	}


	public long lastIndexOf( final KEY_TYPE k ) {
		for( long i = size; i-- != 0; ) if ( KEY_EQUALS( k, BIG_ARRAYS.get( a, i ) ) ) return i;
		return -1;
	}

	public KEY_GENERIC_TYPE REMOVE_KEY( final long index ) {
		if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" );
		final KEY_GENERIC_TYPE old = BIG_ARRAYS.get( a, index );
		size--;
		if ( index != size ) BIG_ARRAYS.copy( a, index + 1, a, index, size - index );
#if #keys(reference)
		BIG_ARRAYS.set( a, size, null );
#endif
		if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
		return old;
	}

	public boolean rem( final KEY_TYPE k ) {
		final long index = indexOf( k );
		if ( index == -1 ) return false;
		REMOVE_KEY( index );
		if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
		return true;
	}

#if #keys(reference)
	public boolean remove( final Object o ) {
		return rem( o );
	}
#endif

	public KEY_GENERIC_TYPE set( final long index, final KEY_GENERIC_TYPE k ) {
		if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" );
		KEY_GENERIC_TYPE old = BIG_ARRAYS.get( a, index );
		BIG_ARRAYS.set( a, index, k );
		return old;
	}

	public void clear() {
#if #keys(reference)
		BIG_ARRAYS.fill( a, 0, size, null );
#endif
		size = 0;
		if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
	}

	public long size64() {
		return size;
	}		

	public void size( final long size ) {
		if ( size > BIG_ARRAYS.length( a ) ) ensureCapacity( size );
		if ( size > this.size ) BIG_ARRAYS.fill( a, this.size, size, KEY_NULL );
#if #keys(reference)
		else BIG_ARRAYS.fill( a, size, this.size, KEY_NULL );
#endif
		this.size = size;
	}		

	public boolean isEmpty() {
		return size == 0;
	}		

	/** Trims this big-array big list so that the capacity is equal to the size. 
	 *
	 * @see java.util.ArrayList#trimToSize()
	 */
	public void trim() {
		trim( 0 );
	}

	/** Trims the backing big array if it is too large.
	 * 
	 * If the current big array length is smaller than or equal to
	 * <code>n</code>, this method does nothing. Otherwise, it trims the
	 * big-array length to the maximum between <code>n</code> and {@link #size64()}.
	 *
	 * <P>This method is useful when reusing big lists.  {@linkplain #clear() Clearing a
	 * big list} leaves the big-array length untouched. If you are reusing a big list
	 * many times, you can call this method with a typical
	 * size to avoid keeping around a very large big array just
	 * because of a few large transient big lists.
	 *
	 * @param n the threshold for the trimming.
	 */

	@SuppressWarnings("unchecked")
	public void trim( final long n ) {
		final long arrayLength = BIG_ARRAYS.length( a );
		if ( n >= arrayLength || size == arrayLength ) return;
		a = BIG_ARRAYS.trim( a, Math.max( n, size ) );
		if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
	}


   	/** Copies element of this type-specific list into the given big array using optimized system calls.
	 *
	 * @param from the start index (inclusive).
	 * @param a the destination big array.
	 * @param offset the offset into the destination array where to store the first element copied.
	 * @param length the number of elements to be copied.
	 */

	public void getElements( final int from, final KEY_TYPE[][] a, final long offset, final long length ) {
		BIG_ARRAYS.copy( this.a, from, a, offset, length );
	}

	/** Removes elements of this type-specific list using optimized system calls.
	 *
	 * @param from the start index (inclusive).
	 * @param to the end index (exclusive).
	 */
	public void removeElements( final int from, final int to ) {
		BigArrays.ensureFromTo( size, from, to );
		BIG_ARRAYS.copy( a, to, a, from, size - to );
		size -= ( to - from );
#if #keys(reference)
		BIG_ARRAYS.fill( a, size, size + to - from, null );
#endif
	}
	

	/** Adds elements to this type-specific list using optimized system calls.
	 *
	 * @param index the index at which to add elements.
	 * @param a the big array containing the elements.
	 * @param offset the offset of the first element to add.
	 * @param length the number of elements to add.
	 */
	public void addElements( final int index, final KEY_GENERIC_TYPE a[][], final long offset, final long length ) {
		ensureIndex( index );
		BIG_ARRAYS.ensureOffsetLength( a, offset, length );
		grow( size + length );
		BIG_ARRAYS.copy( this.a, index, this.a, index + length, size - index );
		BIG_ARRAYS.copy( a, offset, this.a, index, length );
		size += length;
	}

	public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator( final int index ) {
		ensureIndex( index );

		return new KEY_ABSTRACT_BIG_LIST_ITERATOR KEY_GENERIC() {
				int pos = index, last = -1;

				public boolean hasNext() { return pos < size; }
				public boolean hasPrevious() { return pos > 0; }
				public KEY_GENERIC_TYPE NEXT_KEY() { if ( ! hasNext() ) throw new NoSuchElementException(); return BIG_ARRAYS.get( a, last = pos++ ); }
				public KEY_GENERIC_TYPE PREV_KEY() { if ( ! hasPrevious() ) throw new NoSuchElementException(); return BIG_ARRAYS.get( a, last = --pos ); }
				public long nextIndex() { return pos; }
				public long previousIndex() { return pos - 1; }
				public void add( KEY_GENERIC_TYPE k ) { 
					if ( last == -1 ) throw new IllegalStateException();
					BIG_ARRAY_BIG_LIST.this.add( pos++, k ); 
					last = -1;
				}
				public void set( KEY_GENERIC_TYPE k ) { 
					if ( last == -1 ) throw new IllegalStateException();
					BIG_ARRAY_BIG_LIST.this.set( last, k );
				}
				public void remove() { 
					if ( last == -1 ) throw new IllegalStateException();
					BIG_ARRAY_BIG_LIST.this.REMOVE_KEY( last ); 
					/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
					if ( last < pos ) pos--;
					last = -1;
				}
			};
	}


	@SuppressWarnings("unchecked")
	public BIG_ARRAY_BIG_LIST KEY_GENERIC clone() {
		BIG_ARRAY_BIG_LIST KEY_GENERIC c = new BIG_ARRAY_BIG_LIST KEY_GENERIC( size );
		BIG_ARRAYS.copy( a, 0, c.a, 0, size );
		c.size = size;
		return c;
	}

#if #keyclass(Object)
	private boolean valEquals( final K a, final K b ) {
		return a == null ? b == null : a.equals( b );
	}
#endif

    /** Compares this type-specific big-array list to another one.
	 *
	 * <P>This method exists only for sake of efficiency. The implementation
	 * inherited from the abstract implementation would already work.
	 *
	 * @param l a type-specific big-array list.
     * @return true if the argument contains the same elements of this type-specific big-array list.
	 */
	public boolean equals( final BIG_ARRAY_BIG_LIST KEY_GENERIC l ) {
		if ( l == this ) return true;
		long s = size64();
		if ( s != l.size64() ) return false;
		final KEY_GENERIC_TYPE[][] a1 = a;
		final KEY_GENERIC_TYPE[][] a2 = l.a;

#if #keyclass(Object)
		while( s-- !=  0 ) if ( ! valEquals( BIG_ARRAYS.get( a1, s ), BIG_ARRAYS.get( a2, s ) ) ) return false;
#else
		while( s-- !=  0 ) if ( BIG_ARRAYS.get( a1, s ) != BIG_ARRAYS.get( a2, s ) ) return false;
#endif
		return true;
	}


#if ! #keyclass(Reference)

    /** Compares this big list to another big list.
     *
	 * <P>This method exists only for sake of efficiency. The implementation
	 * inherited from the abstract implementation would already work.
	 *
     * @param l a big list.
     * @return a negative integer,
     * zero, or a positive integer as this big list is lexicographically less than, equal
     * to, or greater than the argument.
     */
	@SuppressWarnings("unchecked")
	public int compareTo( final BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC l ) {
		final long s1 = size64(), s2 = l.size64();
		final KEY_GENERIC_TYPE a1[][] = a, a2[][] = l.a;
		KEY_GENERIC_TYPE e1, e2;
		int r, i;
		
		for( i = 0; i < s1 && i < s2; i++ ) {
			e1 = BIG_ARRAYS.get( a1, i );
			e2 = BIG_ARRAYS.get( a2, i );
			if ( ( r = KEY_CMP( e1, e2 ) ) != 0 ) return r;
		}

		return i < s2 ? -1 : ( i < s1 ? 1 : 0 );
	}
#endif


	private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException {
		s.defaultWriteObject();
		for( int i = 0; i < size; i++ ) s.WRITE_KEY( BIG_ARRAYS.get( a, i ) );
	}

	@SuppressWarnings("unchecked")
	private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException {
		s.defaultReadObject();
		a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( size );
		for( int i = 0; i < size; i++ ) BIG_ARRAYS.set( a, i, KEY_GENERIC_CAST s.READ_KEY() );
	}


#ifdef TEST

	private static long seed = System.currentTimeMillis(); 
	private static java.util.Random r = new java.util.Random( seed );

	private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
		return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
		return r.NEXT_KEY(); 
#elif #keyclass(Object)
		return Integer.toBinaryString( r.nextInt() );
#else 
		return new java.io.Serializable() {};
#endif
	}

	private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
	private static java.text.FieldPosition p = new java.text.FieldPosition( 0 );

	private static String format( double d ) {
		StringBuffer s = new StringBuffer();
		return format.format( d, s, p ).toString();
	}

	private static void speedTest( int n, boolean comp ) {
		System.out.println( "There are presently no speed tests for this class." );
	}


	private static void fatal( String msg ) {
		System.out.println( msg );
		System.exit( 1 );
	}

	private static void ensure( boolean cond, String msg ) {
		if ( cond ) return;
		fatal( msg );
	}

	private static Object[] k, v, nk;
	private static KEY_TYPE kt[];
	private static KEY_TYPE nkt[];
	private static BIG_ARRAY_BIG_LIST topList;

	protected static void testLists( BIG_LIST m, BIG_LIST t, int n, int level ) {
		long ms;
		Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds;
		Object rt = null;
		KEY_TYPE rm = KEY_NULL;

		if ( level > 4 ) return;
				

		/* Now we check that both sets agree on random keys. For m we use the polymorphic method. */

		for( int i = 0; i < n; i++ ) {
			int p = r.nextInt() % ( n * 2 );

			KEY_TYPE T = genKey();
			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;
			
			try {
				m.set( p, T );
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
			try {
				t.set( p, KEY2OBJ( T ) );
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
			
			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
			if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" );

			p = r.nextInt() % ( n * 2 );
			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;
			
			try {
				m.GET_KEY( p );
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
			try {
				t.get( p );
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
			
			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
			if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" );
			
		}
		
		/* Now we check that both sets agree on random keys. For m we use the standard method. */

		for( int i = 0; i < n; i++ ) {
			int p = r.nextInt() % ( n * 2 );

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;
			
			try {
				m.get( p );
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
			try {
				t.get( p );
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
			
			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
			if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( m.get( p ) ), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get( p ) + ", " + t.get( p ) + ")" );
			
		}
		
		/* Now we check that m and t are equal. */
		if ( !m.equals( t ) || ! t.equals( m ) ) System.err.println("m: " + m + " t: " + t);
		
		ensure( m.equals( t ), "Error (" + level + ", " + seed + "): ! m.equals( t ) at start" );
		ensure( t.equals( m ), "Error (" + level + ", " + seed + "): ! t.equals( m ) at start" );

			

		/* Now we check that m actually holds that data. */
		for(Iterator i=t.iterator(); i.hasNext();  ) {
			ensure( m.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)" );
		}

		/* Now we check that m actually holds that data, but iterating on m. */
		for(Iterator i=m.listIterator(); i.hasNext();  ) {
			ensure( t.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)" );
		}

		/* Now we check that inquiries about random data give the same answer in m and t. For
		   m we use the polymorphic method. */

		for(int i=0; i<n;  i++ ) {
			KEY_TYPE T = genKey();
			ensure( m.contains(T) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)" );
		}

		/* Again, we check that inquiries about random data give the same answer in m and t, but
		   for m we use the standard method. */

		for(int i=0; i<n;  i++ ) {
			KEY_TYPE T = genKey();
			ensure( m.contains(KEY2OBJ(T)) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)" );
		}

		/* Now we add and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<2*n;  i++ ) {
			KEY_TYPE T = genKey();

			try {
				m.add( T );
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }

			try {
				t.add( KEY2OBJ( T ) );
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }

			T = genKey();
			int p = r.nextInt() % ( 2 * n + 1 );

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.add(p, T );
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }

			try {
				t.add(p, KEY2OBJ(T));
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }


			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): add() divergence in IndexOutOfBoundsException for index " + p + " for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );

			p = r.nextInt() % ( 2 * n + 1 );

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				rm = m.REMOVE_KEY(p);
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }

			try {
				rt = t.remove(p);
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }


			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): remove() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
			if ( mThrowsOutOfBounds == null ) ensure( rt.equals( KEY2OBJ( rm ) ), "Error (" + level + ", " + seed + "): divergence in remove() between t and m (" + rt + ", " + rm + ")" );
		}

		ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after add/remove" );
		ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after add/remove" );

		/* Now we add random data in m and t using addAll on a collection, checking that the result is the same. */

		for(int i=0; i<n;  i++ ) {
			int p = r.nextInt() % ( 2 * n + 1 );
			java.util.Collection m1 = new java.util.ArrayList();
			int s = r.nextInt( n / 2 + 1 );
			for( int j = 0; j < s; j++ ) m1.add( KEY2OBJ( genKey() ) );

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.addAll(p, m1);
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }

			try {
				t.addAll(p, m1);
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }

			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );

			ensure( m.equals(t), "Error (" + level + ", " + seed + m + t + "): ! m.equals( t ) after addAll" );
			ensure( t.equals(m), "Error (" + level + ", " + seed + m + t + "): ! t.equals( m ) after addAll" );
		}

		if ( m.size64() > n ) {
			m.size( n );
			while( t.size64() != n ) t.remove( t.size64() -1 );
		}

		/* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */

		for(int i=0; i<n;  i++ ) {
			int p = r.nextInt() % ( 2 * n + 1 );
			COLLECTION m1 = new BIG_ARRAY_BIG_LIST();
			java.util.Collection t1 = new java.util.ArrayList();
			int s = r.nextInt( n / 2 + 1 );
			for( int j = 0; j < s; j++ ) {
				KEY_TYPE x = genKey();
				m1.add( x );
				t1.add( KEY2OBJ( x ) );
			}

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.addAll(p, m1);
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }

			try {
				t.addAll(p, t1);
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }

			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): polymorphic addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );

			ensure( m.equals(t), "Error (" + level + ", " + seed + m + t + "): ! m.equals( t ) after polymorphic addAll" );
			ensure( t.equals(m), "Error (" + level + ", " + seed + m + t + "): ! t.equals( m ) after polymorphic addAll" );
		}

		if ( m.size64() > n ) {
			m.size( n );
			while( t.size64() != n ) t.remove( t.size64() -1 );
		}

		/* Now we add random data in m and t using addAll on a list, checking that the result is the same. */

		for(int i=0; i<n;  i++ ) {
			int p = r.nextInt() % ( 2 * n + 1 );
			BIG_LIST m1 = new BIG_ARRAY_BIG_LIST();
			java.util.Collection t1 = new java.util.ArrayList();
			int s = r.nextInt( n / 2 + 1 );
			for( int j = 0; j < s; j++ ) {
				KEY_TYPE x = genKey();
				m1.add( x );
				t1.add( KEY2OBJ( x ) );
			}

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.addAll(p, m1);
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }

			try {
				t.addAll(p, t1);
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }

			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): list addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );

			ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after list addAll" );
			ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after list addAll" );
		}

		/* Now we check that both sets agree on random keys. For m we use the standard method. */

		for( int i = 0; i < n; i++ ) {
			int p = r.nextInt() % ( n * 2 );

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;
			
			try {
				m.get( p );
			}
			catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
			try {
				t.get( p );
			}
			catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
			
			ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
			if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( m.get( p ) ), "Error (" + level + ", " + seed + "): m and t differ on position " + p + " (" + m.get( p ) + ", " + t.get( p ) +")" );
			
		}

		/* Now we inquiry about the content with indexOf()/lastIndexOf(). */

		for(int i=0; i<10*n;  i++ ) {
			KEY_TYPE T = genKey();
			ensure( m.indexOf( KEY2OBJ( T ) ) == t.indexOf( KEY2OBJ( T ) ),
					"Error (" + level + ", " + seed + "): indexOf() divergence for " + T + "  (" + m.indexOf( KEY2OBJ( T ) ) + ", " + t.indexOf( KEY2OBJ( T ) ) + ")" );
			ensure( m.lastIndexOf( KEY2OBJ( T ) ) == t.lastIndexOf( KEY2OBJ( T ) ),
					"Error (" + level + ", " + seed + "): lastIndexOf() divergence for " + T + "  (" + m.lastIndexOf( KEY2OBJ( T ) ) + ", " + t.lastIndexOf( KEY2OBJ( T ) ) + ")" );
			ensure( m.indexOf( T ) == t.indexOf( KEY2OBJ( T ) ),
					"Error (" + level + ", " + seed + "): polymorphic indexOf() divergence for " + T + "  (" + m.indexOf( T ) + ", " + t.indexOf( KEY2OBJ( T ) ) + ")" );
			ensure( m.lastIndexOf( T ) == t.lastIndexOf( KEY2OBJ( T ) ),
					"Error (" + level + ", " + seed + "): polymorphic lastIndexOf() divergence for " + T + "  (" + m.lastIndexOf( T ) + ", " + t.lastIndexOf( KEY2OBJ( T ) ) + ")" );
		}

		/* Now we check cloning. */

		if ( level == 0 ) {
			ensure( m.equals( ((BIG_ARRAY_BIG_LIST)m).clone() ), "Error (" + level + ", " + seed + "): m does not equal m.clone()" );
			ensure( ((BIG_ARRAY_BIG_LIST)m).clone().equals( m ), "Error (" + level + ", " + seed + "): m.clone() does not equal m" );
		}

		/* Now we play with constructors. */
		ensure( m.equals( new BIG_ARRAY_BIG_LIST( (COLLECTION)m ) ), "Error (" + level + ", " + seed + "): m does not equal new ( type-specific Collection m )" );
		ensure( ( new BIG_ARRAY_BIG_LIST( (COLLECTION)m ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( type-specific nCollection m ) does not equal m" );
		ensure( m.equals( new BIG_ARRAY_BIG_LIST( (BIG_LIST)m ) ), "Error (" + level + ", " + seed + "): m does not equal new ( type-specific List m )" );
		ensure( ( new BIG_ARRAY_BIG_LIST( (BIG_LIST)m ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( type-specific List m ) does not equal m" );
		ensure( m.equals( new BIG_ARRAY_BIG_LIST( m.listIterator() ) ), "Error (" + level + ", " + seed + "): m does not equal new ( m.listIterator() )" );
		ensure( ( new BIG_ARRAY_BIG_LIST( m.listIterator() ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( m.listIterator() ) does not equal m" );
		ensure( m.equals( new BIG_ARRAY_BIG_LIST( m.iterator() ) ), "Error (" + level + ", " + seed + "): m does not equal new ( m.type_specific_iterator() )" );
		ensure( ( new BIG_ARRAY_BIG_LIST( m.iterator() ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( m.type_specific_iterator() ) does not equal m" );


		int h = m.hashCode();

		/* Now we save and read m. */

		BIG_LIST m2 = null;
		  
		try {
			java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test");
			java.io.OutputStream os = new java.io.FileOutputStream(ff);
			java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
				
			oos.writeObject(m);
			oos.close();
				
			java.io.InputStream is = new java.io.FileInputStream(ff);
			java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
				
			m2 = (BIG_LIST)ois.readObject();
			ois.close();
			ff.delete();
		}
		catch(Exception e) {
			e.printStackTrace();
			System.exit( 1 );
		}

#if ! #keyclass(Reference)
		ensure( m2.hashCode() == h, "Error (" + level + ", " + seed + "): hashCode() changed after save/read" );

		/* Now we check that m2 actually holds that data. */
		  
		ensure( m2.equals(t), "Error (" + level + ", " + seed + "): ! m2.equals( t ) after save/read" );
		ensure( t.equals(m2), "Error (" + level + ", " + seed + "): ! t.equals( m2 ) after save/read" );
		/* Now we take out of m everything, and check that it is empty. */

		for(Iterator i=t.iterator(); i.hasNext(); ) m2.remove(i.next());

		ensure( m2.isEmpty(), "Error (" + level + ", " + seed + "): m2 is not empty (as it should be)" );
#endif		  
				 
		/* Now we play with iterators. */

		{
			KEY_BIG_LIST_ITERATOR i;
			KEY_BIG_LIST_ITERATOR j;
			Object J;
			i = m.listIterator(); 
			j = t.listIterator(); 

			for( int k = 0; k < 2*n; k++ ) {
				ensure( i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext()" );
				ensure( i.hasPrevious() == j.hasPrevious(), "Error (" + level + ", " + seed + "): divergence in hasPrevious()" );

				if ( r.nextFloat() < .8 && i.hasNext() ) {
					ensure( i.next().equals( J = j.next() ), "Error (" + level + ", " + seed + "): divergence in next()" );

					if ( r.nextFloat() < 0.2 ) {
						i.remove();
						j.remove();
					} 
					else if ( r.nextFloat() < 0.2 ) {
						KEY_TYPE T = genKey();
						i.set( T );
						j.set( KEY2OBJ( T ) );
					}
					else if ( r.nextFloat() < 0.2 ) {
						KEY_TYPE T = genKey();
						i.add( T );
						j.add( KEY2OBJ( T ) );
					}
				}
				else if ( r.nextFloat() < .2 && i.hasPrevious() ) {
					ensure( i.previous().equals( J = j.previous() ), "Error (" + level + ", " + seed + "): divergence in previous()" );

					if ( r.nextFloat() < 0.2 ) {
						i.remove();
						j.remove();
					}
					else if ( r.nextFloat() < 0.2 ) {
						KEY_TYPE T = genKey();
						i.set( T );
						j.set( KEY2OBJ( T ) );
					}
					else if ( r.nextFloat() < 0.2 ) {
						KEY_TYPE T = genKey();
						i.add( T );
						j.add( KEY2OBJ( T ) );
					}
				}

				ensure( i.nextIndex() == j.nextIndex(), "Error (" + level + ", " + seed + "): divergence in nextIndex()" );
				ensure( i.previousIndex() == j.previousIndex(), "Error (" + level + ", " + seed + "): divergence in previousIndex()" );

			}

		}

		{
			Object previous = null;
			Object I, J;
			long from = m.isEmpty() ? 0 : ( r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64();
			KEY_BIG_LIST_ITERATOR i;
			KEY_BIG_LIST_ITERATOR j;
			i = m.listIterator( from ); 
			j = t.listIterator( from ); 

			for( int k = 0; k < 2*n; k++ ) {
				ensure( i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")" );
				ensure( i.hasPrevious() == j.hasPrevious() , "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" );

				if ( r.nextFloat() < .8 && i.hasNext() ) {
					ensure( ( I = i.next() ).equals( J = j.next() ), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")" );
					//System.err.println("Done next " + I + " " + J + "  " + badPrevious);

					if ( r.nextFloat() < 0.2 ) {
						//System.err.println("Removing in next");
						i.remove();
						j.remove();
					}
					else if ( r.nextFloat() < 0.2 ) {
						KEY_TYPE T = genKey();
						i.set( T );
						j.set( KEY2OBJ( T ) );
					}
					else if ( r.nextFloat() < 0.2 ) {
						KEY_TYPE T = genKey();
						i.add( T );
						j.add( KEY2OBJ( T ) );
					}
				}
				else if ( r.nextFloat() < .2 && i.hasPrevious() ) {
					ensure( ( I = i.previous() ).equals( J = j.previous() ), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")" );

					if ( r.nextFloat() < 0.2 ) {
						//System.err.println("Removing in prev");
						i.remove();
						j.remove();
					}
					else if ( r.nextFloat() < 0.2 ) {
						KEY_TYPE T = genKey();
						i.set( T );
						j.set( KEY2OBJ( T ) );
					}
					else if ( r.nextFloat() < 0.2 ) {
						KEY_TYPE T = genKey();
						i.add( T );
						j.add( KEY2OBJ( T ) );
					}
				}
			}

		}

		/* Now we check that m actually holds that data. */
		  
		ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after iteration" );
		ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after iteration" );

		/* Now we select a pair of keys and create a subset. */

		if ( ! m.isEmpty() ) {
			long start = (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64();
			long end = start + (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % ( m.size64() - start );
			//System.err.println("Checking subList from " + start + " to " + end + " (level=" + (level+1) + ")..." );
			testLists( m.subList( start, end ), t.subList( start, end ), n, level + 1 );

			ensure( m.equals(t), "Error (" + level + ", " + seed + m + t + "): ! m.equals( t ) after subList" );
			ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after subList" );

		}

		m.clear();
		t.clear();
		ensure( m.isEmpty(), "Error (" + level + ", " + seed + "): m is not empty after clear()" );
	}


	protected static void test( int n ) {
		BIG_ARRAY_BIG_LIST m = new BIG_ARRAY_BIG_LIST();
		BIG_LIST t = BIG_LISTS.asBigList( new ARRAY_LIST() );
		topList = m;
		k = new Object[n];
		nk = new Object[n];
		kt = new KEY_TYPE[n];
		nkt = new KEY_TYPE[n];

		for( int i = 0; i < n; i++ ) {
#if #keys(reference)
			k[i] = kt[i] = genKey();
			nk[i] = nkt[i] = genKey();
#else
			k[i] = new KEY_CLASS( kt[i] = genKey() );
			nk[i] = new KEY_CLASS( nkt[i] = genKey() );
#endif
		}
		  
		/* We add pairs to t. */
#if #keys(primitive)
		for( int i = 0; i < n;  i++ ) t.add( (KEY_GENERIC_CLASS)k[i] );
#else		  
		for( int i = 0; i < n;  i++ ) t.add( k[i] );
#endif

		/* We add to m the same data */
		m.addAll(t);

		testLists( m, t, n, 0 );

		System.out.println("Test OK");
		return;
	}


	public static void main( String args[] ) {
		int n  = Integer.parseInt(args[1]);
		if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) );
		  

		try {
			if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) );
			else if ( "test".equals( args[0] ) ) test(n);
		} catch( Throwable e ) {
			e.printStackTrace( System.err );
			System.err.println( "seed: " + seed );
		}
	}

#endif

}