1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
|
/*
* Copyright (C) 2002-2014 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;
#if #keys(primitive)
/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing.
*
* <P>This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of big-array-based big lists. Instances of this class
* represent a big list with a big array that is enlarged as needed when new entries
* are created (by doubling the current length), but is
* <em>never</em> made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing big array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@link java.util}'s classes, but
* they are delayed as much as possible. The backing big array is exposed by the
* {@link #elements()} method.
*
* <p>This class implements the bulk methods <code>removeElements()</code>,
* <code>addElements()</code> and <code>getElements()</code> using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353130L;
#else
/** A type-specific big-array-based big list; provides some additional methods that use polymorphism to avoid (un)boxing.
*
* <P>This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of big-array-based big lists. Instances of this class
* represent a big list with a big array that is enlarged as needed when new entries
* are created (by doubling the current length), but is
* <em>never</em> made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing big array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@link java.util}'s classes, but
* they are delayed as much as possible.
*
* <p>The backing big array is exposed by the {@link #elements()} method. If an instance
* of this class was created {@linkplain #wrap(Object[][],long) by wrapping},
* backing-array reallocations will be performed using reflection, so that
* {@link #elements()} can return a big array of the same type of the original big array; the comments
* about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here.
*
* <p>This class implements the bulk methods <code>removeElements()</code>,
* <code>addElements()</code> and <code>getElements()</code> using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353131L;
#endif
/** The initial default capacity of a big-array big list. */
public final static int DEFAULT_INITIAL_CAPACITY = 16;
#if ! #keys(primitive)
/** Whether the backing big array was passed to <code>wrap()</code>. In
* this case, we must reallocate with the same type of big array. */
protected final boolean wrapped;
#endif
/** The backing big array. */
protected transient KEY_GENERIC_TYPE a[][];
/** The current actual size of the big list (never greater than the backing-array length). */
protected long size;
private static final boolean ASSERTS = ASSERTS_VALUE;
/** Creates a new big-array big list using a given array.
*
* <P>This constructor is only meant to be used by the wrapping methods.
*
* @param a the big array that will be used to back this big-array big list.
*/
@SuppressWarnings("unused")
protected BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][], boolean dummy ) {
this.a = a;
#if ! #keys(primitive)
this.wrapped = true;
#endif
}
/** Creates a new big-array big list with given capacity.
*
* @param capacity the initial capacity of the array list (may be 0).
*/
@SuppressWarnings("unchecked")
public BIG_ARRAY_BIG_LIST( final long capacity ) {
if ( capacity < 0 ) throw new IllegalArgumentException( "Initial capacity (" + capacity + ") is negative" );
a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( capacity );
#if ! #keys(primitive)
wrapped = false;
#endif
}
/** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity.
*/
public BIG_ARRAY_BIG_LIST() {
this( DEFAULT_INITIAL_CAPACITY );
}
/** Creates a new big-array big list and fills it with a given type-specific collection.
*
* @param c a type-specific collection that will be used to fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final COLLECTION KEY_EXTENDS_GENERIC c ) {
this( c.size() );
for( KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext(); ) add( i.NEXT_KEY() );
}
/** Creates a new big-array big list and fills it with a given type-specific list.
*
* @param l a type-specific list that will be used to fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final BIG_LIST KEY_EXTENDS_GENERIC l ) {
this( l.size64() );
l.getElements( 0, a, 0, size = l.size64() );
}
/** Creates a new big-array big list and fills it with the elements of a given big array.
*
* <p>Note that this constructor makes it easy to build big lists from literal arrays
* declared as <code><var>type</var>[][] {{ <var>init_values</var> }}</code>.
* The only constraint is that the number of initialisation values is
* below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
*
* @param a a big array whose elements will be used to fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][] ) {
this( a, 0, BIG_ARRAYS.length( a ) );
}
/** Creates a new big-array big list and fills it with the elements of a given big array.
*
* <p>Note that this constructor makes it easy to build big lists from literal arrays
* declared as <code><var>type</var>[][] {{ <var>init_values</var> }}</code>.
* The only constraint is that the number of initialisation values is
* below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
*
* @param a a big array whose elements will be used to fill the array list.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][], final long offset, final long length ) {
this( length );
BIG_ARRAYS.copy( a, offset, this.a, 0, length );
size = length;
}
/** Creates a new big-array big list and fills it with the elements returned by an iterator..
*
* @param i an iterator whose returned elements will fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final Iterator<? extends KEY_GENERIC_CLASS> i ) {
this();
while( i.hasNext() ) this.add( i.next() );
}
/** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator..
*
* @param i a type-specific iterator whose returned elements will fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final KEY_ITERATOR KEY_EXTENDS_GENERIC i ) {
this();
while( i.hasNext() ) this.add( i.NEXT_KEY() );
}
#if #keys(primitive)
/** Returns the backing big array of this big list.
*
* @return the backing big array.
*/
public KEY_GENERIC_TYPE[][] elements() {
return a;
}
#else
/** Returns the backing big array of this big list.
*
* <P>If this big-array big list was created by wrapping a given big array, it is guaranteed
* that the type of the returned big array will be the same. Otherwise, the returned
* big array will be an big array of objects.
*
* @return the backing big array.
*/
public KEY_GENERIC_TYPE[][] elements() {
return a;
}
#endif
/** Wraps a given big array into a big-array list of given size.
*
* @param a a big array to wrap.
* @param length the length of the resulting big-array list.
* @return a new big-array list of the given size, wrapping the given big array.
*/
public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[][], final long length ) {
if ( length > BIG_ARRAYS.length( a ) ) throw new IllegalArgumentException( "The specified length (" + length + ") is greater than the array size (" + BIG_ARRAYS.length( a ) + ")" );
final BIG_ARRAY_BIG_LIST KEY_GENERIC l = new BIG_ARRAY_BIG_LIST KEY_GENERIC( a, false );
l.size = length;
return l;
}
/** Wraps a given big array into a big-array big list.
*
* @param a a big array to wrap.
* @return a new big-array big list wrapping the given array.
*/
public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[][] ) {
return wrap( a, BIG_ARRAYS.length( a ) );
}
/** Ensures that this big-array big list can contain the given number of entries without resizing.
*
* @param capacity the new minimum capacity for this big-array big list.
*/
@SuppressWarnings("unchecked")
public void ensureCapacity( final long capacity ) {
#if #keys(primitive)
a = BIG_ARRAYS.ensureCapacity( a, capacity, size );
#else
if ( wrapped ) a = BIG_ARRAYS.ensureCapacity( a, capacity, size );
else {
if ( capacity > BIG_ARRAYS.length( a ) ) {
final Object t[][] = BIG_ARRAYS.newBigArray( capacity );
BIG_ARRAYS.copy( a, 0, t, 0, size );
a = (KEY_GENERIC_TYPE[][])t;
}
}
#endif
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
/** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing,
* and in case enlarging it at least by a factor of two.
*
* @param capacity the new minimum capacity for this big-array big list.
*/
@SuppressWarnings("unchecked")
private void grow( final long capacity ) {
#if #keys(primitive)
a = BIG_ARRAYS.grow( a, capacity, size );
#else
if ( wrapped ) a = BIG_ARRAYS.grow( a, capacity, size );
else {
if ( capacity > BIG_ARRAYS.length( a ) ) {
final int newLength = (int)Math.max( Math.min( 2 * BIG_ARRAYS.length( a ), it.unimi.dsi.fastutil.Arrays.MAX_ARRAY_SIZE ), capacity );
final Object t[][] = BIG_ARRAYS.newBigArray( newLength );
BIG_ARRAYS.copy( a, 0, t, 0, size );
a = (KEY_GENERIC_TYPE[][])t;
}
}
#endif
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
public void add( final long index, final KEY_GENERIC_TYPE k ) {
ensureIndex( index );
grow( size + 1 );
if ( index != size ) BIG_ARRAYS.copy( a, index, a, index + 1, size - index );
BIG_ARRAYS.set( a, index, k );
size++;
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
public boolean add( final KEY_GENERIC_TYPE k ) {
grow( size + 1 );
BIG_ARRAYS.set( a, size++, k );
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
return true;
}
public KEY_GENERIC_TYPE GET_KEY( final long index ) {
if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" );
return BIG_ARRAYS.get( a, index );
}
public long indexOf( final KEY_TYPE k ) {
for( long i = 0; i < size; i++ ) if ( KEY_EQUALS( k, BIG_ARRAYS.get( a, i ) ) ) return i;
return -1;
}
public long lastIndexOf( final KEY_TYPE k ) {
for( long i = size; i-- != 0; ) if ( KEY_EQUALS( k, BIG_ARRAYS.get( a, i ) ) ) return i;
return -1;
}
public KEY_GENERIC_TYPE REMOVE_KEY( final long index ) {
if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" );
final KEY_GENERIC_TYPE old = BIG_ARRAYS.get( a, index );
size--;
if ( index != size ) BIG_ARRAYS.copy( a, index + 1, a, index, size - index );
#if #keys(reference)
BIG_ARRAYS.set( a, size, null );
#endif
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
return old;
}
public boolean rem( final KEY_TYPE k ) {
final long index = indexOf( k );
if ( index == -1 ) return false;
REMOVE_KEY( index );
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
return true;
}
#if #keys(reference)
public boolean remove( final Object o ) {
return rem( o );
}
#endif
public KEY_GENERIC_TYPE set( final long index, final KEY_GENERIC_TYPE k ) {
if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" );
KEY_GENERIC_TYPE old = BIG_ARRAYS.get( a, index );
BIG_ARRAYS.set( a, index, k );
return old;
}
public void clear() {
#if #keys(reference)
BIG_ARRAYS.fill( a, 0, size, null );
#endif
size = 0;
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
public long size64() {
return size;
}
public void size( final long size ) {
if ( size > BIG_ARRAYS.length( a ) ) ensureCapacity( size );
if ( size > this.size ) BIG_ARRAYS.fill( a, this.size, size, KEY_NULL );
#if #keys(reference)
else BIG_ARRAYS.fill( a, size, this.size, KEY_NULL );
#endif
this.size = size;
}
public boolean isEmpty() {
return size == 0;
}
/** Trims this big-array big list so that the capacity is equal to the size.
*
* @see java.util.ArrayList#trimToSize()
*/
public void trim() {
trim( 0 );
}
/** Trims the backing big array if it is too large.
*
* If the current big array length is smaller than or equal to
* <code>n</code>, this method does nothing. Otherwise, it trims the
* big-array length to the maximum between <code>n</code> and {@link #size64()}.
*
* <P>This method is useful when reusing big lists. {@linkplain #clear() Clearing a
* big list} leaves the big-array length untouched. If you are reusing a big list
* many times, you can call this method with a typical
* size to avoid keeping around a very large big array just
* because of a few large transient big lists.
*
* @param n the threshold for the trimming.
*/
@SuppressWarnings("unchecked")
public void trim( final long n ) {
final long arrayLength = BIG_ARRAYS.length( a );
if ( n >= arrayLength || size == arrayLength ) return;
a = BIG_ARRAYS.trim( a, Math.max( n, size ) );
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
/** Copies element of this type-specific list into the given big array using optimized system calls.
*
* @param from the start index (inclusive).
* @param a the destination big array.
* @param offset the offset into the destination array where to store the first element copied.
* @param length the number of elements to be copied.
*/
public void getElements( final int from, final KEY_TYPE[][] a, final long offset, final long length ) {
BIG_ARRAYS.copy( this.a, from, a, offset, length );
}
/** Removes elements of this type-specific list using optimized system calls.
*
* @param from the start index (inclusive).
* @param to the end index (exclusive).
*/
public void removeElements( final int from, final int to ) {
BigArrays.ensureFromTo( size, from, to );
BIG_ARRAYS.copy( a, to, a, from, size - to );
size -= ( to - from );
#if #keys(reference)
BIG_ARRAYS.fill( a, size, size + to - from, null );
#endif
}
/** Adds elements to this type-specific list using optimized system calls.
*
* @param index the index at which to add elements.
* @param a the big array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
public void addElements( final int index, final KEY_GENERIC_TYPE a[][], final long offset, final long length ) {
ensureIndex( index );
BIG_ARRAYS.ensureOffsetLength( a, offset, length );
grow( size + length );
BIG_ARRAYS.copy( this.a, index, this.a, index + length, size - index );
BIG_ARRAYS.copy( a, offset, this.a, index, length );
size += length;
}
public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator( final int index ) {
ensureIndex( index );
return new KEY_ABSTRACT_BIG_LIST_ITERATOR KEY_GENERIC() {
int pos = index, last = -1;
public boolean hasNext() { return pos < size; }
public boolean hasPrevious() { return pos > 0; }
public KEY_GENERIC_TYPE NEXT_KEY() { if ( ! hasNext() ) throw new NoSuchElementException(); return BIG_ARRAYS.get( a, last = pos++ ); }
public KEY_GENERIC_TYPE PREV_KEY() { if ( ! hasPrevious() ) throw new NoSuchElementException(); return BIG_ARRAYS.get( a, last = --pos ); }
public long nextIndex() { return pos; }
public long previousIndex() { return pos - 1; }
public void add( KEY_GENERIC_TYPE k ) {
if ( last == -1 ) throw new IllegalStateException();
BIG_ARRAY_BIG_LIST.this.add( pos++, k );
last = -1;
}
public void set( KEY_GENERIC_TYPE k ) {
if ( last == -1 ) throw new IllegalStateException();
BIG_ARRAY_BIG_LIST.this.set( last, k );
}
public void remove() {
if ( last == -1 ) throw new IllegalStateException();
BIG_ARRAY_BIG_LIST.this.REMOVE_KEY( last );
/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
if ( last < pos ) pos--;
last = -1;
}
};
}
@SuppressWarnings("unchecked")
public BIG_ARRAY_BIG_LIST KEY_GENERIC clone() {
BIG_ARRAY_BIG_LIST KEY_GENERIC c = new BIG_ARRAY_BIG_LIST KEY_GENERIC( size );
BIG_ARRAYS.copy( a, 0, c.a, 0, size );
c.size = size;
return c;
}
#if #keyclass(Object)
private boolean valEquals( final K a, final K b ) {
return a == null ? b == null : a.equals( b );
}
#endif
/** Compares this type-specific big-array list to another one.
*
* <P>This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a type-specific big-array list.
* @return true if the argument contains the same elements of this type-specific big-array list.
*/
public boolean equals( final BIG_ARRAY_BIG_LIST KEY_GENERIC l ) {
if ( l == this ) return true;
long s = size64();
if ( s != l.size64() ) return false;
final KEY_GENERIC_TYPE[][] a1 = a;
final KEY_GENERIC_TYPE[][] a2 = l.a;
#if #keyclass(Object)
while( s-- != 0 ) if ( ! valEquals( BIG_ARRAYS.get( a1, s ), BIG_ARRAYS.get( a2, s ) ) ) return false;
#else
while( s-- != 0 ) if ( BIG_ARRAYS.get( a1, s ) != BIG_ARRAYS.get( a2, s ) ) return false;
#endif
return true;
}
#if ! #keyclass(Reference)
/** Compares this big list to another big list.
*
* <P>This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a big list.
* @return a negative integer,
* zero, or a positive integer as this big list is lexicographically less than, equal
* to, or greater than the argument.
*/
@SuppressWarnings("unchecked")
public int compareTo( final BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC l ) {
final long s1 = size64(), s2 = l.size64();
final KEY_GENERIC_TYPE a1[][] = a, a2[][] = l.a;
KEY_GENERIC_TYPE e1, e2;
int r, i;
for( i = 0; i < s1 && i < s2; i++ ) {
e1 = BIG_ARRAYS.get( a1, i );
e2 = BIG_ARRAYS.get( a2, i );
if ( ( r = KEY_CMP( e1, e2 ) ) != 0 ) return r;
}
return i < s2 ? -1 : ( i < s1 ? 1 : 0 );
}
#endif
private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException {
s.defaultWriteObject();
for( int i = 0; i < size; i++ ) s.WRITE_KEY( BIG_ARRAYS.get( a, i ) );
}
@SuppressWarnings("unchecked")
private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( size );
for( int i = 0; i < size; i++ ) BIG_ARRAYS.set( a, i, KEY_GENERIC_CAST s.READ_KEY() );
}
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random( seed );
private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
return r.NEXT_KEY();
#elif #keyclass(Object)
return Integer.toBinaryString( r.nextInt() );
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
private static java.text.FieldPosition p = new java.text.FieldPosition( 0 );
private static String format( double d ) {
StringBuffer s = new StringBuffer();
return format.format( d, s, p ).toString();
}
private static void speedTest( int n, boolean comp ) {
System.out.println( "There are presently no speed tests for this class." );
}
private static void fatal( String msg ) {
System.out.println( msg );
System.exit( 1 );
}
private static void ensure( boolean cond, String msg ) {
if ( cond ) return;
fatal( msg );
}
private static Object[] k, v, nk;
private static KEY_TYPE kt[];
private static KEY_TYPE nkt[];
private static BIG_ARRAY_BIG_LIST topList;
protected static void testLists( BIG_LIST m, BIG_LIST t, int n, int level ) {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds;
Object rt = null;
KEY_TYPE rm = KEY_NULL;
if ( level > 4 ) return;
/* Now we check that both sets agree on random keys. For m we use the polymorphic method. */
for( int i = 0; i < n; i++ ) {
int p = r.nextInt() % ( n * 2 );
KEY_TYPE T = genKey();
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.set( p, T );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.set( p, KEY2OBJ( T ) );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" );
p = r.nextInt() % ( n * 2 );
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.GET_KEY( p );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.get( p );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" );
}
/* Now we check that both sets agree on random keys. For m we use the standard method. */
for( int i = 0; i < n; i++ ) {
int p = r.nextInt() % ( n * 2 );
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.get( p );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.get( p );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( m.get( p ) ), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get( p ) + ", " + t.get( p ) + ")" );
}
/* Now we check that m and t are equal. */
if ( !m.equals( t ) || ! t.equals( m ) ) System.err.println("m: " + m + " t: " + t);
ensure( m.equals( t ), "Error (" + level + ", " + seed + "): ! m.equals( t ) at start" );
ensure( t.equals( m ), "Error (" + level + ", " + seed + "): ! t.equals( m ) at start" );
/* Now we check that m actually holds that data. */
for(Iterator i=t.iterator(); i.hasNext(); ) {
ensure( m.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)" );
}
/* Now we check that m actually holds that data, but iterating on m. */
for(Iterator i=m.listIterator(); i.hasNext(); ) {
ensure( t.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)" );
}
/* Now we check that inquiries about random data give the same answer in m and t. For
m we use the polymorphic method. */
for(int i=0; i<n; i++ ) {
KEY_TYPE T = genKey();
ensure( m.contains(T) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)" );
}
/* Again, we check that inquiries about random data give the same answer in m and t, but
for m we use the standard method. */
for(int i=0; i<n; i++ ) {
KEY_TYPE T = genKey();
ensure( m.contains(KEY2OBJ(T)) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)" );
}
/* Now we add and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<2*n; i++ ) {
KEY_TYPE T = genKey();
try {
m.add( T );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.add( KEY2OBJ( T ) );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
T = genKey();
int p = r.nextInt() % ( 2 * n + 1 );
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.add(p, T );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.add(p, KEY2OBJ(T));
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): add() divergence in IndexOutOfBoundsException for index " + p + " for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
p = r.nextInt() % ( 2 * n + 1 );
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
rm = m.REMOVE_KEY(p);
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
rt = t.remove(p);
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): remove() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
if ( mThrowsOutOfBounds == null ) ensure( rt.equals( KEY2OBJ( rm ) ), "Error (" + level + ", " + seed + "): divergence in remove() between t and m (" + rt + ", " + rm + ")" );
}
ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after add/remove" );
ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after add/remove" );
/* Now we add random data in m and t using addAll on a collection, checking that the result is the same. */
for(int i=0; i<n; i++ ) {
int p = r.nextInt() % ( 2 * n + 1 );
java.util.Collection m1 = new java.util.ArrayList();
int s = r.nextInt( n / 2 + 1 );
for( int j = 0; j < s; j++ ) m1.add( KEY2OBJ( genKey() ) );
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.addAll(p, m1);
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.addAll(p, m1);
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
ensure( m.equals(t), "Error (" + level + ", " + seed + m + t + "): ! m.equals( t ) after addAll" );
ensure( t.equals(m), "Error (" + level + ", " + seed + m + t + "): ! t.equals( m ) after addAll" );
}
if ( m.size64() > n ) {
m.size( n );
while( t.size64() != n ) t.remove( t.size64() -1 );
}
/* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */
for(int i=0; i<n; i++ ) {
int p = r.nextInt() % ( 2 * n + 1 );
COLLECTION m1 = new BIG_ARRAY_BIG_LIST();
java.util.Collection t1 = new java.util.ArrayList();
int s = r.nextInt( n / 2 + 1 );
for( int j = 0; j < s; j++ ) {
KEY_TYPE x = genKey();
m1.add( x );
t1.add( KEY2OBJ( x ) );
}
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.addAll(p, m1);
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.addAll(p, t1);
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): polymorphic addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
ensure( m.equals(t), "Error (" + level + ", " + seed + m + t + "): ! m.equals( t ) after polymorphic addAll" );
ensure( t.equals(m), "Error (" + level + ", " + seed + m + t + "): ! t.equals( m ) after polymorphic addAll" );
}
if ( m.size64() > n ) {
m.size( n );
while( t.size64() != n ) t.remove( t.size64() -1 );
}
/* Now we add random data in m and t using addAll on a list, checking that the result is the same. */
for(int i=0; i<n; i++ ) {
int p = r.nextInt() % ( 2 * n + 1 );
BIG_LIST m1 = new BIG_ARRAY_BIG_LIST();
java.util.Collection t1 = new java.util.ArrayList();
int s = r.nextInt( n / 2 + 1 );
for( int j = 0; j < s; j++ ) {
KEY_TYPE x = genKey();
m1.add( x );
t1.add( KEY2OBJ( x ) );
}
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.addAll(p, m1);
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.addAll(p, t1);
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): list addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after list addAll" );
ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after list addAll" );
}
/* Now we check that both sets agree on random keys. For m we use the standard method. */
for( int i = 0; i < n; i++ ) {
int p = r.nextInt() % ( n * 2 );
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.get( p );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.get( p );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( m.get( p ) ), "Error (" + level + ", " + seed + "): m and t differ on position " + p + " (" + m.get( p ) + ", " + t.get( p ) +")" );
}
/* Now we inquiry about the content with indexOf()/lastIndexOf(). */
for(int i=0; i<10*n; i++ ) {
KEY_TYPE T = genKey();
ensure( m.indexOf( KEY2OBJ( T ) ) == t.indexOf( KEY2OBJ( T ) ),
"Error (" + level + ", " + seed + "): indexOf() divergence for " + T + " (" + m.indexOf( KEY2OBJ( T ) ) + ", " + t.indexOf( KEY2OBJ( T ) ) + ")" );
ensure( m.lastIndexOf( KEY2OBJ( T ) ) == t.lastIndexOf( KEY2OBJ( T ) ),
"Error (" + level + ", " + seed + "): lastIndexOf() divergence for " + T + " (" + m.lastIndexOf( KEY2OBJ( T ) ) + ", " + t.lastIndexOf( KEY2OBJ( T ) ) + ")" );
ensure( m.indexOf( T ) == t.indexOf( KEY2OBJ( T ) ),
"Error (" + level + ", " + seed + "): polymorphic indexOf() divergence for " + T + " (" + m.indexOf( T ) + ", " + t.indexOf( KEY2OBJ( T ) ) + ")" );
ensure( m.lastIndexOf( T ) == t.lastIndexOf( KEY2OBJ( T ) ),
"Error (" + level + ", " + seed + "): polymorphic lastIndexOf() divergence for " + T + " (" + m.lastIndexOf( T ) + ", " + t.lastIndexOf( KEY2OBJ( T ) ) + ")" );
}
/* Now we check cloning. */
if ( level == 0 ) {
ensure( m.equals( ((BIG_ARRAY_BIG_LIST)m).clone() ), "Error (" + level + ", " + seed + "): m does not equal m.clone()" );
ensure( ((BIG_ARRAY_BIG_LIST)m).clone().equals( m ), "Error (" + level + ", " + seed + "): m.clone() does not equal m" );
}
/* Now we play with constructors. */
ensure( m.equals( new BIG_ARRAY_BIG_LIST( (COLLECTION)m ) ), "Error (" + level + ", " + seed + "): m does not equal new ( type-specific Collection m )" );
ensure( ( new BIG_ARRAY_BIG_LIST( (COLLECTION)m ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( type-specific nCollection m ) does not equal m" );
ensure( m.equals( new BIG_ARRAY_BIG_LIST( (BIG_LIST)m ) ), "Error (" + level + ", " + seed + "): m does not equal new ( type-specific List m )" );
ensure( ( new BIG_ARRAY_BIG_LIST( (BIG_LIST)m ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( type-specific List m ) does not equal m" );
ensure( m.equals( new BIG_ARRAY_BIG_LIST( m.listIterator() ) ), "Error (" + level + ", " + seed + "): m does not equal new ( m.listIterator() )" );
ensure( ( new BIG_ARRAY_BIG_LIST( m.listIterator() ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( m.listIterator() ) does not equal m" );
ensure( m.equals( new BIG_ARRAY_BIG_LIST( m.iterator() ) ), "Error (" + level + ", " + seed + "): m does not equal new ( m.type_specific_iterator() )" );
ensure( ( new BIG_ARRAY_BIG_LIST( m.iterator() ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( m.type_specific_iterator() ) does not equal m" );
int h = m.hashCode();
/* Now we save and read m. */
BIG_LIST m2 = null;
try {
java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test");
java.io.OutputStream os = new java.io.FileOutputStream(ff);
java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
oos.writeObject(m);
oos.close();
java.io.InputStream is = new java.io.FileInputStream(ff);
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
m2 = (BIG_LIST)ois.readObject();
ois.close();
ff.delete();
}
catch(Exception e) {
e.printStackTrace();
System.exit( 1 );
}
#if ! #keyclass(Reference)
ensure( m2.hashCode() == h, "Error (" + level + ", " + seed + "): hashCode() changed after save/read" );
/* Now we check that m2 actually holds that data. */
ensure( m2.equals(t), "Error (" + level + ", " + seed + "): ! m2.equals( t ) after save/read" );
ensure( t.equals(m2), "Error (" + level + ", " + seed + "): ! t.equals( m2 ) after save/read" );
/* Now we take out of m everything, and check that it is empty. */
for(Iterator i=t.iterator(); i.hasNext(); ) m2.remove(i.next());
ensure( m2.isEmpty(), "Error (" + level + ", " + seed + "): m2 is not empty (as it should be)" );
#endif
/* Now we play with iterators. */
{
KEY_BIG_LIST_ITERATOR i;
KEY_BIG_LIST_ITERATOR j;
Object J;
i = m.listIterator();
j = t.listIterator();
for( int k = 0; k < 2*n; k++ ) {
ensure( i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext()" );
ensure( i.hasPrevious() == j.hasPrevious(), "Error (" + level + ", " + seed + "): divergence in hasPrevious()" );
if ( r.nextFloat() < .8 && i.hasNext() ) {
ensure( i.next().equals( J = j.next() ), "Error (" + level + ", " + seed + "): divergence in next()" );
if ( r.nextFloat() < 0.2 ) {
i.remove();
j.remove();
}
else if ( r.nextFloat() < 0.2 ) {
KEY_TYPE T = genKey();
i.set( T );
j.set( KEY2OBJ( T ) );
}
else if ( r.nextFloat() < 0.2 ) {
KEY_TYPE T = genKey();
i.add( T );
j.add( KEY2OBJ( T ) );
}
}
else if ( r.nextFloat() < .2 && i.hasPrevious() ) {
ensure( i.previous().equals( J = j.previous() ), "Error (" + level + ", " + seed + "): divergence in previous()" );
if ( r.nextFloat() < 0.2 ) {
i.remove();
j.remove();
}
else if ( r.nextFloat() < 0.2 ) {
KEY_TYPE T = genKey();
i.set( T );
j.set( KEY2OBJ( T ) );
}
else if ( r.nextFloat() < 0.2 ) {
KEY_TYPE T = genKey();
i.add( T );
j.add( KEY2OBJ( T ) );
}
}
ensure( i.nextIndex() == j.nextIndex(), "Error (" + level + ", " + seed + "): divergence in nextIndex()" );
ensure( i.previousIndex() == j.previousIndex(), "Error (" + level + ", " + seed + "): divergence in previousIndex()" );
}
}
{
Object previous = null;
Object I, J;
long from = m.isEmpty() ? 0 : ( r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64();
KEY_BIG_LIST_ITERATOR i;
KEY_BIG_LIST_ITERATOR j;
i = m.listIterator( from );
j = t.listIterator( from );
for( int k = 0; k < 2*n; k++ ) {
ensure( i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")" );
ensure( i.hasPrevious() == j.hasPrevious() , "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" );
if ( r.nextFloat() < .8 && i.hasNext() ) {
ensure( ( I = i.next() ).equals( J = j.next() ), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")" );
//System.err.println("Done next " + I + " " + J + " " + badPrevious);
if ( r.nextFloat() < 0.2 ) {
//System.err.println("Removing in next");
i.remove();
j.remove();
}
else if ( r.nextFloat() < 0.2 ) {
KEY_TYPE T = genKey();
i.set( T );
j.set( KEY2OBJ( T ) );
}
else if ( r.nextFloat() < 0.2 ) {
KEY_TYPE T = genKey();
i.add( T );
j.add( KEY2OBJ( T ) );
}
}
else if ( r.nextFloat() < .2 && i.hasPrevious() ) {
ensure( ( I = i.previous() ).equals( J = j.previous() ), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")" );
if ( r.nextFloat() < 0.2 ) {
//System.err.println("Removing in prev");
i.remove();
j.remove();
}
else if ( r.nextFloat() < 0.2 ) {
KEY_TYPE T = genKey();
i.set( T );
j.set( KEY2OBJ( T ) );
}
else if ( r.nextFloat() < 0.2 ) {
KEY_TYPE T = genKey();
i.add( T );
j.add( KEY2OBJ( T ) );
}
}
}
}
/* Now we check that m actually holds that data. */
ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after iteration" );
ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after iteration" );
/* Now we select a pair of keys and create a subset. */
if ( ! m.isEmpty() ) {
long start = (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64();
long end = start + (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % ( m.size64() - start );
//System.err.println("Checking subList from " + start + " to " + end + " (level=" + (level+1) + ")..." );
testLists( m.subList( start, end ), t.subList( start, end ), n, level + 1 );
ensure( m.equals(t), "Error (" + level + ", " + seed + m + t + "): ! m.equals( t ) after subList" );
ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after subList" );
}
m.clear();
t.clear();
ensure( m.isEmpty(), "Error (" + level + ", " + seed + "): m is not empty after clear()" );
}
protected static void test( int n ) {
BIG_ARRAY_BIG_LIST m = new BIG_ARRAY_BIG_LIST();
BIG_LIST t = BIG_LISTS.asBigList( new ARRAY_LIST() );
topList = m;
k = new Object[n];
nk = new Object[n];
kt = new KEY_TYPE[n];
nkt = new KEY_TYPE[n];
for( int i = 0; i < n; i++ ) {
#if #keys(reference)
k[i] = kt[i] = genKey();
nk[i] = nkt[i] = genKey();
#else
k[i] = new KEY_CLASS( kt[i] = genKey() );
nk[i] = new KEY_CLASS( nkt[i] = genKey() );
#endif
}
/* We add pairs to t. */
#if #keys(primitive)
for( int i = 0; i < n; i++ ) t.add( (KEY_GENERIC_CLASS)k[i] );
#else
for( int i = 0; i < n; i++ ) t.add( k[i] );
#endif
/* We add to m the same data */
m.addAll(t);
testLists( m, t, n, 0 );
System.out.println("Test OK");
return;
}
public static void main( String args[] ) {
int n = Integer.parseInt(args[1]);
if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) );
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) );
else if ( "test".equals( args[0] ) ) test(n);
} catch( Throwable e ) {
e.printStackTrace( System.err );
System.err.println( "seed: " + seed );
}
}
#endif
}
|