1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
|
/*
* Copyright (C) 2002-2014 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import java.util.Arrays;
import java.util.Map;
import java.util.NoSuchElementException;
#ifdef Custom
//import it.unimi.dsi.fastutil.Maps;
#endif
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import it.unimi.dsi.fastutil.bytes.ByteArrays;
import VALUE_PACKAGE.VALUE_COLLECTION;
import VALUE_PACKAGE.VALUE_ABSTRACT_COLLECTION;
#if #values(primitive) || #keys(primitive) && #valueclass(Object)
import VALUE_PACKAGE.VALUE_ITERATOR;
#endif
#if #keys(reference) || #values(reference)
import it.unimi.dsi.fastutil.objects.ObjectArrays;
#endif
#ifdef Linked
import java.util.Comparator;
#if #key(reference)
import java.util.Collection;
import java.util.Iterator;
import java.util.Set;
import java.util.SortedMap;
import java.util.SortedSet;
#endif
#if #values(primitive)
import VALUE_PACKAGE.VALUE_LIST_ITERATOR;
#endif
#if #keys(primitive) && #valueclass(Reference)
import it.unimi.dsi.fastutil.objects.ObjectIterator;
#endif
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
#else
import it.unimi.dsi.fastutil.objects.AbstractObjectSet;
#if #keys(primitive) && ! #valueclass(Object)
import it.unimi.dsi.fastutil.objects.ObjectIterator;
#endif
#endif
#ifdef Linked
/** A type-specific linked hash map with with a fast, small-footprint implementation.
*
* <P>Instances of this class use a hash table to represent a map. The table is
* enlarged as needed when new entries are created, but it is <em>never</em> made
* smaller (even on a {@link #clear()}). A family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* <P>The enlargement speed is controlled by the <em>growth factor</em>, a
* positive number. If the growth factor is <var>p</var>, then the table is
* enlarged each time roughly by a factor 2<sup>p/16</sup>. By default, <var>p</var> is
* {@link Hash#DEFAULT_GROWTH_FACTOR}, which means that the table is doubled at
* each enlargement, but one can easily set more or less aggressive policies by
* calling {@link #growthFactor(int)} (note that the growth factor is <em>not</em> serialized:
* deserialized tables gets the {@linkplain Hash#DEFAULT_GROWTH_FACTOR default growth factor}).
*
* <P>Iterators created by this map will enumerate pairs in the same order in which they
* have been added to the set (note that addition of pairs whose key is already present
* in the set will not change the iteration order). Note that this order has nothing in common with the natural
* order of the keys.
*
* <P>This class implements the interface of a sorted map, so to allow easy
* access of the iteration order: for instance, you can get the first key
* in iteration order with {@link #firstKey()} without having to create an
* iterator; however, this class partially violates the {@link java.util.SortedMap}
* contract because all submap methods throw an exception and {@link
* #comparator()} returns always <code>null</code>.
*
* <P>The iterators provided by the views of this class using are type-specific
* {@linkplain java.util.ListIterator list iterators}. However, creation of an
* iterator using a starting point is going to be very expensive, as the chosen
* starting point must be linearly searched for, unless it is {@link #lastKey()},
* in which case the iterator is created in constant time.
*
* <P>Note that deletions in a linked table require scanning the list until the
* element to be removed is found. The only exceptions are the first element, the last element,
* and deletions performed using an iterator.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_DOUBLE_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
#ifdef Custom
/** A type-specific hash map with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy}
* is specified at creation time.
*
* <P>Instances of this class use a hash table to represent a map. The table is
* enlarged as needed when new entries are created, but it is <em>never</em> made
* smaller (even on a {@link #clear()}). A family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* <P>The enlargement speed is controlled by the <em>growth factor</em>, a
* positive number. If the growth factor is <var>p</var>, then the table is
* enlarged each time roughly by a factor 2<sup>p/16</sup>. By default, <var>p</var> is
* {@link Hash#DEFAULT_GROWTH_FACTOR}, which means that the table is doubled at
* each enlargement, but one can easily set more or less aggressive policies by
* calling {@link #growthFactor(int)} (note that the growth factor is <em>not</em> serialized:
* deserialized tables gets the {@linkplain Hash#DEFAULT_GROWTH_FACTOR default growth factor}).
*
* @see Hash
* @see HashCommon
*/
public class OPEN_DOUBLE_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
/** A type-specific hash map with a fast, small-footprint implementation.
*
* <P>Instances of this class use a hash table to represent a map. The table is
* enlarged as needed when new entries are created, but it is <em>never</em> made
* smaller (even on a {@link #clear()}). A family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* <P>The enlargement speed is controlled by the <em>growth factor</em>, a
* positive number. If the growth factor is <var>p</var>, then the table is
* enlarged each time roughly by a factor 2<sup>p/16</sup>. By default, <var>p</var> is
* {@link Hash#DEFAULT_GROWTH_FACTOR}, which means that the table is doubled at
* each enlargement, but one can easily set more or less aggressive policies by
* calling {@link #growthFactor(int)} (note that the growth factor is <em>not</em> serialized:
* deserialized tables gets the {@linkplain Hash#DEFAULT_GROWTH_FACTOR default growth factor}).
*
* @see Hash
* @see HashCommon
*/
public class OPEN_DOUBLE_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash {
#endif
#endif
/** The array of keys. */
protected transient KEY_GENERIC_TYPE key[];
/** The array of values. */
protected transient VALUE_GENERIC_TYPE value[];
/** The array of occupancy states. */
protected transient byte state[];
/** The acceptable load factor. */
protected final float f;
/** Index into the prime list, giving the current table size. */
protected transient int p;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** Number of free entries in the table (may be less than the table size - {@link #count} because of deleted entries). */
protected transient int free;
/** Number of entries in the map. */
protected int count;
#ifdef Linked
/** Cached set of entries. */
protected transient volatile FastSortedEntrySet KEY_VALUE_GENERIC entries;
/** Cached set of keys. */
protected transient volatile SORTED_SET KEY_GENERIC keys;
#else
/** Cached set of entries. */
protected transient volatile FastEntrySet KEY_VALUE_GENERIC entries;
/** Cached set of keys. */
protected transient volatile SET KEY_GENERIC keys;
#endif
/** Cached collection of values. */
protected transient volatile VALUE_COLLECTION VALUE_GENERIC values;
/** The growth factor of the table. The next table size will be <code>{@link Hash#PRIMES}[{@link #p}+growthFactor</code>. */
protected transient int growthFactor = Hash.DEFAULT_GROWTH_FACTOR;
#ifdef Linked
/** The index of the first entry in iteration order. It is valid iff {@link #count} is nonzero; otherwise, it contains -1. */
protected transient int first = -1;
/** The index of the last entry in iteration order. It is valid iff {@link #count} is nonzero; otherwise, it contains -1. */
protected transient int last = -1;
/** For each entry, the next and the previous entry in iteration order
exclusive-or'd together. It is valid only on {@link Hash#OCCUPIED}
entries. The first and the last entry contain the actual successor and
predecessor, respectively, exclusived-or'd with -1. */
protected transient int link[];
#endif
#ifdef Custom
/** The hash strategy of this custom map. */
protected Strategy KEY_GENERIC strategy;
#endif
private static final long serialVersionUID = -7046029254386353129L;
private static final boolean ASSERTS = ASSERTS_VALUE;
#ifdef Custom
/** Creates a new hash map.
*
* The actual table size is the least available prime greater than <code>n</code>/<code>f</code>.
*
* @param n the expected number of elements in the hash map.
* @param f the load factor.
* @param strategy the strategy.
* @see Hash#PRIMES
*/
@SuppressWarnings("unchecked")
public OPEN_DOUBLE_HASH_MAP( final int n, final float f, final Strategy KEY_GENERIC strategy ) {
this.strategy = strategy;
#else
/** Creates a new hash map.
*
* The actual table size is the least available prime greater than <code>n</code>/<code>f</code>.
*
* @param n the expected number of elements in the hash map.
* @param f the load factor.
* @see Hash#PRIMES
*/
@SuppressWarnings("unchecked")
public OPEN_DOUBLE_HASH_MAP( final int n, final float f ) {
#endif
if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" );
if ( n < 0 ) throw new IllegalArgumentException( "Hash table size must be nonnegative" );
int l = Arrays.binarySearch( PRIMES, (int)( n / f ) + 1 );
if ( l < 0 ) l = -l - 1;
free = PRIMES[ p = l ];
this.f = f;
this.maxFill = (int)( free * f );
key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ free ];
value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[ free ];
state = new byte[ free ];
#ifdef Linked
link = new int[ free ];
#endif
}
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param n the expected number of elements in the hash map.
* @param strategy the strategy.
*/
public OPEN_DOUBLE_HASH_MAP( final int n, final Strategy KEY_GENERIC strategy ) {
this( n, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param n the expected number of elements in the hash map.
*/
public OPEN_DOUBLE_HASH_MAP( final int n ) {
this( n, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_INITIAL_SIZE} entries
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
* @param strategy the strategy.
*/
public OPEN_DOUBLE_HASH_MAP( final Strategy KEY_GENERIC strategy ) {
this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_INITIAL_SIZE} entries
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public OPEN_DOUBLE_HASH_MAP() {
this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash map copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_DOUBLE_HASH_MAP( final Map<? extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m, final float f, final Strategy KEY_GENERIC strategy ) {
this( m.size(), f, strategy );
putAll( m );
}
#else
/** Creates a new hash map copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param f the load factor.
*/
public OPEN_DOUBLE_HASH_MAP( final Map<? extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m, final float f ) {
this( m.size(), f );
putAll( m );
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param strategy the strategy.
*/
public OPEN_DOUBLE_HASH_MAP( final Map<? extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m, final Strategy KEY_GENERIC strategy ) {
this( m, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
*/
public OPEN_DOUBLE_HASH_MAP( final Map<? extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m ) {
this( m, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash map copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_DOUBLE_HASH_MAP( final MAP KEY_VALUE_GENERIC m, final float f, final Strategy KEY_GENERIC strategy ) {
this( m.size(), f, strategy );
putAll( m );
}
#else
/** Creates a new hash map copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param f the load factor.
*/
public OPEN_DOUBLE_HASH_MAP( final MAP KEY_VALUE_GENERIC m, final float f ) {
this( m.size(), f );
putAll( m );
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param strategy the strategy.
*/
public OPEN_DOUBLE_HASH_MAP( final MAP KEY_VALUE_GENERIC m, final Strategy KEY_GENERIC strategy ) {
this( m, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
*/
public OPEN_DOUBLE_HASH_MAP( final MAP KEY_VALUE_GENERIC m ) {
this( m, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash map using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param f the load factor.
* @param strategy the strategy.
* @throws IllegalArgumentException if <code>k</code> and <code>v</code> have different lengths.
*/
public OPEN_DOUBLE_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE v[], final float f, final Strategy KEY_GENERIC strategy ) {
this( k.length, f, strategy );
if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" );
for( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] );
}
#else
/** Creates a new hash map using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param f the load factor.
* @throws IllegalArgumentException if <code>k</code> and <code>v</code> have different lengths.
*/
public OPEN_DOUBLE_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE v[], final float f ) {
this( k.length, f );
if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" );
for( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] );
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param strategy the strategy.
* @throws IllegalArgumentException if <code>k</code> and <code>v</code> have different lengths.
*/
public OPEN_DOUBLE_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE v[], final Strategy KEY_GENERIC strategy ) {
this( k, v, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @throws IllegalArgumentException if <code>k</code> and <code>v</code> have different lengths.
*/
public OPEN_DOUBLE_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE v[] ) {
this( k, v, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Returns the hashing strategy.
*
* @return the hashing strategy of this custom hash set.
*/
public Strategy KEY_GENERIC strategy() {
return strategy;
}
#endif
/** Sets the growth factor. Subsequent enlargements will increase the table
* size roughly by a multiplicative factor of 2<sup>p/16</sup>.
*
* @param growthFactor the new growth factor; it must be positive.
*/
public void growthFactor( int growthFactor ) {
if ( growthFactor <= 0 ) throw new IllegalArgumentException( "Illegal growth factor " + growthFactor );
this.growthFactor = growthFactor;
}
/** Gets the growth factor.
*
* @return the growth factor of this set.
* @see #growthFactor(int)
*/
public int growthFactor() {
return growthFactor;
}
/*
* The following methods implements some basic building blocks used by
* all accessors. They are (and should be maintained) identical to those used in HashSet.drv.
*/
/** Searches for a key, keeping track of a possible insertion point.
*
* @param k the key.
* @return the index of the correct insertion point, if the key is not found; otherwise,
* <var>-i</var>-1, where <var>i</var> is the index of the entry containing the key.
*/
protected final int findInsertionPoint( final KEY_GENERIC_TYPE k ) {
final KEY_GENERIC_TYPE key[] = this.key;
final byte state[] = this.state;
final int n = key.length;
// First of all, we make the key into a positive integer.
#if #keyclass(Object)
final int h, k2i = ( h = KEY2INTHASH( k ) ) & 0x7FFFFFFF;
#else
final int k2i = KEY2INTHASH(k) & 0x7FFFFFFF;
#endif
// The primary hash, a.k.a. starting point.
int h1 = k2i % n;
if ( state[ h1 ] == OCCUPIED && ! KEY_EQUALS( key[ h1 ], k ) ) {
// The secondary hash.
final int h2 = ( k2i % ( n - 2 ) ) + 1;
do {
h1 += h2;
if ( h1 >= n || h1 < 0 ) h1 -= n;
} while( state[ h1 ] == OCCUPIED && ! KEY_EQUALS( key[ h1 ], k ) ); // There's always a FREE entry.
}
if (state[ h1 ] == FREE) return h1;
if (state[ h1 ] == OCCUPIED) return -h1-1; // Necessarily, KEY_EQUALS( key[ h1 ], k ).
/* Tables without deletions will never use code beyond this point. */
final int i = h1; // Remember first available bucket for later.
/** See the comments in the documentation of the interface Hash. */
if ( ASSERTS ) assert state[ h1 ] == REMOVED;
if ( ! KEY_EQUALS( key[ h1 ], k ) ) {
// The secondary hash.
final int h2 = ( k2i % ( n - 2 ) ) + 1;
do {
h1 += h2;
if ( h1 >= n || h1 < 0 ) h1 -= n;
} while( state[ h1 ] != FREE && ! KEY_EQUALS( key[ h1 ], k ) );
}
return state[ h1 ] == OCCUPIED ? -h1-1 : i; // In the first case, necessarily, KEY_EQUALS( key[ h1 ], k ).
}
/** Searches for a key.
*
* @param k the key.
* @return the index of the entry containing the key, or -1 if the key wasn't found.
*/
protected final int findKey( final KEY_GENERIC_TYPE k ) {
final KEY_GENERIC_TYPE key[] = this.key;
final byte state[] = this.state;
final int n = key.length;
// First of all, we make the key into a positive integer.
#if #keyclass(Object)
final int h, k2i = ( h = KEY2INTHASH( k ) ) & 0x7FFFFFFF;
#else
final int k2i = KEY2INTHASH(k) & 0x7FFFFFFF;
#endif
// The primary hash, a.k.a. starting point.
int h1 = k2i % n;
/** See the comments in the documentation of the interface Hash. */
if ( state[ h1 ] != FREE && ! KEY_EQUALS( key[ h1 ], k ) ) {
// The secondary hash.
final int h2 = ( k2i % ( n - 2 ) ) + 1;
do {
h1 += h2;
if ( h1 >= n || h1 < 0 ) h1 -= n;
} while( state[ h1 ] != FREE && ! KEY_EQUALS( key[ h1 ], k ) ); // There's always a FREE entry.
}
return state[ h1 ] == OCCUPIED ? h1 : -1; // In the first case, necessarily, KEY_EQUALS( key[ h1 ], k ).
}
public VALUE_GENERIC_TYPE put(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
final int i = findInsertionPoint( k );
if (i < 0) {
final VALUE_GENERIC_TYPE oldValue = value[-i-1];
value[-i-1] = v;
return oldValue;
}
if ( state[i] == FREE ) free--;
state[i] = OCCUPIED;
key[i] = k;
value[i] = v;
#ifdef Linked
if ( count == 0 ) {
first = last = i;
link[ i ] = 0;
}
else {
link[ last ] ^= i ^ -1;
link[ i ] = last ^ -1;
last = i;
}
#endif
if ( ++count >= maxFill ) {
int newP = Math.min( p + growthFactor, PRIMES.length - 1 );
// Just to be sure that size changes when p is very small.
while( PRIMES[ newP ] == PRIMES[ p ] ) newP++;
rehash( newP ); // Table too filled, let's rehash
}
if ( free == 0 ) rehash( p );
if ( ASSERTS ) checkTable();
return defRetValue;
}
#if #values(primitive) || #keys(primitive)
public VALUE_GENERIC_CLASS put(final KEY_GENERIC_CLASS ok, final VALUE_GENERIC_CLASS ov) {
final VALUE_GENERIC_TYPE v = VALUE_CLASS2TYPE(ov);
final KEY_GENERIC_TYPE k = KEY_CLASS2TYPE(ok);
final int i = findInsertionPoint( k );
if (i < 0) {
final VALUE_GENERIC_TYPE oldValue = value[-i-1];
value[-i-1] = v;
return VALUE2OBJ(oldValue);
}
if ( state[i] == FREE ) free--;
state[i] = OCCUPIED;
key[i] = k;
value[i] = v;
#ifdef Linked
if ( count == 0 ) {
first = last = i;
link[ i ] = 0;
}
else {
link[ last ] ^= i ^ -1;
link[ i ] = last ^ -1;
last = i;
}
#endif
if ( ++count >= maxFill ) rehash( Math.min(p+16, PRIMES.length-1) ); // Table too filled, let's rehash
if ( free == 0 ) rehash( p );
if ( ASSERTS ) checkTable();
return OBJECT_DEFAULT_RETURN_VALUE;
}
#endif
public boolean containsValue( final VALUE_TYPE v ) {
final VALUE_GENERIC_TYPE value[] = this.value;
final byte state[] = this.state;
int i = 0, j = count;
while(j-- != 0) {
while(state[ i ] != OCCUPIED ) i++;
if ( VALUE_EQUALS(value[ i ], v ) ) return true;
i++;
}
return false;
}
/* Removes all elements from this map.
*
* <P>To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*
*/
public void clear() {
if ( free == state.length ) return;
free = state.length;
count = 0;
ByteArrays.fill( state, FREE );
// We null all object entries so that the garbage collector can do its work.
#if #keys(reference)
ObjectArrays.fill( key, null );
#endif
#if #values(reference)
ObjectArrays.fill( value, null );
#endif
#ifdef Linked
first = last = -1;
#endif
}
/** The entry class for a hash map does not record key and value, but
* rather the position in the hash table of the corresponding entry. This
* is necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in
* the map */
private final class MapEntry implements MAP.Entry KEY_VALUE_GENERIC, Map.Entry<KEY_GENERIC_CLASS, VALUE_GENERIC_CLASS> {
private int index;
MapEntry( final int index ) {
this.index = index;
}
public KEY_GENERIC_CLASS getKey() {
return KEY2OBJ( key[ index ] );
}
#if #keys(primitive)
public KEY_TYPE ENTRY_GET_KEY() {
return key[ index ];
}
#endif
public VALUE_GENERIC_CLASS getValue() {
return VALUE2OBJ( value[ index ] );
}
#if #values(primitive)
public VALUE_GENERIC_TYPE ENTRY_GET_VALUE() {
return value[ index ];
}
#endif
public VALUE_GENERIC_TYPE setValue( final VALUE_GENERIC_TYPE v ) {
final VALUE_GENERIC_TYPE oldValue = value[ index ];
value[ index ] = v;
return oldValue;
}
#if #values(primitive)
public VALUE_GENERIC_CLASS setValue( final VALUE_GENERIC_CLASS v ) {
return VALUE2OBJ( setValue( VALUE_CLASS2TYPE( v ) ) );
}
#endif
@SuppressWarnings("unchecked")
public boolean equals( final Object o ) {
if (!(o instanceof Map.Entry)) return false;
Map.Entry<KEY_GENERIC_CLASS, VALUE_GENERIC_CLASS> e = (Map.Entry<KEY_GENERIC_CLASS, VALUE_GENERIC_CLASS>)o;
return KEY_EQUALS( key[ index ], KEY_CLASS2TYPE( e.getKey() ) ) && VALUE_EQUALS( value[ index ], VALUE_CLASS2TYPE( e.getValue() ) );
}
public int hashCode() {
return KEY2JAVAHASH( key[ index ] ) ^ VALUE2JAVAHASH( value[ index ] );
}
public String toString() {
return key[ index ] + "=>" + value[ index ];
}
}
#ifdef Linked
/** Modifies the {@link #link} vector so that the given entry is removed.
*
* <P>If the given entry is the first or the last one, this method will complete
* in constant time; otherwise, it will have to search for the given entry.
*
* @param i the index of an entry.
*/
private void fixPointers( int i ) {
if ( count == 0 ) {
first = last = -1;
return;
}
if ( first == i ) {
first = link[ i ] ^ -1;
link[ first ] ^= i ^ -1;
return;
}
if ( last == i ) {
last = link[ i ] ^ -1;
link[ last ] ^= i ^ -1;
return;
}
int j = first, prev = -1, next;
while( ( next = link[ j ] ^ prev ) != i ) {
prev = j;
j = next;
}
link[ j ] ^= link[ i ] ^ i ^ j;
link[ link[ i ] ^ j ] ^= i ^ j;
}
/** Returns the first key of this map in iteration order.
*
* @return the first key in iteration order.
*/
public KEY_GENERIC_TYPE FIRST_KEY() {
if ( count == 0 ) throw new NoSuchElementException();
return key[ first ];
}
/** Returns the last key of this map in iteration order.
*
* @return the last key in iteration order.
*/
public KEY_GENERIC_TYPE LAST_KEY() {
if ( count == 0 ) throw new NoSuchElementException();
return key[ last ];
}
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; }
public SORTED_MAP KEY_VALUE_GENERIC tailMap( KEY_GENERIC_TYPE from ) { throw new UnsupportedOperationException(); }
public SORTED_MAP KEY_VALUE_GENERIC headMap( KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
public SORTED_MAP KEY_VALUE_GENERIC subMap( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
/** A list iterator over a linked map.
*
* <P>This class provides a list iterator over a linked hash map. The empty constructor runs in
* constant time. The one-argoument constructor needs to search for the given key, but it is
* optimized for the case of {@link java.util.SortedMap#lastKey()}, in which case runs in constant time, too.
*/
private class MapIterator {
/** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or <code>null</code> if no previous entry exists). */
int prev = -1;
/** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or <code>null</code> if no next entry exists). */
int next = -1;
/** The last entry that was returned (or -1 if we did not iterate or used {@link java.util.Iterator#remove()}). */
int curr = -1;
/** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this iterator has been created using the nonempty constructor.*/
int index = 0;
MapIterator() {
next = first;
}
MapIterator( final KEY_GENERIC_TYPE from ) {
if ( KEY_EQUALS( key[ last ], from ) ) {
prev = last;
index = count;
}
else {
if ( ! OPEN_DOUBLE_HASH_MAP.this.containsKey( from ) ) throw new IllegalArgumentException( "The key " + from + " does not belong to this set." );
next = first;
int e;
do e = nextEntry(); while( ! KEY_EQUALS( key[ e ], from ) );
curr = -1;
}
}
public boolean hasNext() { return next != -1; }
public boolean hasPrevious() { return prev != -1; }
public int nextIndex() {
return index;
}
public int previousIndex() {
return index - 1;
}
public int nextEntry() {
if ( ! hasNext() ) return size();
curr = next;
next = link[ curr ] ^ prev;
prev = curr;
index++;
return curr;
}
public int previousEntry() {
if ( ! hasPrevious() ) return -1;
curr = prev;
prev = link[ curr ] ^ next;
next = curr;
index--;
return curr;
}
@SuppressWarnings("unchecked")
public void remove() {
if ( curr == -1 ) throw new IllegalStateException();
state[ curr ] = REMOVED;
#if #keys(reference)
key[ curr ] = KEY_GENERIC_CAST HashCommon.REMOVED;
#endif
#if #values(reference)
value[ curr ] = null;
#endif
if ( curr == prev ) {
/* If the last operation was a next(), we are removing an entry that preceeds
the current index, and thus we must decrement it. */
index--;
prev = link[ curr ] ^ next;
}
else next = link[ curr ] ^ prev; // curr == next
count--;
/* Now we manually fix the pointers. Because of our knowledge of next
and prev, this is going to be faster than calling fixPointers(). */
if ( prev == -1 ) first = next;
else link[ prev ] ^= curr ^ next;
if ( next == -1 ) last = prev;
else link[ next ] ^= curr ^ prev;
curr = -1;
}
public int skip( final int n ) {
int i = n;
while( i-- != 0 && hasNext() ) nextEntry();
return n - i - 1;
}
public int back( final int n ) {
int i = n;
while( i-- != 0 && hasPrevious() ) previousEntry();
return n - i - 1;
}
}
private class EntryIterator extends MapIterator implements ObjectListIterator<MAP.Entry KEY_VALUE_GENERIC> {
public EntryIterator() {}
public EntryIterator( KEY_GENERIC_TYPE from ) {
super( from );
}
public MapEntry next() {
return new MapEntry( nextEntry() );
}
public MapEntry previous() {
return new MapEntry( previousEntry() );
}
public void set( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); }
public void add( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); }
}
private class FastEntryIterator extends MapIterator implements ObjectListIterator<MAP.Entry KEY_VALUE_GENERIC> {
final BasicEntry KEY_VALUE_GENERIC entry = new BasicEntry KEY_VALUE_GENERIC ( KEY_NULL, VALUE_NULL );
public FastEntryIterator() {}
public FastEntryIterator( KEY_GENERIC_TYPE from ) {
super( from );
}
public BasicEntry KEY_VALUE_GENERIC next() {
final int e = nextEntry();
entry.key = key[ e ];
entry.value = value[ e ];
return entry;
}
public BasicEntry KEY_VALUE_GENERIC previous() {
final int e = previousEntry();
entry.key = key[ e ];
entry.value = value[ e ];
return entry;
}
public void set( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); }
public void add( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); }
}
#else
/** An iterator over a hash map. */
private class MapIterator {
/** The index of the next entry to be returned. */
int pos = 0;
/** The index of the last entry that has been returned. */
int last = -1;
/** A downward counter measuring how many entries have been returned. */
int c = count;
{
final byte state[] = OPEN_DOUBLE_HASH_MAP.this.state;
final int n = state.length;
if ( c != 0 ) while( pos < n && state[ pos ] != OCCUPIED ) pos++;
}
public boolean hasNext() {
return c != 0 && pos < OPEN_DOUBLE_HASH_MAP.this.state.length;
}
public int nextEntry() {
final byte state[] = OPEN_DOUBLE_HASH_MAP.this.state;
final int n = state.length;
if ( ! hasNext() ) throw new NoSuchElementException();
last = pos;
if ( --c != 0 ) do pos++; while( pos < n && state[ pos ] != OCCUPIED );
return last;
}
@SuppressWarnings("unchecked")
public void remove() {
if (last == -1) throw new IllegalStateException();
state[last] = REMOVED;
#if #keys(reference)
key[last] = KEY_GENERIC_CAST HashCommon.REMOVED;
#endif
#if #values(reference)
value[last] = null;
#endif
count--;
}
public int skip( final int n ) {
int i = n;
while( i-- != 0 && hasNext() ) nextEntry();
return n - i - 1;
}
}
private class EntryIterator extends MapIterator implements ObjectIterator<MAP.Entry KEY_VALUE_GENERIC> {
public MAP.Entry KEY_VALUE_GENERIC next() {
return new MapEntry( nextEntry() );
}
}
private class FastEntryIterator extends MapIterator implements ObjectIterator<MAP.Entry KEY_VALUE_GENERIC> {
final BasicEntry KEY_VALUE_GENERIC entry = new BasicEntry KEY_VALUE_GENERIC ( KEY_NULL, VALUE_NULL );
public BasicEntry KEY_VALUE_GENERIC next() {
final int e = nextEntry();
entry.key = key[ e ];
entry.value = value[ e ];
return entry;
}
}
#endif
@SuppressWarnings("unchecked")
public boolean containsKey( KEY_TYPE k ) {
return findKey( KEY_GENERIC_CAST k ) >= 0;
}
public int size() {
return count;
}
public boolean isEmpty() {
return count == 0;
}
@SuppressWarnings("unchecked")
public VALUE_GENERIC_TYPE GET_VALUE(final KEY_TYPE k) {
final int i = findKey( KEY_GENERIC_CAST k);
return i < 0 ? defRetValue : value[i];
}
@SuppressWarnings("unchecked")
public VALUE_GENERIC_TYPE REMOVE_VALUE(final KEY_TYPE k) {
final int i = findKey( KEY_GENERIC_CAST k );
if (i < 0) return defRetValue;
state[i] = REMOVED;
count--;
#if #keys(reference)
key[i] = KEY_GENERIC_CAST HashCommon.REMOVED;
#endif
#if #values(reference)
final VALUE_GENERIC_TYPE v = value[i];
value[i] = null;
#endif
#ifdef Linked
fixPointers( i );
#endif
#if #values(reference)
return v;
#else
return value[i];
#endif
}
#if #keys(primitive)
public VALUE_GENERIC_CLASS get(final KEY_CLASS ok) {
final int i = findKey(KEY_CLASS2TYPE(ok));
return i < 0 ? OBJECT_DEFAULT_RETURN_VALUE : (VALUE_GENERIC_CLASS)VALUE2OBJ(value[i]);
}
#endif
#if #keys(primitive) || #values(primitive)
@SuppressWarnings("unchecked")
public VALUE_GENERIC_CLASS remove( final Object ok ) {
final int i = findKey( KEY_GENERIC_CAST KEY_OBJ2TYPE( ok ) );
if (i < 0) return OBJECT_DEFAULT_RETURN_VALUE;
state[i] = REMOVED;
count--;
#if #keys(reference)
key[i] = KEY_GENERIC_CAST HashCommon.REMOVED;
#endif
#if #values(reference)
final VALUE_GENERIC_CLASS v = value[i];
value[i] = null;
#endif
#ifdef Linked
fixPointers( i );
#endif
if ( ASSERTS ) checkTable();
#if #values(reference)
return v;
#else
return VALUE2OBJ( value[i] );
#endif
}
#endif
#ifdef Linked
private final class MapEntrySet extends AbstractObjectSortedSet<MAP.Entry KEY_VALUE_GENERIC> implements FastSortedEntrySet KEY_VALUE_GENERIC {
public ObjectBidirectionalIterator<MAP.Entry KEY_VALUE_GENERIC> iterator() {
return new EntryIterator();
}
public Comparator<? super MAP.Entry KEY_VALUE_GENERIC> comparator() { return null; }
public ObjectSortedSet<MAP.Entry KEY_VALUE_GENERIC> subSet( MAP.Entry KEY_VALUE_GENERIC fromElement, MAP.Entry KEY_VALUE_GENERIC toElement) { throw new UnsupportedOperationException(); }
public ObjectSortedSet<MAP.Entry KEY_VALUE_GENERIC> headSet( MAP.Entry KEY_VALUE_GENERIC toElement ) { throw new UnsupportedOperationException(); }
public ObjectSortedSet<MAP.Entry KEY_VALUE_GENERIC> tailSet( MAP.Entry KEY_VALUE_GENERIC fromElement ) { throw new UnsupportedOperationException(); }
public MAP.Entry KEY_VALUE_GENERIC first() {
if ( count == 0 ) throw new NoSuchElementException();
return new MapEntry( OPEN_DOUBLE_HASH_MAP.this.first );
}
public MAP.Entry KEY_VALUE_GENERIC last() {
if ( count == 0 ) throw new NoSuchElementException();
return new MapEntry( OPEN_DOUBLE_HASH_MAP.this.last );
}
#else
private final class MapEntrySet extends AbstractObjectSet<MAP.Entry KEY_VALUE_GENERIC> implements FastEntrySet KEY_VALUE_GENERIC {
public ObjectIterator<MAP.Entry KEY_VALUE_GENERIC> iterator() {
return new EntryIterator();
}
public ObjectIterator<MAP.Entry KEY_VALUE_GENERIC> fastIterator() {
return new FastEntryIterator();
}
#endif
@SuppressWarnings("unchecked")
public boolean contains( final Object o ) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry<KEY_GENERIC_CLASS, VALUE_GENERIC_CLASS> e = (Map.Entry<KEY_GENERIC_CLASS, VALUE_GENERIC_CLASS>)o;
final int i = findKey( KEY_CLASS2TYPE( e.getKey() ) );
return i >= 0 && VALUE_EQUALS( value[ i ], VALUE_CLASS2TYPE( e.getValue() ) );
}
@SuppressWarnings("unchecked")
public boolean remove( final Object o ) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry<KEY_GENERIC_CLASS, VALUE_GENERIC_CLASS> e = (Map.Entry<KEY_GENERIC_CLASS, VALUE_GENERIC_CLASS>)o;
final int i = findKey( KEY_CLASS2TYPE( e.getKey() ) );
if ( i >= 0 ) OPEN_DOUBLE_HASH_MAP.this.remove( e.getKey() );
return i >= 0;
}
public int size() {
return count;
}
public void clear() {
OPEN_DOUBLE_HASH_MAP.this.clear();
}
#ifdef Linked
public ObjectBidirectionalIterator<MAP.Entry KEY_VALUE_GENERIC> iterator( final MAP.Entry KEY_VALUE_GENERIC from ) {
return new EntryIterator( KEY_CLASS2TYPE( from.getKey() ) );
}
public ObjectBidirectionalIterator<MAP.Entry KEY_VALUE_GENERIC> fastIterator() {
return new FastEntryIterator();
}
public ObjectBidirectionalIterator<MAP.Entry KEY_VALUE_GENERIC> fastIterator( final MAP.Entry KEY_VALUE_GENERIC from ) {
return new FastEntryIterator( KEY_CLASS2TYPE( from.getKey() ) );
}
#endif
}
#ifdef Linked
public FastSortedEntrySet KEY_VALUE_GENERIC ENTRYSET() {
if ( entries == null ) entries = new MapEntrySet();
#else
public FastEntrySet KEY_VALUE_GENERIC ENTRYSET() {
if ( entries == null ) entries = new MapEntrySet();
#endif
return entries;
}
/** An iterator on keys.
*
* <P>We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods
* (and possibly their type-specific counterparts) so that they return keys
* instead of entries.
*/
#ifdef Linked
private final class KeyIterator extends MapIterator implements KEY_LIST_ITERATOR KEY_GENERIC {
public KeyIterator( final KEY_GENERIC_TYPE k ) { super( k ); }
public KEY_GENERIC_TYPE PREV_KEY() { return key[ previousEntry() ]; }
public void set( KEY_GENERIC_TYPE k ) { throw new UnsupportedOperationException(); }
public void add( KEY_GENERIC_TYPE k ) { throw new UnsupportedOperationException(); }
#if ! #keys(reference)
public KEY_GENERIC_CLASS previous() { return KEY2OBJ( key[ previousEntry() ] ); }
public void set( KEY_CLASS ok ) { throw new UnsupportedOperationException(); }
public void add( KEY_CLASS ok ) { throw new UnsupportedOperationException(); }
#endif
#else
private final class KeyIterator extends MapIterator implements KEY_ITERATOR KEY_GENERIC {
#endif
public KeyIterator() { super(); }
public KEY_GENERIC_TYPE NEXT_KEY() { return key[ nextEntry() ]; }
#if ! #keys(reference)
public KEY_GENERIC_CLASS next() { return KEY2OBJ( key[ nextEntry() ] ); }
#endif
}
#ifdef Linked
private final class KeySet extends ABSTRACT_SORTED_SET KEY_GENERIC {
public KEY_BIDI_ITERATOR KEY_GENERIC iterator( final KEY_GENERIC_TYPE from ) {
return new KeyIterator( from );
}
public KEY_BIDI_ITERATOR KEY_GENERIC iterator() {
return new KeyIterator();
}
#else
private final class KeySet extends ABSTRACT_SET KEY_GENERIC {
public KEY_ITERATOR KEY_GENERIC iterator() {
return new KeyIterator();
}
#endif
public int size() {
return count;
}
public boolean contains( KEY_TYPE k ) {
return containsKey( k );
}
public boolean remove( KEY_TYPE k ) {
int oldCount = count;
OPEN_DOUBLE_HASH_MAP.this.remove( k );
return count != oldCount;
}
public void clear() {
OPEN_DOUBLE_HASH_MAP.this.clear();
}
#ifdef Linked
public KEY_GENERIC_TYPE FIRST() {
if ( count == 0 ) throw new NoSuchElementException();
return key[ first ];
}
public KEY_GENERIC_TYPE LAST() {
if ( count == 0 ) throw new NoSuchElementException();
return key[ last ];
}
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; }
final public SORTED_SET KEY_GENERIC tailSet( KEY_GENERIC_TYPE from ) { throw new UnsupportedOperationException(); }
final public SORTED_SET KEY_GENERIC headSet( KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
final public SORTED_SET KEY_GENERIC subSet( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
#endif
}
#ifdef Linked
public SORTED_SET KEY_GENERIC keySet() {
#else
public SET KEY_GENERIC keySet() {
#endif
if ( keys == null ) keys = new KeySet();
return keys;
}
/** An iterator on values.
*
* <P>We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods
* (and possibly their type-specific counterparts) so that they return values
* instead of entries.
*/
#ifdef Linked
private final class ValueIterator extends MapIterator implements VALUE_LIST_ITERATOR VALUE_GENERIC {
public VALUE_GENERIC_TYPE PREV_VALUE() { return value[ previousEntry() ]; }
#if ! #values(reference)
public VALUE_GENERIC_CLASS previous() { return VALUE2OBJ( value[ previousEntry() ] ); }
public void set( VALUE_CLASS ok ) { throw new UnsupportedOperationException(); }
public void add( VALUE_CLASS ok ) { throw new UnsupportedOperationException(); }
#endif
public void set( VALUE_GENERIC_TYPE v ) { throw new UnsupportedOperationException(); }
public void add( VALUE_GENERIC_TYPE v ) { throw new UnsupportedOperationException(); }
#else
private final class ValueIterator extends MapIterator implements VALUE_ITERATOR VALUE_GENERIC {
#endif
public ValueIterator() { super(); }
public VALUE_GENERIC_TYPE NEXT_VALUE() { return value[ nextEntry() ]; }
#if ! #values(reference)
public VALUE_GENERIC_CLASS next() { return VALUE2OBJ( value[ nextEntry() ] ); }
#endif
}
public VALUE_COLLECTION VALUE_GENERIC values() {
if ( values == null ) values = new VALUE_ABSTRACT_COLLECTION VALUE_GENERIC() {
public VALUE_ITERATOR VALUE_GENERIC iterator() {
return new ValueIterator();
}
public int size() {
return count;
}
public boolean contains( VALUE_TYPE v ) {
return containsValue( v );
}
public void clear() {
OPEN_DOUBLE_HASH_MAP.this.clear();
}
};
return values;
}
/** Rehashes this map without changing the table size.
* <P>This method should be called when the map underwent numerous deletions and insertions.
* In this case, free entries become rare, and unsuccessful searches
* require probing <em>all</em> entries. For reasonable load factors this method is linear in the number of entries.
* You will need as much additional free memory as
* that occupied by the table.
*
* <P>If you need to reduce the table siza to fit exactly
* this map, you must use {@link #trim()}.
*
* @return <code>true</code> if there was enough memory to rehash the map, <code>false</code> otherwise.
* @see #trim()
*/
public boolean rehash() {
try {
rehash(p);
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes the map, making the table as small as possible.
*
* <P>This method rehashes to the smallest size satisfying
* the load factor. It can be used when the map will not be
* changed anymore, so to optimize access speed (by collecting
* deleted entries) and size.
*
* <P>If the table size is already the minimum possible, this method
* does nothing. If you want to guarantee rehashing, use {@link #rehash()}.
*
* @return true if there was enough memory to trim the map.
* @see #trim(int)
* @see #rehash()
*/
public boolean trim() {
int l = Arrays.binarySearch( PRIMES, (int)( count / f ) + 1 );
if ( l < 0 ) l = -l - 1;
if ( l >= p ) return true;
try {
rehash( l );
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes this map if the table is too large.
*
* <P>Let <var>N</var> be the smallest table size that can hold
* <code>max(n,{@link #size()})</code> entries, still satisfying the load factor. If the current
* table size is smaller than or equal to <var>N</var>, this method does
* nothing. Otherwise, it rehashes this map in a table of size
* <var>N</var>.
*
* <P>This method is useful when reusing maps. {@linkplain #clear() Clearing a
* map} leaves the table size untouched. If you are reusing a map
* many times, you can call this method with a typical
* size to avoid keeping around a very large table just
* because of a few large transient maps.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the map.
* @see #trim()
* @see #rehash()
*/
public boolean trim( final int n ) {
int l = Arrays.binarySearch( PRIMES, (int)( Math.min( Integer.MAX_VALUE - 1, Math.max( n, count ) / f ) ) + 1 );
if ( l < 0 ) l = -l - 1;
if ( p <= l ) return true;
try {
rehash( l );
}
catch( OutOfMemoryError cantDoIt ) { return false; }
return true;
}
/** Resizes the map.
*
* <P>This method implements the basic rehashing strategy, and may be
* overriden by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newP the new size as an index in {@link Hash#PRIMES}.
*/
@SuppressWarnings("unchecked")
protected void rehash( final int newP ) {
#ifdef Linked
int i = first, j = count, prev = -1, newPrev = -1, t, k2i, h1, h2;
#else
int i = 0, j = count, k2i, h1, h2;
final byte state[] = this.state;
#endif
KEY_GENERIC_TYPE k;
VALUE_GENERIC_TYPE v;
final int newN = PRIMES[newP];
final KEY_GENERIC_TYPE key[] = this.key, newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[newN];
final VALUE_GENERIC_TYPE value[] = this.value, newValue[] = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[newN];
final byte newState[] = new byte[newN];
#ifdef Linked
final int link[] = this.link, newLink[] = new int[ newN ];
first = -1;
#endif
while(j-- != 0) {
#ifndef Linked
while(state[i] != OCCUPIED ) i++;
#endif
k = key[i];
v = value[i];
k2i = KEY2INTHASH(k) & 0x7FFFFFFF;
h1 = k2i % newN;
h2 = (k2i % (newN - 2)) + 1;
if ( newState[h1] != FREE ) {
h2 = (k2i % (newN - 2)) + 1;
do {
h1 += h2;
if ( h1 >= newN || h1 < 0 ) h1 -= newN;
} while( newState[h1] != FREE );
}
newState[h1] = OCCUPIED;
newKey[h1] = k;
newValue[h1] = v;
#ifdef Linked
t = i;
i = link[ i ] ^ prev;
prev = t;
if ( first != -1 ) {
newLink[ newPrev ] ^= h1;
newLink[ h1 ] = newPrev;
newPrev = h1;
}
else {
newPrev = first = h1;
newLink[ h1 ] = -1;
}
#else
i++;
#endif
}
p = newP;
free = newN - count;
maxFill = (int)( newN * f );
this.key = newKey;
this.value = newValue;
this.state = newState;
#ifdef Linked
this.link = newLink;
this.last = newPrev;
if ( newPrev != -1 ) newLink[ newPrev ] ^= -1;
#endif
}
/** Returns a deep copy of this map.
*
* <P>This method performs a deep copy of this hash map; the data stored in the
* map, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this map.
*/
@SuppressWarnings("unchecked")
public OPEN_DOUBLE_HASH_MAP KEY_VALUE_GENERIC clone() {
OPEN_DOUBLE_HASH_MAP KEY_VALUE_GENERIC c;
try {
c = (OPEN_DOUBLE_HASH_MAP KEY_VALUE_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.key = key.clone();
c.value = value.clone();
c.state = state.clone();
#ifdef Linked
c.link = link.clone();
#endif
#ifdef Custom
c.strategy = strategy;
#endif
return c;
}
/** Returns a hash code for this map.
*
* This method overrides the generic method provided by the superclass.
* Since <code>equals()</code> is not overriden, it is important
* that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this map.
*/
public int hashCode() {
int h = 0, t, i = 0, j = count;
while( j-- != 0 ) {
while( state[ i ] != OCCUPIED ) i++;
t = 0;
#if #keys(reference)
if ( this != key[ i ] )
#endif
t = KEY2JAVAHASH( key[ i ] );
#if #values(reference)
if ( this != value[ i ] )
#endif
t ^= VALUE2JAVAHASH( value[ i ] );
h += t;
i++;
}
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final KEY_GENERIC_TYPE key[] = this.key;
final VALUE_GENERIC_TYPE value[] = this.value;
final MapIterator i = new MapIterator();
int e, j = count;
s.defaultWriteObject();
while( j-- != 0 ) {
e = i.nextEntry();
s.WRITE_KEY( key[ e ] );
s.WRITE_VALUE( value[ e ] );
}
}
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
// We restore the default growth factor.
growthFactor = Hash.DEFAULT_GROWTH_FACTOR;
// Note that we DO NOT USE the stored p. See CHANGES.
p = Arrays.binarySearch( PRIMES, (int)( count / f ) + 1 );
if ( p < 0 ) p = -p - 1;
final int n = PRIMES[ p ];
maxFill = (int)( n * f );
free = n - count;;
final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ n ];
final VALUE_GENERIC_TYPE value[] = this.value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[ n ];
final byte state[] = this.state = new byte[ n ];
#ifdef Linked
final int link[] = this.link = new int[ n ];
int prev = -1;
first = last = -1;
#endif
int i, k2i, h1, h2;
KEY_GENERIC_TYPE k;
VALUE_GENERIC_TYPE v;
i = count;
while( i-- != 0 ) {
k = KEY_GENERIC_CAST s.READ_KEY();
v = VALUE_GENERIC_CAST s.READ_VALUE();
k2i = KEY2INTHASH( k ) & 0x7FFFFFFF;
h1 = k2i % n;
if ( state[ h1 ] != FREE ) {
h2 = ( k2i % ( n - 2 ) ) + 1;
do {
h1 += h2;
if ( h1 >= n || h1 < 0 ) h1 -= n;
} while( state[ h1 ] != FREE );
}
state[ h1 ] = OCCUPIED;
key[ h1 ] = k;
value[ h1 ] = v;
#ifdef Linked
if ( first != -1 ) {
link[ prev ] ^= h1;
link[ h1 ] = prev;
prev = h1;
}
else {
prev = first = h1;
link[ h1 ] = -1;
}
#endif
}
#ifdef Linked
last = prev;
if ( prev != -1 ) link[ prev ] ^= -1;
#endif
if ( ASSERTS ) checkTable();
}
#ifdef ASSERTS_CODE
private void checkTable() {
int n = state.length;
while( n-- != 0 )
if ( state[ n ] == OCCUPIED && ! containsKey( key[ n ] ) )
throw new AssertionError( "Hash table has key " + key[ n ] + " marked as occupied, but the key does not belong to the table" );
#ifdef Linked
KEY_BIDI_ITERATOR KEY_GENERIC i = keySet().iterator();
KEY_TYPE k;
n = size();
while( n-- != 0 )
if ( ! containsKey( k = i.NEXT_KEY() ) )
throw new AssertionError( "Linked hash table forward enumerates key " + k + ", but the key does not belong to the table" );
if ( i.hasNext() ) throw new AssertionError( "Forward iterator not exhausted" );
n = size();
if ( n > 0 ) {
i = keySet().iterator( LAST_KEY() );
while( n-- != 0 )
if ( ! containsKey( k = i.PREV_KEY() ) )
throw new AssertionError( "Linked hash table backward enumerates key " + k + ", but the key does not belong to the table" );
if ( i.hasPrevious() ) throw new AssertionError( "Previous iterator not exhausted" );
}
#endif
}
#else
private void checkTable() {}
#endif
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random( seed );
private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
return r.NEXT_KEY();
#elif !#keyclass(Reference)
#ifdef Custom
int i = r.nextInt( 3 );
byte a[] = new byte[ i ];
while( i-- != 0 ) a[ i ] = (byte)r.nextInt();
return a;
#else
return Integer.toBinaryString( r.nextInt() );
#endif
#else
return new java.io.Serializable() {};
#endif
}
private static VALUE_TYPE genValue() {
#if #valueclass(Byte) || #valueclass(Short) || #valueclass(Character)
return (VALUE_TYPE)(r.nextInt());
#elif #values(primitive)
return r.NEXT_VALUE();
#elif !#valueclass(Reference)
return Integer.toBinaryString( r.nextInt() );
#else
return new java.io.Serializable() {};
#endif
}
private static final class ArrayComparator implements java.util.Comparator {
public int compare( Object a, Object b ) {
byte[] aa = (byte[])a;
byte[] bb = (byte[])b;
int length = Math.min( aa.length, bb.length );
for( int i = 0; i < length; i++ ) {
if ( aa[ i ] < bb[ i ] ) return -1;
if ( aa[ i ] > bb[ i ] ) return 1;
}
return aa.length == bb.length ? 0 : ( aa.length < bb.length ? -1 : 1 );
}
}
private static final class MockMap extends java.util.TreeMap {
private java.util.List list = new java.util.ArrayList();
public MockMap( java.util.Comparator c ) { super( c ); }
public Object put( Object k, Object v ) {
if ( ! containsKey( k ) ) list.add( k );
return super.put( k, v );
}
public void putAll( Map m ) {
java.util.Iterator i = m.entrySet().iterator();
while( i.hasNext() ) {
Map.Entry e = (Map.Entry)i.next();
put( e.getKey(), e.getValue() );
}
}
public Object remove( Object k ) {
if ( containsKey( k ) ) {
int i = list.size();
while( i-- != 0 ) if ( comparator().compare( list.get( i ), k ) == 0 ) {
list.remove( i );
break;
}
}
return super.remove( k );
}
private void justRemove( Object k ) { super.remove( k ); }
private java.util.Set justEntrySet() { return super.entrySet(); }
private java.util.Set justKeySet() { return super.keySet(); }
public java.util.Set keySet() {
return new java.util.AbstractSet() {
final java.util.Set keySet = justKeySet();
public boolean contains( Object k ) { return keySet.contains( k ); }
public int size() { return keySet.size(); }
public java.util.Iterator iterator() {
return new java.util.Iterator() {
final java.util.Iterator iterator = list.iterator();
Object curr;
public Object next() { return curr = iterator.next(); }
public boolean hasNext() { return iterator.hasNext(); }
public void remove() {
justRemove( curr );
iterator.remove();
}
};
}
};
}
public java.util.Set entrySet() {
return new java.util.AbstractSet() {
final java.util.Set entrySet = justEntrySet();
public boolean contains( Object k ) { return entrySet.contains( k ); }
public int size() { return entrySet.size(); }
public java.util.Iterator iterator() {
return new java.util.Iterator() {
final java.util.Iterator iterator = list.iterator();
Object curr;
public Object next() {
curr = iterator.next();
#if #valueclass(Reference)
#if #keyclass(Reference)
return new ABSTRACT_MAP.BasicEntry( (Object)curr, (Object)get(curr) ) {
#else
return new ABSTRACT_MAP.BasicEntry( (KEY_CLASS)curr, (Object)get(curr) ) {
#endif
#else
#if #keyclass(Reference)
return new ABSTRACT_MAP.BasicEntry( (Object)curr, (VALUE_CLASS)get(curr) ) {
#else
return new ABSTRACT_MAP.BasicEntry( (KEY_CLASS)curr, (VALUE_CLASS)get(curr) ) {
#endif
#endif
public VALUE_TYPE setValue( VALUE_TYPE v ) {
return VALUE_OBJ2TYPE(put( getKey(), VALUE2OBJ(v) ));
}
};
}
public boolean hasNext() { return iterator.hasNext(); }
public void remove() {
justRemove( ((Map.Entry)curr).getKey() );
iterator.remove();
}
};
}
};
}
}
private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
private static java.text.FieldPosition fp = new java.text.FieldPosition( 0 );
private static String format( double d ) {
StringBuffer s = new StringBuffer();
return format.format( d, s, fp ).toString();
}
private static void speedTest( int n, float f, boolean comp ) {
#ifndef Custom
int i, j;
OPEN_DOUBLE_HASH_MAP m;
#ifdef Linked
java.util.LinkedHashMap t;
#else
java.util.HashMap t;
#endif
KEY_TYPE k[] = new KEY_TYPE[n];
KEY_TYPE nk[] = new KEY_TYPE[n];
VALUE_TYPE v[] = new VALUE_TYPE[n];
long ms;
for( i = 0; i < n; i++ ) {
k[i] = genKey();
nk[i] = genKey();
v[i] = genValue();
}
double totPut = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, d;
if ( comp ) { for( j = 0; j < 20; j++ ) {
#ifdef Linked
t = new java.util.LinkedHashMap( 16 );
#else
t = new java.util.HashMap( 16 );
#endif
/* We put pairs to t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.put( KEY2OBJ( k[i] ), VALUE2OBJ( v[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totPut += d;
System.out.print("Put: " + format( d ) +" K/s " );
/* We check for pairs in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.containsKey( KEY2OBJ( k[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totYes += d;
System.out.print("Yes: " + format( d ) +" K/s " );
/* We check for pairs not in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.containsKey( KEY2OBJ( nk[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totNo += d;
System.out.print("No: " + format( d ) +" K/s " );
/* We iterate on t. */
ms = System.currentTimeMillis();
for( java.util.Iterator it = t.entrySet().iterator(); it.hasNext(); it.next() );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totIter += d;
System.out.print("Iter: " + format( d ) +" K/s " );
/* We delete pairs not in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.remove( KEY2OBJ( nk[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totRemNo += d;
System.out.print("RemNo: " + format( d ) +" K/s " );
/* We delete pairs in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.remove( KEY2OBJ( k[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totRemYes += d;
System.out.print("RemYes: " + format( d ) +" K/s " );
System.out.println();
}
System.out.println();
System.out.println( "java.util Put: " + format( totPut/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s Iter: " + format( totIter/(j-3) ) + " K/s RemNo: " + format( totRemNo/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + "K/s" );
System.out.println();
totPut = totYes = totNo = totIter = totRemYes = totRemNo = 0;
}
for( j = 0; j < 20; j++ ) {
m = new OPEN_DOUBLE_HASH_MAP( 16, f );
/* We put pairs to m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.put( k[i], v[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totPut += d;
System.out.print("Put: " + format( d ) +" K/s " );
/* We check for pairs in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.containsKey( k[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totYes += d;
System.out.print("Yes: " + format( d ) +" K/s " );
/* We check for pairs not in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.containsKey( nk[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totNo += d;
System.out.print("No: " + format( d ) +" K/s " );
/* We iterate on m. */
ms = System.currentTimeMillis();
for( java.util.Iterator it = m.entrySet().iterator(); it.hasNext(); it.next() );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totIter += d;
System.out.print("Iter: " + format( d ) +" K/s " );
/* We delete pairs not in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.remove( nk[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totRemNo += d;
System.out.print("RemNo: " + format( d ) +" K/s " );
/* We delete pairs in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.remove( k[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totRemYes += d;
System.out.print("RemYes: " + format( d ) +" K/s " );
System.out.println();
}
System.out.println();
System.out.println( "fastutil Put: " + format( totPut/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s Iter: " + format( totIter/(j-3) ) + " K/s RemNo: " + format( totRemNo/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + " K/s" );
System.out.println();
#endif
}
private static boolean valEquals(Object o1, Object o2) {
return o1 == null ? o2 == null : o1.equals(o2);
}
private static void fatal( String msg ) {
System.out.println( msg );
System.exit( 1 );
}
private static void ensure( boolean cond, String msg ) {
if ( cond ) return;
fatal( msg );
}
protected static void test( int n, float f ) {
#ifdef Custom
OPEN_DOUBLE_HASH_MAP m = new OPEN_DOUBLE_HASH_MAP(Hash.DEFAULT_INITIAL_SIZE, f, it.unimi.dsi.fastutil.bytes.ByteArrays.HASH_STRATEGY);
#else
OPEN_DOUBLE_HASH_MAP m = new OPEN_DOUBLE_HASH_MAP(Hash.DEFAULT_INITIAL_SIZE, f);
#endif
#ifdef Linked
#ifdef Custom
Map t = new MockMap( new ArrayComparator() );
#else
Map t = new java.util.LinkedHashMap();
#endif
#else
#ifdef Custom
Map t = new java.util.TreeMap(new ArrayComparator());
#else
Map t = new java.util.HashMap();
#endif
#endif
/* First of all, we fill t with random data. */
for(int i=0; i<n; i++ ) t.put( KEY2OBJ(genKey()), VALUE2OBJ(genValue()) );
/* Now we add to m the same data */
m.putAll(t);
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after insertion");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after insertion");
/* Now we check that m actually holds that data. */
for(java.util.Iterator i=t.entrySet().iterator(); i.hasNext(); ) {
java.util.Map.Entry e = (java.util.Map.Entry)i.next();
if (!valEquals(e.getValue(), m.get(e.getKey())))
System.out.println("Error (" + seed + "): m and t differ on an entry ("+e+") after insertion (iterating on t)");
}
/* Now we check that m actually holds that data, but iterating on m. */
for(java.util.Iterator i=m.entrySet().iterator(); i.hasNext(); ) {
java.util.Map.Entry e = (java.util.Map.Entry)i.next();
if (!valEquals(e.getValue(), t.get(e.getKey())))
System.out.println("Error (" + seed + "): m and t differ on an entry ("+e+") after insertion (iterating on m)");
}
/* Now we check that m actually holds the same keys. */
for(java.util.Iterator i=t.keySet().iterator(); i.hasNext(); ) {
Object o = i.next();
if (!m.containsKey(o)) {
System.out.println("Error (" + seed + "): m and t differ on a key ("+o+") after insertion (iterating on t)");
System.exit( 1 );
}
if (!m.keySet().contains(o)) {
System.out.println("Error (" + seed + "): m and t differ on a key ("+o+", in keySet()) after insertion (iterating on t)");
System.exit( 1 );
}
}
/* Now we check that m actually holds the same keys, but iterating on m. */
for(java.util.Iterator i=m.keySet().iterator(); i.hasNext(); ) {
Object o = i.next();
if (!t.containsKey(o)) {
System.out.println("Error (" + seed + "): m and t differ on a key after insertion (iterating on m)");
System.exit( 1 );
}
if (!t.keySet().contains(o)) {
System.out.println("Error (" + seed + "): m and t differ on a key (in keySet()) after insertion (iterating on m)");
System.exit( 1 );
}
}
/* Now we check that m actually hold the same values. */
for(java.util.Iterator i=t.values().iterator(); i.hasNext(); ) {
Object o = i.next();
if (!m.containsValue(o)) {
System.out.println("Error (" + seed + "): m and t differ on a value after insertion (iterating on t)");
System.exit( 1 );
}
if (!m.values().contains(o)) {
System.out.println("Error (" + seed + "): m and t differ on a value (in values()) after insertion (iterating on t)");
System.exit( 1 );
}
}
/* Now we check that m actually hold the same values, but iterating on m. */
for(java.util.Iterator i=m.values().iterator(); i.hasNext(); ) {
Object o = i.next();
if (!t.containsValue(o)) {
System.out.println("Error (" + seed + "): m and t differ on a value after insertion (iterating on m)");
System.exit( 1 );
}
if (!t.values().contains(o)) {
System.out.println("Error (" + seed + "): m and t differ on a value (in values()) after insertion (iterating on m)");
System.exit( 1 );
}
}
/* Now we check that inquiries about random data give the same answer in m and t. For
m we use the polymorphic method. */
for(int i=0; i<n; i++ ) {
KEY_TYPE T = genKey();
if (m.containsKey(KEY2OBJ(T)) != t.containsKey(KEY2OBJ(T))) {
System.out.println("Error (" + seed + "): divergence in keys between t and m (polymorphic method)");
System.exit( 1 );
}
#if ( #keys(reference) ) && ! ( #values(reference) )
if ((m.GET_VALUE(T) != VALUE_NULL) != ((t.get(KEY2OBJ(T)) == null ? VALUE_NULL : VALUE_OBJ2TYPE(t.get(KEY2OBJ(T)))) != VALUE_NULL) ||
t.get(KEY2OBJ(T)) != null &&
! VALUE2OBJ(m.GET_VALUE(T)).equals(t.get(KEY2OBJ(T))))
#else
if ((m.get(T) != VALUE_NULL) != ((t.get(KEY2OBJ(T)) == null ? VALUE_NULL : VALUE_OBJ2TYPE(t.get(KEY2OBJ(T)))) != VALUE_NULL) ||
t.get(KEY2OBJ(T)) != null &&
! m.get(KEY2OBJ(T)).equals(t.get(KEY2OBJ(T))))
#endif
{
System.out.println("Error (" + seed + "): divergence between t and m (polymorphic method)");
System.exit( 1 );
}
}
/* Again, we check that inquiries about random data give the same answer in m and t, but
for m we use the standard method. */
for(int i=0; i<n; i++ ) {
KEY_TYPE T = genKey();
if (!valEquals(m.get(KEY2OBJ(T)), t.get(KEY2OBJ(T)))) {
System.out.println("Error (" + seed + "): divergence between t and m (standard method)");
System.exit( 1 );
}
}
/* Now we put and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<20*n; i++ ) {
KEY_TYPE T = genKey();
VALUE_TYPE U = genValue();
if (!valEquals(m.put(KEY2OBJ(T), VALUE2OBJ(U)), t.put(KEY2OBJ(T), VALUE2OBJ(U)))) {
System.out.println("Error (" + seed + "): divergence in put() between t and m");
System.exit( 1 );
}
T = genKey();
if (!valEquals(m.remove(KEY2OBJ(T)), t.remove(KEY2OBJ(T)))) {
System.out.println("Error (" + seed + "): divergence in remove() between t and m");
System.exit( 1 );
}
}
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after removal");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after removal");
/* Now we check that m actually holds the same data. */
for(java.util.Iterator i=t.entrySet().iterator(); i.hasNext(); ) {
java.util.Map.Entry e = (java.util.Map.Entry)i.next();
if (!valEquals(e.getValue(), m.get(e.getKey()))) {
System.out.println("Error (" + seed + "): m and t differ on an entry ("+e+") after removal (iterating on t)");
System.exit( 1 );
}
}
/* Now we check that m actually holds that data, but iterating on m. */
for(java.util.Iterator i=m.entrySet().iterator(); i.hasNext(); ) {
java.util.Map.Entry e = (java.util.Map.Entry)i.next();
if (!valEquals(e.getValue(), t.get(e.getKey()))) {
System.out.println("Error (" + seed + "): m and t differ on an entry ("+e+") after removal (iterating on m)");
System.exit( 1 );
}
}
/* Now we check that m actually holds the same keys. */
for(java.util.Iterator i=t.keySet().iterator(); i.hasNext(); ) {
Object o = i.next();
if (!m.containsKey(o)) {
System.out.println("Error (" + seed + "): m and t differ on a key ("+o+") after removal (iterating on t)");
System.exit( 1 );
}
if (!m.keySet().contains(o)) {
System.out.println("Error (" + seed + "): m and t differ on a key ("+o+", in keySet()) after removal (iterating on t)");
System.exit( 1 );
}
}
/* Now we check that m actually holds the same keys, but iterating on m. */
for(java.util.Iterator i=m.keySet().iterator(); i.hasNext(); ) {
Object o = i.next();
if (!t.containsKey(o)) {
System.out.println("Error (" + seed + "): m and t differ on a key after removal (iterating on m)");
System.exit( 1 );
}
if (!t.keySet().contains(o)) {
System.out.println("Error (" + seed + "): m and t differ on a key (in keySet()) after removal (iterating on m)");
System.exit( 1 );
}
}
/* Now we check that m actually hold the same values. */
for(java.util.Iterator i=t.values().iterator(); i.hasNext(); ) {
Object o = i.next();
if (!m.containsValue(o)) {
System.out.println("Error (" + seed + "): m and t differ on a value after removal (iterating on t)");
System.exit( 1 );
}
if (!m.values().contains(o)) {
System.out.println("Error (" + seed + "): m and t differ on a value (in values()) after removal (iterating on t)");
System.exit( 1 );
}
}
/* Now we check that m actually hold the same values, but iterating on m. */
for(java.util.Iterator i=m.values().iterator(); i.hasNext(); ) {
Object o = i.next();
if (!t.containsValue(o)) {
System.out.println("Error (" + seed + "): m and t differ on a value after removal (iterating on m)");
System.exit( 1 );
}
if (!t.values().contains(o)) {
System.out.println("Error (" + seed + "): m and t differ on a value (in values()) after removal (iterating on m)");
System.exit( 1 );
}
}
int h = m.hashCode();
/* Now we save and read m. */
try {
java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test");
java.io.OutputStream os = new java.io.FileOutputStream(ff);
java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
oos.writeObject(m);
oos.close();
java.io.InputStream is = new java.io.FileInputStream(ff);
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
m = (OPEN_DOUBLE_HASH_MAP)ois.readObject();
ois.close();
ff.delete();
}
catch(Exception e) {
e.printStackTrace();
System.exit( 1 );
}
#if !#keyclass(Reference) && !#valueclass(Reference)
if (m.hashCode() != h) System.out.println("Error (" + seed + "): hashCode() changed after save/read");
/* Now we check that m actually holds that data. */
for(java.util.Iterator i=t.keySet().iterator(); i.hasNext(); ) {
Object o = i.next();
if (!valEquals(m.get(o),t.get(o))) {
System.out.println("Error (" + seed + "): m and t differ on an entry after save/read");
System.exit( 1 );
}
}
#else
m.clear();
m.putAll( t );
#endif
/* Now we put and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<20*n; i++ ) {
KEY_TYPE T = genKey();
VALUE_TYPE U = genValue();
if (!valEquals(m.put(KEY2OBJ(T), VALUE2OBJ(U)), t.put(KEY2OBJ(T), VALUE2OBJ(U)))) {
System.out.println("Error (" + seed + "): divergence in put() between t and m after save/read");
System.exit( 1 );
}
T = genKey();
if (!valEquals(m.remove(KEY2OBJ(T)), t.remove(KEY2OBJ(T)))) {
System.out.println("Error (" + seed + "): divergence in remove() between t and m after save/read");
System.exit( 1 );
}
}
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after post-save/read removal");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after post-save/read removal");
#ifdef Linked
/* Now we play with iterators. */
{
java.util.ListIterator i, j;
Object J;
Map.Entry E, F;
i = (java.util.ListIterator)m.entrySet().iterator();
j = new java.util.LinkedList( t.entrySet() ).listIterator();
for( int k = 0; k < 2*n; k++ ) {
ensure( i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext()" );
ensure( i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious()" );
if ( r.nextFloat() < .8 && i.hasNext() ) {
#ifdef Custom
ensure( m.strategy().equals( (E=(java.util.Map.Entry)i.next()).getKey(), J = (F=(Map.Entry)j.next()).getKey() ), "Error (" + seed + "): divergence in next()" );
#else
ensure( (E=(java.util.Map.Entry)i.next()).getKey().equals( J = (F=(Map.Entry)j.next()).getKey() ), "Error (" + seed + "): divergence in next()" );
#endif
if ( r.nextFloat() < 0.3 ) {
i.remove();
j.remove();
t.remove( J );
}
else if ( r.nextFloat() < 0.3 ) {
Object U = VALUE2OBJ(genValue());
E.setValue( U );
t.put( F.getKey(), U );
}
}
else if ( r.nextFloat() < .2 && i.hasPrevious() ) {
#ifdef Custom
ensure( m.strategy().equals( (E=(java.util.Map.Entry)i.previous()).getKey(), J = (F=(Map.Entry)j.previous()).getKey() ), "Error (" + seed + "): divergence in previous()" );
#else
ensure( (E=(java.util.Map.Entry)i.previous()).getKey().equals( J = (F=(Map.Entry)j.previous()).getKey() ), "Error (" + seed + "): divergence in previous()" );
#endif
if ( r.nextFloat() < 0.3 ) {
i.remove();
j.remove();
t.remove( J );
}
else if ( r.nextFloat() < 0.3 ) {
Object U = VALUE2OBJ(genValue());
E.setValue( U );
t.put( F.getKey(), U );
}
}
ensure( i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex()" );
ensure( i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex()" );
}
}
if ( t.size() > 0 ) {
java.util.ListIterator i, j;
Object J;
j = new java.util.LinkedList( t.keySet() ).listIterator();
int e = r.nextInt( t.size() );
Object from;
do from = j.next(); while( e-- != 0 );
i = (java.util.ListIterator)((SORTED_SET)m.keySet()).iterator( KEY_OBJ2TYPE( from ) );
for( int k = 0; k < 2*n; k++ ) {
ensure( i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext() (iterator with starting point " + from + ")" );
ensure( i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" );
if ( r.nextFloat() < .8 && i.hasNext() ) {
#ifdef Custom
ensure( m.strategy().equals( i.next(), J = j.next() ), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")" );
#else
ensure( i.next().equals( J = j.next() ), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")" );
#endif
if ( r.nextFloat() < 0.5 ) {
i.remove();
j.remove();
t.remove( J );
}
}
else if ( r.nextFloat() < .2 && i.hasPrevious() ) {
#ifdef Custom
ensure( m.strategy().equals( i.previous(), J = j.previous() ), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")" );
#else
ensure( i.previous().equals( J = j.previous() ), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")" );
#endif
if ( r.nextFloat() < 0.5 ) {
i.remove();
j.remove();
t.remove( J );
}
}
ensure( i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex() (iterator with starting point " + from + ")" );
ensure( i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex() (iterator with starting point " + from + ")" );
}
}
/* Now we check that m actually holds that data. */
ensure( m.equals(t), "Error (" + seed + "): ! m.equals( t ) after iteration" );
ensure( t.equals(m), "Error (" + seed + "): ! t.equals( m ) after iteration" );
#endif
/* Now we take out of m everything, and check that it is empty. */
for(java.util.Iterator i=t.keySet().iterator(); i.hasNext(); ) m.remove(i.next());
if (!m.isEmpty()) {
System.out.println("Error (" + seed + "): m is not empty (as it should be)");
System.exit( 1 );
}
#if (#keyclass(Integer) || #keyclass(Long)) && (#valueclass(Integer) || #valueclass(Long))
m = new OPEN_DOUBLE_HASH_MAP(n, f);
t.clear();
int x;
/* Now we torture-test the hash table. This part is implemented only for integers and longs. */
int p = m.state.length;
for(int i=0; i<p; i++) {
for (int j=0; j<20; j++) {
m.put(i+(r.nextInt() % 10)*p, 1);
m.remove(i+(r.nextInt() % 10)*p);
}
for (int j=-10; j<10; j++) m.remove(i+j*p);
}
t.putAll(m);
/* Now all table entries are REMOVED. */
for(int i=0; i<(p*f)/10; i++) {
for (int j=0; j<10; j++) {
if (!valEquals(m.put(KEY2OBJ(x = i+(r.nextInt() % 10)*p), VALUE2OBJ(1)), t.put(KEY2OBJ(x), VALUE2OBJ(1))))
System.out.println("Error (" + seed + "): m and t differ on an entry during torture-test insertion.");
}
}
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after torture-test insertion");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after torture-test insertion");
for(int i=0; i<p/10; i++) {
for (int j=0; j<10; j++) {
if (!valEquals(m.remove(KEY2OBJ(x = i+(r.nextInt() % 10)*p)), t.remove(KEY2OBJ(x))))
System.out.println("Error (" + seed + "): m and t differ on an entry during torture-test removal.");
}
}
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after torture-test removal");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after torture-test removal");
if (!m.equals(m.clone())) System.out.println("Error (" + seed + "): !m.equals(m.clone()) after torture-test removal");
if (!((OPEN_DOUBLE_HASH_MAP)m.clone()).equals(m)) System.out.println("Error (" + seed + "): !m.clone().equals(m) after torture-test removal");
m.rehash();
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after rehash()");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after rehash()");
m.trim();
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after trim()");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after trim()");
#endif
System.out.println("Test OK");
return;
}
public static void main( String args[] ) {
float f = Hash.DEFAULT_LOAD_FACTOR;
int n = Integer.parseInt(args[1]);
if (args.length>2) f = Float.parseFloat(args[2]);
if ( args.length > 3 ) r = new java.util.Random( seed = Long.parseLong( args[ 3 ] ) );
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, f, "speedComp".equals(args[0]) );
else if ( "test".equals( args[0] ) ) test(n, f);
} catch( Throwable e ) {
e.printStackTrace( System.err );
System.err.println( "seed: " + seed );
}
}
#endif
}
|