1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
|
/*
* Copyright (C) 2002-2014 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.Size64;
import it.unimi.dsi.fastutil.HashCommon;
import it.unimi.dsi.fastutil.booleans.BooleanBigArrays;
import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
/** A type-specific hash big set with with a fast, small-footprint implementation.
*
* <P>Instances of this class use a hash table to represent a big set: the number
* of elements in the set is limited only by the amount of core memory. The table is
* backed by a {@linkplain it.unimi.dsi.fastutil.BigArrays big array} and is
* enlarged as needed by doubling its size when new entries are created, but it is <em>never</em> made
* smaller (even on a {@link #clear()}). A family of {@linkplain #trim(long) trimming
* method} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* <p>The methods of this class are about 30% slower than those of the corresponding non-big set.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_BIG_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash, Size64 {
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = ASSERTS_VALUE;
/** The big array of keys. */
protected transient KEY_GENERIC_TYPE[][] key;
/** The big array telling whether a position is used. */
protected transient boolean[][] used;
/** The acceptable load factor. */
protected final float f;
/** The current table size (always a power of 2). */
protected transient long n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient long maxFill;
/** The mask for wrapping a position counter. */
protected transient long mask;
/** The mask for wrapping a segment counter. */
protected transient int segmentMask;
/** The mask for wrapping a base counter. */
protected transient int baseMask;
/** Number of entries in the set. */
protected long size;
/** Initialises the mask values. */
private void initMasks() {
mask = n - 1;
/* Note that either we have more than one segment, and in this case all segments
* are BigArrays.SEGMENT_SIZE long, or we have exactly one segment whose length
* is a power of two. */
segmentMask = key[ 0 ].length - 1;
baseMask = key.length - 1;
}
/** Creates a new hash big set.
*
* <p>The actual table size will be the least power of two greater than <code>expected</code>/<code>f</code>.
*
* @param expected the expected number of elements in the set.
* @param f the load factor.
*/
@SuppressWarnings("unchecked")
public OPEN_HASH_BIG_SET( final long expected, final float f ) {
if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" );
if ( n < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" );
this.f = f;
n = bigArraySize( expected, f );
maxFill = maxFill( n, f );
key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( n );
used = BooleanBigArrays.newBigArray( n );
initMasks();
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash big set.
*/
public OPEN_HASH_BIG_SET( final long expected ) {
this( expected, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public OPEN_HASH_BIG_SET() {
this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final Collection<? extends KEY_GENERIC_CLASS> c, final float f ) {
this( c.size(), f );
addAll( c );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash big set.
*/
public OPEN_HASH_BIG_SET( final Collection<? extends KEY_GENERIC_CLASS> c ) {
this( c, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final float f ) {
this( c.size(), f );
addAll( c );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash big set.
*/
public OPEN_HASH_BIG_SET( final COLLECTION KEY_EXTENDS_GENERIC c ) {
this( c, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f ) {
this( DEFAULT_INITIAL_SIZE, f );
while( i.hasNext() ) add( i.NEXT_KEY() );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the new hash big set.
*/
public OPEN_HASH_BIG_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i ) {
this( i, DEFAULT_LOAD_FACTOR );
}
#if #keys(primitive)
/** Creates a new hash big set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final Iterator<?> i, final float f ) {
this( ITERATORS.AS_KEY_ITERATOR( i ), f );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the new hash big set.
*/
public OPEN_HASH_BIG_SET( final Iterator<?> i ) {
this( ITERATORS.AS_KEY_ITERATOR( i ) );
}
#endif
/** Creates a new hash big set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the new hash big set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f ) {
this( length < 0 ? 0 : length, f );
ARRAYS.ensureOffsetLength( a, offset, length );
for( int i = 0; i < length; i++ ) add( a[ offset + i ] );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the new hash big set.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) {
this( a, offset, length, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set copying the elements of an array.
*
* @param a an array to be copied into the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final float f ) {
this( a, 0, a.length, f );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying the elements of an array.
*
* @param a an array to be copied into the new hash big set.
*/
public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a ) {
this( a, DEFAULT_LOAD_FACTOR );
}
public boolean add( final KEY_GENERIC_TYPE k ) {
final long h = KEY2LONGHASH( k );
// The starting point.
int displ = (int)( h & segmentMask );
int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );
// There's always an unused entry.
while( used[ base ][ displ ] ) {
if ( KEY_EQUALS( key[ base ][ displ ], k ) ) return false;
base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;
}
used[ base ][ displ ] = true;
key[ base ][ displ ] = k;
if ( size++ >= maxFill ) rehash( 2 * n );
if ( ASSERTS ) checkTable();
return true;
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
* @return the position cleared by the shifting process.
*/
protected final long shiftKeys( long pos ) {
// Shift entries with the same hash.
long last, slot;
/*
for( int i = 0; i < 10; i++ ) System.err.print( key[ ( t + i ) & mask ] + "(" + (avalanche( (long)KEY2INT( key[ ( t + i ) & mask ] ) ) & mask) + "; " + used[ ( t + i ) & mask ] + ") ");
System.err.println();
*/
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
while( BooleanBigArrays.get( used, pos ) ) {
slot = KEY2LONGHASH( BIG_ARRAYS.get( key, pos ) ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
if ( ! BooleanBigArrays.get( used, pos ) ) break;
BIG_ARRAYS.set( key, last, BIG_ARRAYS.get( key, pos ) );
}
BooleanBigArrays.set( used, last, false );
#if #keys(reference)
BIG_ARRAYS.set( key, last, null );
#endif
return last;
}
@SuppressWarnings("unchecked")
public boolean remove( final KEY_TYPE k ) {
final long h = KEY2LONGHASH( k );
// The starting point.
int displ = (int)( h & segmentMask );
int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );
// There's always an unused entry.
while( used[ base ][ displ ] ) {
if ( KEY_EQUALS( key[ base ][ displ ], k ) ) {
size--;
shiftKeys( base * (long)BigArrays.SEGMENT_SIZE + displ );
if ( ASSERTS ) checkTable();
return true;
}
base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;
}
return false;
}
@SuppressWarnings("unchecked")
public boolean contains( final KEY_TYPE k ) {
final long h = KEY2LONGHASH( k );
// The starting point.
int displ = (int)( h & segmentMask );
int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );
// There's always an unused entry.
while( used[ base ][ displ ] ) {
if ( KEY_EQUALS( key[ base ][ displ ], k ) ) return true;
base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;
}
return false;
}
#if #keyclass(Object)
/** Returns the element of this set that is equal to the given key, or <code>null</code>.
* @return the element of this set that is equal to the given key, or <code>null</code>.
*/
public K get( final KEY_TYPE k ) {
final long h = KEY2LONGHASH( k );
// The starting point.
int displ = (int)( h & segmentMask );
int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );
// There's always an unused entry.
while( used[ base ][ displ ] ) {
if ( KEY_EQUALS( key[ base ][ displ ], k ) ) return key[ base ][ displ ];
base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;
}
return null;
}
#endif
/* Removes all elements from this set.
*
* <P>To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim(long)}.
*
*/
public void clear() {
if ( size == 0 ) return;
size = 0;
BooleanBigArrays.fill( used, false );
#if #keys(reference)
ObjectBigArrays.fill( key, null );
#endif
}
/** An iterator over a hash big set. */
private class SetIterator extends KEY_ABSTRACT_ITERATOR KEY_GENERIC {
/** The base of the next entry to be returned, if positive or zero. If negative, the next entry to be
returned, if any, is that of index -base -2 from the {@link #wrapped} list. */
int base;
/** The displacement of the next entry to be returned. */
int displ;
/** The base of the last entry that has been returned. It is -1 if either
we did not return an entry yet, or the last returned entry has been removed. */
int lastBase;
/** The displacement of the last entry that has been returned. It is undefined if either
we did not return an entry yet, or the last returned entry has been removed. */
int lastDispl;
/** A downward counter measuring how many entries must still be returned. */
long c = size;
/** A lazily allocated list containing elements that have wrapped around the table because of removals; such elements
would not be enumerated (other elements would be usually enumerated twice in their place). */
ARRAY_LIST KEY_GENERIC wrapped;
{
base = key.length;
lastBase = -1;
final boolean used[][] = OPEN_HASH_BIG_SET.this.used;
if ( c != 0 ) do
if ( displ-- == 0 ) {
base--;
displ = (int)mask;
}
while( ! used[ base ][ displ ] );
}
public boolean hasNext() {
return c != 0;
}
public KEY_GENERIC_TYPE NEXT_KEY() {
if ( ! hasNext() ) throw new NoSuchElementException();
c--;
// We are just enumerating elements from the wrapped list.
if ( base < 0 ) return wrapped.GET_KEY( - ( lastBase = --base ) - 2 );
final KEY_GENERIC_TYPE retVal = key[ lastBase = base ][ lastDispl = displ ];
if ( c != 0 ) {
final boolean used[][] = OPEN_HASH_BIG_SET.this.used;
do
if ( displ-- == 0 ) {
if ( base-- == 0 ) break;
displ = (int)mask;
}
while( ! used[ base ][ displ ] );
// When here base < 0 there are no more elements to be enumerated by scanning, but wrapped might be nonempty.
}
return retVal;
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry. If any entry wraps around the table, instantiates
* lazily {@link #wrapped} and stores the entry.
*
* @param pos a starting position.
* @return the position cleared by the shifting process.
*/
protected final long shiftKeys( long pos ) {
// Shift entries with the same hash.
long last, slot;
/*
for( int i = 0; i < 10; i++ ) System.err.print( key[ ( t + i ) & mask ] + "(" + (avalanche( (long)KEY2INT( key[ ( t + i ) & mask ] ) ) & mask) + "; " + used[ ( t + i ) & mask ] + ") ");
System.err.println();
*/
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
while( BooleanBigArrays.get( used, pos ) ) {
slot = KEY2LONGHASH( BIG_ARRAYS.get( key, pos ) ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
if ( ! BooleanBigArrays.get( used, pos ) ) break;
if ( pos < last ) {
// Wrapped entry.
if ( wrapped == null ) wrapped = new ARRAY_LIST KEY_GENERIC();
wrapped.add( BIG_ARRAYS.get( key, pos ) );
}
BIG_ARRAYS.set( key, last, BIG_ARRAYS.get( key, pos ) );
}
BooleanBigArrays.set( used, last, false );
#if #keys(reference)
BIG_ARRAYS.set( key, last, null );
#endif
return last;
}
@SuppressWarnings("unchecked")
public void remove() {
if ( lastBase == -1 ) throw new IllegalStateException();
if ( base < -1 ) {
// We're removing wrapped entries.
#if #keys(reference)
OPEN_HASH_BIG_SET.this.remove( wrapped.set( - base - 2, null ) );
#else
OPEN_HASH_BIG_SET.this.remove( wrapped.GET_KEY( - base - 2 ) );
#endif
lastBase = -1;
return;
}
size--;
if ( shiftKeys( lastBase * (long)BigArrays.SEGMENT_SIZE + lastDispl ) == base * (long)BigArrays.SEGMENT_SIZE + displ && c > 0 ) {
c++;
NEXT_KEY();
}
lastBase = -1; // You can no longer remove this entry.
if ( ASSERTS ) checkTable();
}
}
public KEY_ITERATOR KEY_GENERIC iterator() {
return new SetIterator();
}
/** A no-op for backward compatibility. The kind of tables implemented by
* this class never need rehashing.
*
* <P>If you need to reduce the table size to fit exactly
* this set, use {@link #trim()}.
*
* @return true.
* @see #trim()
* @deprecated A no-op.
*/
@Deprecated
public boolean rehash() {
return true;
}
/** Rehashes this set, making the table as small as possible.
*
* <P>This method rehashes the table to the smallest size satisfying the
* load factor. It can be used when the set will not be changed anymore, so
* to optimize access speed and size.
*
* <P>If the table size is already the minimum possible, this method
* does nothing.
*
* @return true if there was enough memory to trim the set.
* @see #trim(long)
*/
public boolean trim() {
final long l = bigArraySize( size, f );
if ( l >= n ) return true;
try {
rehash( l );
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes this set if the table is too large.
*
* <P>Let <var>N</var> be the smallest table size that can hold
* <code>max(n,{@link #size64()})</code> entries, still satisfying the load factor. If the current
* table size is smaller than or equal to <var>N</var>, this method does
* nothing. Otherwise, it rehashes this set in a table of size
* <var>N</var>.
*
* <P>This method is useful when reusing sets. {@linkplain #clear() Clearing a
* set} leaves the table size untouched. If you are reusing a set
* many times, you can call this method with a typical
* size to avoid keeping around a very large table just
* because of a few large transient sets.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the set.
* @see #trim()
*/
public boolean trim( final long n ) {
final long l = bigArraySize( n, f );
if ( this.n <= l ) return true;
try {
rehash( l );
}
catch( OutOfMemoryError cantDoIt ) { return false; }
return true;
}
/** Resizes the set.
*
* <P>This method implements the basic rehashing strategy, and may be
* overriden by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newN the new size
*/
@SuppressWarnings("unchecked")
protected void rehash( final long newN ) {
final boolean used[][] = this.used;
final KEY_GENERIC_TYPE key[][] = this.key;
final boolean newUsed[][] = BooleanBigArrays.newBigArray( newN );
final KEY_GENERIC_TYPE newKey[][] = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( newN );
final long mask = newN - 1; // Note that this is used by the hashing macro
final int newSegmentMask = newKey[ 0 ].length - 1;
final int newBaseMask = newKey.length - 1;
int base = 0, displ = 0;
long h;
KEY_GENERIC_TYPE k;
for( long i = size; i-- != 0; ) {
while( ! used[ base ][ displ ] ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
k = key[ base ][ displ ];
h = KEY2LONGHASH( k );
// The starting point.
int d = (int)( h & newSegmentMask );
int b = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );
while( newUsed[ b ][ d ] ) b = ( b + ( ( d = ( d + 1 ) & newSegmentMask ) == 0 ? 1 : 0 ) ) & newBaseMask;
newUsed[ b ][ d ] = true;
newKey[ b ][ d ] = k;
base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
}
this.n = newN;
this.key = newKey;
this.used = newUsed;
initMasks();
maxFill = maxFill( n, f );
}
@Deprecated
public int size() {
return (int)Math.min( Integer.MAX_VALUE, size );
}
public long size64() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
/** Returns a deep copy of this big set.
*
* <P>This method performs a deep copy of this big hash set; the data stored in the
* set, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this big set.
*/
@SuppressWarnings("unchecked")
public OPEN_HASH_BIG_SET KEY_GENERIC clone() {
OPEN_HASH_BIG_SET KEY_GENERIC c;
try {
c = (OPEN_HASH_BIG_SET KEY_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.key = BIG_ARRAYS.copy( key );
c.used = BooleanBigArrays.copy( used );
return c;
}
/** Returns a hash code for this set.
*
* This method overrides the generic method provided by the superclass.
* Since <code>equals()</code> is not overriden, it is important
* that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this set.
*/
public int hashCode() {
final boolean used[][] = this.used;
final KEY_GENERIC_TYPE key[][] = this.key;
int h = 0;
int base = 0, displ = 0;
for( long j = size; j-- != 0; ) {
while( ! used[ base ][ displ ] ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
#if #keys(reference)
if ( this != key[ base ][ displ ] )
#endif
h += KEY2JAVAHASH( key[ base ][ displ ] );
base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
}
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final KEY_ITERATOR KEY_GENERIC i = iterator();
s.defaultWriteObject();
for( long j = size; j-- != 0; ) s.WRITE_KEY( i.NEXT_KEY() );
}
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = bigArraySize( size, f );
maxFill = maxFill( n, f );
final KEY_GENERIC_TYPE[][] key = this.key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( n );
final boolean used[][] = this.used = BooleanBigArrays.newBigArray( n );
initMasks();
long h;
KEY_GENERIC_TYPE k;
int base, displ;
for( long i = size; i-- != 0; ) {
k = KEY_GENERIC_CAST s.READ_KEY();
h = KEY2LONGHASH( k );
base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );
displ = (int)( h & segmentMask );
while( used[ base ][ displ ] ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;
used[ base ][ displ ] = true;
key[ base ][ displ ] = k;
}
if ( ASSERTS ) checkTable();
}
#ifdef ASSERTS_CODE
private void checkTable() {
final boolean[][] used = this.used;
assert ( n & -n ) == n : "Table length is not a power of two: " + n;
assert n == BIG_ARRAYS.length( key );
assert n == BooleanBigArrays.length( used );
long n = this.n;
while( n-- != 0 )
if ( BooleanBigArrays.get( used, n ) && ! contains( BIG_ARRAYS.get( key, n ) ) )
throw new AssertionError( "Hash table has key " + BIG_ARRAYS.get( key, n ) + " marked as occupied, but the key does not belong to the table" );
#if #keys(primitive)
java.util.HashSet<KEY_GENERIC_CLASS> s = new java.util.HashSet<KEY_GENERIC_CLASS> ();
#else
java.util.HashSet<Object> s = new java.util.HashSet<Object>();
#endif
for( long i = size(); i-- != 0; )
if ( BooleanBigArrays.get( used, i ) && ! s.add( BIG_ARRAYS.get( key, i ) ) ) throw new AssertionError( "Key " + BIG_ARRAYS.get( key, i ) + " appears twice" );
}
#else
private void checkTable() {}
#endif
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random( seed );
private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
return r.NEXT_KEY();
#elif #keyclass(Object)
return Integer.toBinaryString( r.nextInt() );
#else
return new java.io.Serializable() {};
#endif
}
private static final class ArrayComparator implements java.util.Comparator {
public int compare( Object a, Object b ) {
byte[] aa = (byte[])a;
byte[] bb = (byte[])b;
int length = Math.min( aa.length, bb.length );
for( int i = 0; i < length; i++ ) {
if ( aa[ i ] < bb[ i ] ) return -1;
if ( aa[ i ] > bb[ i ] ) return 1;
}
return aa.length == bb.length ? 0 : ( aa.length < bb.length ? -1 : 1 );
}
}
private static final class MockSet extends java.util.TreeSet {
private java.util.List list = new java.util.ArrayList();
public MockSet( java.util.Comparator c ) { super( c ); }
public boolean add( Object k ) {
if ( ! contains( k ) ) list.add( k );
return super.add( k );
}
public boolean addAll( Collection c ) {
java.util.Iterator i = c.iterator();
boolean result = false;
while( i.hasNext() ) result |= add( i.next() );
return result;
}
public boolean removeAll( Collection c ) {
java.util.Iterator i = c.iterator();
boolean result = false;
while( i.hasNext() ) result |= remove( i.next() );
return result;
}
public boolean remove( Object k ) {
if ( contains( k ) ) {
int i = list.size();
while( i-- != 0 ) if ( comparator().compare( list.get( i ), k ) == 0 ) {
list.remove( i );
break;
}
}
return super.remove( k );
}
private void justRemove( Object k ) { super.remove( k ); }
public java.util.Iterator iterator() {
return new java.util.Iterator() {
final java.util.Iterator iterator = list.iterator();
Object curr;
public Object next() { return curr = iterator.next(); }
public boolean hasNext() { return iterator.hasNext(); }
public void remove() {
justRemove( curr );
iterator.remove();
}
};
}
}
private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
private static java.text.FieldPosition fp = new java.text.FieldPosition( 0 );
private static String format( double d ) {
StringBuffer s = new StringBuffer();
return format.format( d, s, fp ).toString();
}
private static void speedTest( int n, float f, boolean comp ) {
int i, j;
OPEN_HASH_BIG_SET m;
java.util.HashSet t;
KEY_TYPE k[] = new KEY_TYPE[n];
KEY_TYPE nk[] = new KEY_TYPE[n];
long ms;
for( i = 0; i < n; i++ ) {
k[i] = genKey();
nk[i] = genKey();
}
double totAdd = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, d;
if ( comp ) { for( j = 0; j < 20; j++ ) {
t = new java.util.HashSet( 16 );
/* We add pairs to t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.add( KEY2OBJ( k[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totAdd += d;
System.out.print("Add: " + format( d ) +" K/s " );
/* We check for pairs in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.contains( KEY2OBJ( k[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totYes += d;
System.out.print("Yes: " + format( d ) +" K/s " );
/* We check for pairs not in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.contains( KEY2OBJ( nk[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totNo += d;
System.out.print("No: " + format( d ) +" K/s " );
/* We iterate on t. */
ms = System.currentTimeMillis();
for( java.util.Iterator it = t.iterator(); it.hasNext(); it.next() );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totIter += d;
System.out.print("Iter: " + format( d ) +" K/s " );
/* We delete pairs not in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.remove( KEY2OBJ( nk[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totRemNo += d;
System.out.print("RemNo: " + format( d ) +" K/s " );
/* We delete pairs in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.remove( KEY2OBJ( k[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totRemYes += d;
System.out.print("RemYes: " + format( d ) +" K/s " );
System.out.println();
}
System.out.println();
System.out.println( "java.util Add: " + format( totAdd/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s Iter: " + format( totIter/(j-3) ) + " K/s RemNo: " + format( totRemNo/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + "K/s" );
System.out.println();
totAdd = totYes = totNo = totIter = totRemYes = totRemNo = 0;
}
for( j = 0; j < 20; j++ ) {
m = new OPEN_HASH_BIG_SET( 16, f );
/* We add pairs to m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.add( k[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totAdd += d;
System.out.print("Add: " + format( d ) +" K/s " );
/* We check for pairs in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.contains( k[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totYes += d;
System.out.print("Yes: " + format( d ) +" K/s " );
/* We check for pairs not in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.contains( nk[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totNo += d;
System.out.print("No: " + format( d ) +" K/s " );
/* We iterate on m. */
ms = System.currentTimeMillis();
for( KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY() );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totIter += d;
System.out.print("Iter: " + format( d ) +" K/s " );
/* We delete pairs not in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.remove( nk[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totRemNo += d;
System.out.print("RemNo: " + format( d ) +" K/s " );
/* We delete pairs in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.remove( k[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totRemYes += d;
System.out.print("RemYes: " + format( d ) +" K/s " );
System.out.println();
}
System.out.println();
System.out.println( "fastutil Add: " + format( totAdd/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s Iter: " + format( totIter/(j-3) ) + " K/s RemNo: " + format( totRemNo/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + " K/s" );
System.out.println();
}
private static void fatal( String msg ) {
System.out.println( msg );
System.exit( 1 );
}
private static void ensure( boolean cond, String msg ) {
if ( cond ) return;
fatal( msg );
}
private static void printProbes( OPEN_HASH_BIG_SET m ) {
long totProbes = 0;
double totSquareProbes = 0;
int maxProbes = 0;
final double f = (double)m.size / m.n;
for( int i = 0, c = 0; i < m.n; i++ ) {
if ( BooleanBigArrays.get( m.used, i ) ) c++;
else {
if ( c != 0 ) {
final long p = ( c + 1 ) * ( c + 2 ) / 2;
totProbes += p;
totSquareProbes += (double)p * p;
}
maxProbes = Math.max( c, maxProbes );
c = 0;
totProbes++;
totSquareProbes++;
}
}
final double expected = (double)totProbes / m.n;
System.err.println( "Expected probes: " + (
3 * Math.sqrt( 3 ) * ( f / ( ( 1 - f ) * ( 1 - f ) ) ) + 4 / ( 9 * f ) - 1
) + "; actual: " + expected + "; stddev: " + Math.sqrt( totSquareProbes / m.n - expected * expected ) + "; max probes: " + maxProbes );
}
private static void test( int n, float f ) {
int c;
OPEN_HASH_BIG_SET m = new OPEN_HASH_BIG_SET(Hash.DEFAULT_INITIAL_SIZE, f);
java.util.Set t = new java.util.HashSet();
/* First of all, we fill t with random data. */
for(int i=0; i<f * n; i++ ) t.add(KEY2OBJ(genKey()));
/* Now we add to m the same data */
m.addAll(t);
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after insertion");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after insertion");
printProbes( m );
/* Now we check that m actually holds that data. */
for(java.util.Iterator i=t.iterator(); i.hasNext(); ) {
Object e = i.next();
if (!m.contains(e)) {
System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on t)");
System.exit( 1 );
}
}
/* Now we check that m actually holds that data, but iterating on m. */
c = 0;
for(java.util.Iterator i=m.iterator(); i.hasNext(); ) {
Object e = i.next();
c++;
if (!t.contains(e)) {
System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on m)");
System.exit( 1 );
}
}
if ( c != t.size() ) {
System.out.println("Error (" + seed + "): m has only " + c + " keys instead of " + t.size() + " after insertion (iterating on m)");
System.exit( 1 );
}
/* Now we check that inquiries about random data give the same answer in m and t. For
m we use the polymorphic method. */
for(int i=0; i<n; i++ ) {
KEY_TYPE T = genKey();
if (m.contains(T) != t.contains(KEY2OBJ(T))) {
System.out.println("Error (" + seed + "): divergence in keys between t and m (polymorphic method)");
System.exit( 1 );
}
}
/* Again, we check that inquiries about random data give the same answer in m and t, but
for m we use the standard method. */
for(int i=0; i<n; i++ ) {
KEY_TYPE T = genKey();
if (m.contains(KEY2OBJ(T)) != t.contains(KEY2OBJ(T))) {
System.out.println("Error (" + seed + "): divergence between t and m (standard method)");
System.exit( 1 );
}
}
/* Now we put and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<20*n; i++ ) {
KEY_TYPE T = genKey();
if (m.add(KEY2OBJ(T)) != t.add(KEY2OBJ(T))) {
System.out.println("Error (" + seed + "): divergence in add() between t and m");
System.exit( 1 );
}
T = genKey();
if (m.remove(KEY2OBJ(T)) != t.remove(KEY2OBJ(T))) {
System.out.println("Error (" + seed + "): divergence in remove() between t and m");
System.exit( 1 );
}
}
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after removal");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after removal");
/* Now we check that m actually holds that data. */
for(java.util.Iterator i=t.iterator(); i.hasNext(); ) {
Object e = i.next();
if (!m.contains(e)) {
System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on t)");
System.exit( 1 );
}
}
/* Now we check that m actually holds that data, but iterating on m. */
for(java.util.Iterator i=m.iterator(); i.hasNext(); ) {
Object e = i.next();
if (!t.contains(e)) {
System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on m)");
System.exit( 1 );
}
}
printProbes( m );
/* Now we make m into an array, make it again a set and check it is OK. */
KEY_TYPE a[] = m.TO_KEY_ARRAY();
if (!new OPEN_HASH_BIG_SET(a).equals(m))
System.out.println("Error (" + seed + "): toArray() output (or array-based constructor) is not OK");
/* Now we check cloning. */
ensure( m.equals( ((OPEN_HASH_BIG_SET)m).clone() ), "Error (" + seed + "): m does not equal m.clone()" );
ensure( ((OPEN_HASH_BIG_SET)m).clone().equals( m ), "Error (" + seed + "): m.clone() does not equal m" );
int h = m.hashCode();
/* Now we save and read m. */
try {
java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test");
java.io.OutputStream os = new java.io.FileOutputStream(ff);
java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
oos.writeObject(m);
oos.close();
java.io.InputStream is = new java.io.FileInputStream(ff);
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
m = (OPEN_HASH_BIG_SET)ois.readObject();
ois.close();
ff.delete();
}
catch(Exception e) {
e.printStackTrace();
System.exit( 1 );
}
#if !#keyclass(Reference)
if (m.hashCode() != h) System.out.println("Error (" + seed + "): hashCode() changed after save/read");
printProbes( m );
/* Now we check that m actually holds that data, but iterating on m. */
for(java.util.Iterator i=m.iterator(); i.hasNext(); ) {
Object e = i.next();
if (!t.contains(e)) {
System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after save/read");
System.exit( 1 );
}
}
#else
m.clear();
m.addAll( t );
#endif
/* Now we put and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<20*n; i++ ) {
KEY_TYPE T = genKey();
if (m.add(KEY2OBJ(T)) != t.add(KEY2OBJ(T))) {
System.out.println("Error (" + seed + "): divergence in add() between t and m after save/read");
System.exit( 1 );
}
T = genKey();
if (m.remove(KEY2OBJ(T)) != t.remove(KEY2OBJ(T))) {
System.out.println("Error (" + seed + "): divergence in remove() between t and m after save/read");
System.exit( 1 );
}
}
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after post-save/read removal");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after post-save/read removal");
/* Now we take out of m everything, and check that it is empty. */
for(java.util.Iterator i=m.iterator(); i.hasNext(); ) { i.next(); i.remove();}
if (!m.isEmpty()) {
System.out.println("Error (" + seed + "): m is not empty (as it should be)");
System.exit( 1 );
}
#if #keyclass(Integer) || #keyclass(Long)
m = new OPEN_HASH_BIG_SET(n, f);
t.clear();
int x;
/* Now we torture-test the hash table. This part is implemented only for integers and longs. */
int p = m.used.length;
for(int i=0; i<p; i++) {
for (int j=0; j<20; j++) {
m.add(i+(r.nextInt() % 10)*p);
m.remove(i+(r.nextInt() % 10)*p);
}
for (int j=-10; j<10; j++) m.remove(i+j*p);
}
t.addAll(m);
/* Now all table entries are REMOVED. */
int k = 0;
for(int i=0; i<(p*f)/10; i++) {
for (int j=0; j<10; j++) {
k++;
x = i+(r.nextInt() % 10)*p;
if (m.add(x) != t.add(KEY2OBJ(x)))
System.out.println("Error (" + seed + "): m and t differ on a key during torture-test insertion.");
}
}
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after torture-test insertion");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after torture-test insertion");
for(int i=0; i<(p*f)/10; i++) {
for (int j=0; j<10; j++) {
x = i+(r.nextInt() % 10)*p;
if (m.remove(x) != t.remove(KEY2OBJ(x)))
System.out.println("Error (" + seed + "): m and t differ on a key during torture-test removal.");
}
}
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after torture-test removal");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after torture-test removal");
if (!m.equals(m.clone())) System.out.println("Error (" + seed + "): !m.equals(m.clone()) after torture-test removal");
if (!((OPEN_HASH_BIG_SET)m.clone()).equals(m)) System.out.println("Error (" + seed + "): !m.clone().equals(m) after torture-test removal");
m.rehash();
if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after rehash()");
if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after rehash()");
#endif
System.out.println("Test OK");
return;
}
public static void main( String args[] ) {
float f = Hash.DEFAULT_LOAD_FACTOR;
int n = Integer.parseInt(args[1]);
if (args.length>2) f = Float.parseFloat(args[2]);
if ( args.length > 3 ) r = new java.util.Random( seed = Long.parseLong( args[ 3 ] ) );
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, f, "speedComp".equals(args[0]) );
else if ( "test".equals( args[0] ) ) test(n, f);
} catch( Throwable e ) {
e.printStackTrace( System.err );
System.err.println( "seed: " + seed );
}
}
#endif
}
|