File: OpenHashBigSet.drv

package info (click to toggle)
libfastutil-java 6.5.15-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,716 kB
  • ctags: 1,035
  • sloc: java: 9,711; sh: 588; makefile: 423; xml: 211
file content (1296 lines) | stat: -rw-r--r-- 41,069 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
/*		 
 * Copyright (C) 2002-2014 Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.Size64;
import it.unimi.dsi.fastutil.HashCommon;
import it.unimi.dsi.fastutil.booleans.BooleanBigArrays;
import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;

import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;


/**  A type-specific hash big set with with a fast, small-footprint implementation.
 *
 * <P>Instances of this class use a hash table to represent a big set: the number
 * of elements in the set is limited only by the amount of core memory. The table is
 * backed by a {@linkplain it.unimi.dsi.fastutil.BigArrays big array} and is
 * enlarged as needed by doubling its size when new entries are created, but it is <em>never</em> made
 * smaller (even on a {@link #clear()}). A family of {@linkplain #trim(long) trimming
 * method} lets you control the size of the table; this is particularly useful
 * if you reuse instances of this class.
 *
 * <p>The methods of this class are about 30% slower than those of the corresponding non-big set.
 *
 * @see Hash
 * @see HashCommon
 */

public class OPEN_HASH_BIG_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash, Size64 {

    private static final long serialVersionUID = 0L;
	private static final boolean ASSERTS = ASSERTS_VALUE;

	/** The big array of keys. */
	protected transient KEY_GENERIC_TYPE[][] key;
	 
	/** The big array telling whether a position is used. */
	protected transient boolean[][] used;

	/** The acceptable load factor. */
	protected final float f;
	 
	/** The current table size (always a power of 2). */
	protected transient long n;

	/** Threshold after which we rehash. It must be the table size times {@link #f}. */
	protected transient long maxFill;

	/** The mask for wrapping a position counter. */
	protected transient long mask;

	/** The mask for wrapping a segment counter. */
	protected transient int segmentMask;

	/** The mask for wrapping a base counter. */
	protected transient int baseMask;

	/** Number of entries in the set. */
	protected long size;


	/** Initialises the mask values. */
	private void initMasks() {
		mask = n - 1;
		/* Note that either we have more than one segment, and in this case all segments
		 * are BigArrays.SEGMENT_SIZE long, or we have exactly one segment whose length
		 * is a power of two. */
		segmentMask = key[ 0 ].length - 1;
		baseMask = key.length - 1;		
	}

	/** Creates a new hash big set.
	 *
	 * <p>The actual table size will be the least power of two greater than <code>expected</code>/<code>f</code>.
	 *
	 * @param expected the expected number of elements in the set. 
	 * @param f the load factor.
	 */
	@SuppressWarnings("unchecked")
	public OPEN_HASH_BIG_SET( final long expected, final float f ) {
		if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" );
		if ( n < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" );

		this.f = f;
		
		n = bigArraySize( expected, f );
		maxFill = maxFill( n, f );
		key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( n );
		used = BooleanBigArrays.newBigArray( n );
		initMasks();
	}
	 
	 
	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
	 *
	 * @param expected the expected number of elements in the hash big set. 
	 */
	 
	public OPEN_HASH_BIG_SET( final long expected ) {
		this( expected, DEFAULT_LOAD_FACTOR );
	}

	/** Creates a new hash big set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
	 * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
	 */
	 
	public OPEN_HASH_BIG_SET() {
		this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR );
	} 

	/** Creates a new hash big set copying a given collection.
	 *
	 * @param c a {@link Collection} to be copied into the new hash big set. 
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final Collection<? extends KEY_GENERIC_CLASS> c, final float f ) {
		this( c.size(), f );
		addAll( c );
	}

	/** Creates a new hash big set  with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor 
	 * copying a given collection.
	 *
	 * @param c a {@link Collection} to be copied into the new hash big set. 
	 */
	 
	public OPEN_HASH_BIG_SET( final Collection<? extends KEY_GENERIC_CLASS> c ) {
		this( c, DEFAULT_LOAD_FACTOR );
	}

	/** Creates a new hash big set copying a given type-specific collection.
	 *
	 * @param c a type-specific collection to be copied into the new hash big set. 
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final float f ) {
		this( c.size(), f );
		addAll( c );
	}

	/** Creates a new hash big set  with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor 
	 * copying a given type-specific collection.
	 *
	 * @param c a type-specific collection to be copied into the new hash big set. 
	 */
	 
	public OPEN_HASH_BIG_SET( final COLLECTION KEY_EXTENDS_GENERIC c ) {
		this( c, DEFAULT_LOAD_FACTOR );
	}

	/** Creates a new hash big set using elements provided by a type-specific iterator.
	 *
	 * @param i a type-specific iterator whose elements will fill the new hash big set.
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f ) {
		this( DEFAULT_INITIAL_SIZE, f );
		while( i.hasNext() ) add( i.NEXT_KEY() );
	}

	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
	 *
	 * @param i a type-specific iterator whose elements will fill the new hash big set.
	 */
	 
	public OPEN_HASH_BIG_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i ) {
		this( i, DEFAULT_LOAD_FACTOR );
	}


#if #keys(primitive)

	/** Creates a new hash big set using elements provided by an iterator.
	 *
	 * @param i an iterator whose elements will fill the new hash big set.
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final Iterator<?> i, final float f ) {
		this( ITERATORS.AS_KEY_ITERATOR( i ), f );
	}
	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
	 *
	 * @param i an iterator whose elements will fill the new hash big set.
	 */
	 
	public OPEN_HASH_BIG_SET( final Iterator<?> i ) {
		this( ITERATORS.AS_KEY_ITERATOR( i ) );
	}

#endif


	/** Creates a new hash big set and fills it with the elements of a given array.
	 *
	 * @param a an array whose elements will be used to fill the new hash big set.
	 * @param offset the first element to use.
	 * @param length the number of elements to use.
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f ) {
		this( length < 0 ? 0 : length, f );
		ARRAYS.ensureOffsetLength( a, offset, length );
		for( int i = 0; i < length; i++ ) add( a[ offset + i ] );
	}

	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
	 *
	 * @param a an array whose elements will be used to fill the new hash big set.
	 * @param offset the first element to use.
	 * @param length the number of elements to use.
	 */
	 
	public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) {
		this( a, offset, length, DEFAULT_LOAD_FACTOR );
	}

	/** Creates a new hash big set copying the elements of an array.
	 *
	 * @param a an array to be copied into the new hash big set. 
	 * @param f the load factor.
	 */
	 
	public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final float f ) {
		this( a, 0, a.length, f );
	}

	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor 
	 * copying the elements of an array.
	 *
	 * @param a an array to be copied into the new hash big set. 
	 */
	 
	public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a ) {
		this( a, DEFAULT_LOAD_FACTOR );
	}

	public boolean add( final KEY_GENERIC_TYPE k ) {
		final long h = KEY2LONGHASH( k );

		// The starting point.
		int displ = (int)( h & segmentMask );
		int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );

		// There's always an unused entry.
		while( used[ base ][ displ ] ) {
			if ( KEY_EQUALS( key[ base ][ displ ], k ) ) return false;
			base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;
		}

		used[ base ][ displ ] = true;
		key[ base ][ displ ] = k;

		if ( size++ >= maxFill ) rehash( 2 * n );
		if ( ASSERTS ) checkTable();
		return true;
	}

	/** Shifts left entries with the specified hash code, starting at the specified position,
	 * and empties the resulting free entry.
	 *
	 * @param pos a starting position.
	 * @return the position cleared by the shifting process.
	 */
	protected final long shiftKeys( long pos ) {
		// Shift entries with the same hash.
		long last, slot;

		/*
		for( int i = 0; i < 10; i++ ) System.err.print( key[ ( t + i ) & mask ] + "(" + (avalanche( (long)KEY2INT( key[ ( t + i ) & mask ] ) ) & mask) + "; " + used[ ( t + i ) & mask ] + ") ");
		System.err.println();
		*/
		for(;;) {
			pos = ( ( last = pos ) + 1 ) & mask;
			
			while( BooleanBigArrays.get( used, pos ) ) {
				slot = KEY2LONGHASH( BIG_ARRAYS.get( key, pos ) ) & mask;
				if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
				pos = ( pos + 1 ) & mask;
			}

			if ( ! BooleanBigArrays.get( used, pos ) ) break;

			BIG_ARRAYS.set( key, last, BIG_ARRAYS.get( key, pos ) );
		}

		BooleanBigArrays.set( used, last, false );
#if #keys(reference)
		BIG_ARRAYS.set( key, last, null );
#endif
		return last;
	}

	@SuppressWarnings("unchecked")
	public boolean remove( final KEY_TYPE k ) {
		final long h = KEY2LONGHASH( k );

		// The starting point.
		int displ = (int)( h & segmentMask );
		int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );

		// There's always an unused entry.
		while( used[ base ][ displ ] ) {
			if ( KEY_EQUALS( key[ base ][ displ ], k ) ) {
				size--;
				shiftKeys( base * (long)BigArrays.SEGMENT_SIZE + displ );
				if ( ASSERTS ) checkTable();
				return true;
			}
			base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;
		}

		return false;
	}
	 
	@SuppressWarnings("unchecked")
	public boolean contains( final KEY_TYPE k ) {
		final long h = KEY2LONGHASH( k );

		// The starting point.
		int displ = (int)( h & segmentMask );
		int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );

		// There's always an unused entry.
		while( used[ base ][ displ ] ) {
			if ( KEY_EQUALS( key[ base ][ displ ], k ) ) return true; 
			base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;
		}

		return false;
	}

#if #keyclass(Object)
	/** Returns the element of this set that is equal to the given key, or <code>null</code>.
	 * @return the element of this set that is equal to the given key, or <code>null</code>.
	 */
	public K get( final KEY_TYPE k ) {
		final long h = KEY2LONGHASH( k );

		// The starting point.
		int displ = (int)( h & segmentMask );
		int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );

		// There's always an unused entry.
		while( used[ base ][ displ ] ) {
			if ( KEY_EQUALS( key[ base ][ displ ], k ) ) return key[ base ][ displ ]; 
			base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;
		}

		return null;
	}
#endif

	/* Removes all elements from this set.
	 *
	 * <P>To increase object reuse, this method does not change the table size.
	 * If you want to reduce the table size, you must use {@link #trim(long)}.
	 *
	 */

	public void clear() {
		if ( size == 0 ) return;
		size = 0;
		BooleanBigArrays.fill( used, false );
#if #keys(reference)
		ObjectBigArrays.fill( key, null );
#endif
	}



	/** An iterator over a hash big set. */

	private class SetIterator extends KEY_ABSTRACT_ITERATOR KEY_GENERIC {
		/** The base of the next entry to be returned, if positive or zero. If negative, the next entry to be
			returned, if any, is that of index -base -2 from the {@link #wrapped} list. */
		int base;
		/** The displacement of the next entry to be returned. */
		int displ;
		/** The base of the last entry that has been returned. It is -1 if either
			we did not return an entry yet, or the last returned entry has been removed. */
		int lastBase;
		/** The displacement of the last entry that has been returned. It is undefined if either
			we did not return an entry yet, or the last returned entry has been removed. */        
		int lastDispl;
		/** A downward counter measuring how many entries must still be returned. */
		long c = size;
		/** A lazily allocated list containing elements that have wrapped around the table because of removals; such elements
			would not be enumerated (other elements would be usually enumerated twice in their place). */
		ARRAY_LIST KEY_GENERIC wrapped;

		{ 
			base = key.length;
			lastBase = -1;
			final boolean used[][] = OPEN_HASH_BIG_SET.this.used;
			if ( c != 0 ) do 
				if ( displ-- == 0 ) {
					base--;
				   	displ = (int)mask;
				}
			while( ! used[ base ][ displ ] );
		}

		public boolean hasNext() {
			return c != 0;
		}

		public KEY_GENERIC_TYPE NEXT_KEY() {
			if ( ! hasNext() ) throw new NoSuchElementException();

			c--;
			// We are just enumerating elements from the wrapped list.
			if ( base < 0 ) return wrapped.GET_KEY( - ( lastBase = --base ) - 2  );

			final KEY_GENERIC_TYPE retVal = key[ lastBase = base ][ lastDispl = displ ];
			
			if ( c != 0 ) {
				final boolean used[][] = OPEN_HASH_BIG_SET.this.used;
				do 
					if ( displ-- == 0 ) {
						if ( base-- == 0 ) break;
				   		displ = (int)mask;
					}
				while( ! used[ base ][ displ ] );
				// When here base < 0 there are no more elements to be enumerated by scanning, but wrapped might be nonempty.
			}
			
			return retVal;
		}

		/** Shifts left entries with the specified hash code, starting at the specified position,
		 * and empties the resulting free entry. If any entry wraps around the table, instantiates
		 * lazily {@link #wrapped} and stores the entry.
		 *
		 * @param pos a starting position.
		 * @return the position cleared by the shifting process.
		 */
		protected final long shiftKeys( long pos ) {
			// Shift entries with the same hash.
			long last, slot;
	
			/*
			for( int i = 0; i < 10; i++ ) System.err.print( key[ ( t + i ) & mask ] + "(" + (avalanche( (long)KEY2INT( key[ ( t + i ) & mask ] ) ) & mask) + "; " + used[ ( t + i ) & mask ] + ") ");
			System.err.println();
			*/
			for(;;) {
				pos = ( ( last = pos ) + 1 ) & mask;
				
				while( BooleanBigArrays.get( used, pos ) ) {
					slot = KEY2LONGHASH( BIG_ARRAYS.get( key, pos ) ) & mask;
					if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
					pos = ( pos + 1 ) & mask;
				}
	
				if ( ! BooleanBigArrays.get( used, pos ) ) break;
				if ( pos < last ) {
					// Wrapped entry.
					if ( wrapped == null ) wrapped = new ARRAY_LIST KEY_GENERIC();
					wrapped.add( BIG_ARRAYS.get( key, pos ) );
				}

				BIG_ARRAYS.set( key, last, BIG_ARRAYS.get( key, pos ) );
			}
	
			BooleanBigArrays.set( used, last, false );
	#if #keys(reference)
			BIG_ARRAYS.set( key, last, null );
	#endif
			return last;
		}

		@SuppressWarnings("unchecked")
		public void remove() {
			if ( lastBase == -1 ) throw new IllegalStateException();
			if ( base < -1 ) {
				// We're removing wrapped entries.
#if #keys(reference)
				OPEN_HASH_BIG_SET.this.remove( wrapped.set( - base - 2, null ) );
#else
				OPEN_HASH_BIG_SET.this.remove( wrapped.GET_KEY( - base - 2 ) );
#endif
				lastBase = -1;
				return;
			}
			size--;
			if ( shiftKeys( lastBase * (long)BigArrays.SEGMENT_SIZE + lastDispl ) == base * (long)BigArrays.SEGMENT_SIZE + displ && c > 0 ) {
				c++;
				NEXT_KEY();
			}
			lastBase = -1; // You can no longer remove this entry.

			if ( ASSERTS ) checkTable();
		}
	}

	public KEY_ITERATOR KEY_GENERIC iterator() {
		return new SetIterator();
	}


	/** A no-op for backward compatibility. The kind of tables implemented by
	 * this class never need rehashing.
	 *
	 * <P>If you need to reduce the table size to fit exactly
	 * this set, use {@link #trim()}.
	 *
	 * @return true.
	 * @see #trim()
	 * @deprecated A no-op.
	 */

	@Deprecated
	public boolean rehash() {
		return true;
	}

	/** Rehashes this set, making the table as small as possible.
	 * 
	 * <P>This method rehashes the table to the smallest size satisfying the
	 * load factor. It can be used when the set will not be changed anymore, so
	 * to optimize access speed and size.
	 *
	 * <P>If the table size is already the minimum possible, this method
	 * does nothing.
	 *
	 * @return true if there was enough memory to trim the set.
	 * @see #trim(long)
	 */

	public boolean trim() {
		final long l = bigArraySize( size, f );
		if ( l >= n ) return true;
		try {
			rehash( l );
		}
		catch(OutOfMemoryError cantDoIt) { return false; }
		return true;
	}

	/** Rehashes this set if the table is too large.
	 * 
	 * <P>Let <var>N</var> be the smallest table size that can hold
	 * <code>max(n,{@link #size64()})</code> entries, still satisfying the load factor. If the current
	 * table size is smaller than or equal to <var>N</var>, this method does
	 * nothing. Otherwise, it rehashes this set in a table of size
	 * <var>N</var>.
	 *
	 * <P>This method is useful when reusing sets.  {@linkplain #clear() Clearing a
	 * set} leaves the table size untouched. If you are reusing a set
	 * many times, you can call this method with a typical
	 * size to avoid keeping around a very large table just
	 * because of a few large transient sets.
	 *
	 * @param n the threshold for the trimming.
	 * @return true if there was enough memory to trim the set.
	 * @see #trim()
	 */

	public boolean trim( final long n ) {
		final long l = bigArraySize( n, f );
		if ( this.n <= l ) return true;
		try {
			rehash( l );
		}
		catch( OutOfMemoryError cantDoIt ) { return false; }
		return true;
	}

	/** Resizes the set.
	 *
	 * <P>This method implements the basic rehashing strategy, and may be
	 * overriden by subclasses implementing different rehashing strategies (e.g.,
	 * disk-based rehashing). However, you should not override this method
	 * unless you understand the internal workings of this class.
	 *
	 * @param newN the new size
	 */

	@SuppressWarnings("unchecked")
	protected void rehash( final long newN ) {
		final boolean used[][] = this.used;
		final KEY_GENERIC_TYPE key[][] = this.key;
		final boolean newUsed[][] = BooleanBigArrays.newBigArray( newN );
		final KEY_GENERIC_TYPE newKey[][] = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( newN );
		final long mask = newN - 1; // Note that this is used by the hashing macro
		final int newSegmentMask = newKey[ 0 ].length - 1;
		final int newBaseMask = newKey.length - 1;		

		int base = 0, displ = 0;
		long h;
		KEY_GENERIC_TYPE k;

		for( long i = size; i-- != 0; ) {

			while( ! used[ base ][ displ ] ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );

			k = key[ base ][ displ ];
			h = KEY2LONGHASH( k );

			// The starting point.
			int d = (int)( h & newSegmentMask );
			int b = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );

			while( newUsed[ b ][ d ] ) b = ( b + ( ( d = ( d + 1 ) & newSegmentMask ) == 0 ? 1 : 0 ) ) & newBaseMask;

			newUsed[ b ][ d ] = true;
			newKey[ b ][ d ] = k;

			base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
		}

		this.n = newN;
		this.key = newKey;
		this.used = newUsed;
		initMasks();
		maxFill = maxFill( n, f );
	}

	@Deprecated
	public int size() {
		return (int)Math.min( Integer.MAX_VALUE, size );
	}

	public long size64() {
		return size;
	}

	public boolean isEmpty() {
		return size == 0;
	}



	/** Returns a deep copy of this big set. 
	 *
	 * <P>This method performs a deep copy of this big hash set; the data stored in the
	 * set, however, is not cloned. Note that this makes a difference only for object keys.
	 *
	 *  @return a deep copy of this big set.
	 */

	@SuppressWarnings("unchecked")
	public OPEN_HASH_BIG_SET KEY_GENERIC clone() {
		OPEN_HASH_BIG_SET KEY_GENERIC c;
		try {
			c = (OPEN_HASH_BIG_SET KEY_GENERIC)super.clone();
		}
		catch(CloneNotSupportedException cantHappen) {
			throw new InternalError();
		}
		c.key = BIG_ARRAYS.copy( key );
		c.used = BooleanBigArrays.copy( used );
		return c;
	}

	/** Returns a hash code for this set.
	 *
	 * This method overrides the generic method provided by the superclass. 
	 * Since <code>equals()</code> is not overriden, it is important
	 * that the value returned by this method is the same value as
	 * the one returned by the overriden method.
	 *
	 * @return a hash code for this set.
	 */


	public int hashCode() {
		final boolean used[][] = this.used;
		final KEY_GENERIC_TYPE key[][] = this.key;
		int h = 0;
		int base = 0, displ = 0;
		for( long j = size; j-- != 0; ) {
			while( ! used[ base ][ displ ] ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
#if #keys(reference)
			if ( this != key[ base ][ displ ] )
#endif
				h += KEY2JAVAHASH( key[ base ][ displ ] );
			base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
		}
		return h;
	}


	private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
		final KEY_ITERATOR KEY_GENERIC i = iterator();
		s.defaultWriteObject();
		for( long j = size; j-- != 0; ) s.WRITE_KEY( i.NEXT_KEY() );
	}


	@SuppressWarnings("unchecked")
	private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
		s.defaultReadObject();

		n = bigArraySize( size, f );
		maxFill = maxFill( n, f );
		
		final KEY_GENERIC_TYPE[][] key = this.key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( n );
		final boolean used[][] = this.used = BooleanBigArrays.newBigArray( n );
	
		initMasks();

		long h;
		KEY_GENERIC_TYPE k;
		int base, displ;

		for( long i = size; i-- != 0; ) {

			k = KEY_GENERIC_CAST s.READ_KEY();
			h = KEY2LONGHASH( k );

			base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT );
			displ = (int)( h & segmentMask );
			
			while( used[ base ][ displ ] ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask;

			used[ base ][ displ ] = true;
			key[ base ][ displ ] = k;
		}

		if ( ASSERTS ) checkTable();
	}


#ifdef ASSERTS_CODE
	private void checkTable() {
		final boolean[][] used = this.used;
		assert ( n & -n ) == n : "Table length is not a power of two: " + n;
		assert n == BIG_ARRAYS.length( key );
		assert n == BooleanBigArrays.length( used );
		long n = this.n;
		while( n-- != 0 ) 
			if ( BooleanBigArrays.get( used, n ) && ! contains( BIG_ARRAYS.get( key, n ) ) ) 
				throw new AssertionError( "Hash table has key " + BIG_ARRAYS.get( key, n ) + " marked as occupied, but the key does not belong to the table" );

#if #keys(primitive)
		java.util.HashSet<KEY_GENERIC_CLASS> s = new java.util.HashSet<KEY_GENERIC_CLASS> ();
#else
		java.util.HashSet<Object> s = new java.util.HashSet<Object>();
#endif
		
		for( long i = size(); i-- != 0; )
			if ( BooleanBigArrays.get( used, i ) && ! s.add( BIG_ARRAYS.get( key, i ) ) ) throw new AssertionError( "Key " + BIG_ARRAYS.get( key, i ) + " appears twice" );

	}
#else
	private void checkTable() {}
#endif

#ifdef TEST

	private static long seed = System.currentTimeMillis(); 
	private static java.util.Random r = new java.util.Random( seed );

	private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
		return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
		return r.NEXT_KEY(); 
#elif #keyclass(Object)
		return Integer.toBinaryString( r.nextInt() );
#else
		return new java.io.Serializable() {};
#endif
	}


	private static final class ArrayComparator implements java.util.Comparator {
		public int compare( Object a, Object b ) {
			byte[] aa = (byte[])a;
			byte[] bb = (byte[])b;
			int length = Math.min( aa.length, bb.length );
			for( int i = 0; i < length; i++ ) {
				if ( aa[ i ] < bb[ i ] ) return -1;
				if ( aa[ i ] > bb[ i ] ) return 1;
			}
			return aa.length == bb.length ? 0 : ( aa.length < bb.length ? -1 : 1 );
		}
	}

	private static final class MockSet extends java.util.TreeSet {
		private java.util.List list = new java.util.ArrayList();

		public MockSet( java.util.Comparator c ) { super( c ); }

		public boolean add( Object k ) {
			if ( ! contains( k ) ) list.add( k );
			return super.add( k );
		}

		public boolean addAll( Collection c ) {
			java.util.Iterator i = c.iterator();
			boolean result = false;
			while( i.hasNext() ) result |= add( i.next() );
			return result;
		}

		public boolean removeAll( Collection c ) {
			java.util.Iterator i = c.iterator();
			boolean result = false;
			while( i.hasNext() ) result |= remove( i.next() );
			return result;
		}

		public boolean remove( Object k ) {
			if ( contains( k ) ) {
				int i = list.size();
				while( i-- != 0 ) if ( comparator().compare( list.get( i ), k ) == 0 ) {
					list.remove( i );
					break;
				}
			}
			return super.remove( k );
		}

		private void justRemove( Object k ) { super.remove( k ); }

		public java.util.Iterator iterator() {
			return new java.util.Iterator() {
					final java.util.Iterator iterator = list.iterator();
					Object curr;
					public Object next() { return curr = iterator.next(); }
					public boolean hasNext() { return iterator.hasNext(); }
					public void remove() { 
						justRemove( curr );
						iterator.remove(); 
					}
				};
		}
	}

	private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
	private static java.text.FieldPosition fp = new java.text.FieldPosition( 0 );

	private static String format( double d ) {
		StringBuffer s = new StringBuffer();
		return format.format( d, s, fp ).toString();
	}

	private static void speedTest( int n, float f, boolean comp ) {
		int i, j;
		OPEN_HASH_BIG_SET m;
		java.util.HashSet t;

		KEY_TYPE k[] = new KEY_TYPE[n];
		KEY_TYPE nk[] = new KEY_TYPE[n];
		long ms;

		for( i = 0; i < n; i++ ) {
			k[i] = genKey();
			nk[i] = genKey();
		}
		  
		double totAdd = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, d;

		if ( comp ) { for( j = 0; j < 20; j++ ) {

			t = new java.util.HashSet( 16 );

			/* We add pairs to t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.add( KEY2OBJ( k[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totAdd += d; 				
			System.out.print("Add: " + format( d ) +" K/s " );

			/* We check for pairs in t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.contains( KEY2OBJ( k[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totYes += d; 				
			System.out.print("Yes: " + format( d ) +" K/s " );

			/* We check for pairs not in t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.contains( KEY2OBJ( nk[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totNo += d; 				
			System.out.print("No: " + format( d ) +" K/s " );

			/* We iterate on t. */
			ms = System.currentTimeMillis();
			for( java.util.Iterator it = t.iterator(); it.hasNext(); it.next() );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totIter += d; 				
			System.out.print("Iter: " + format( d ) +" K/s " );
				
			/* We delete pairs not in t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.remove( KEY2OBJ( nk[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totRemNo += d; 				
			System.out.print("RemNo: " + format( d ) +" K/s " );
				
			/* We delete pairs in t. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) t.remove( KEY2OBJ( k[i] ) );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totRemYes += d; 				
			System.out.print("RemYes: " + format( d ) +" K/s " );
				
			System.out.println();
		}

		System.out.println();
		System.out.println( "java.util Add: " + format( totAdd/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s Iter: " + format( totIter/(j-3) ) + " K/s RemNo: " + format( totRemNo/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + "K/s" );

		System.out.println();

		totAdd = totYes = totNo = totIter = totRemYes = totRemNo = 0;
		}

		for( j = 0; j < 20; j++ ) {

			m = new OPEN_HASH_BIG_SET( 16, f );

			/* We add pairs to m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.add( k[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totAdd += d; 				
			System.out.print("Add: " + format( d ) +" K/s " );

			/* We check for pairs in m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.contains( k[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totYes += d; 				
			System.out.print("Yes: " + format( d ) +" K/s " );

			/* We check for pairs not in m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.contains( nk[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totNo += d; 				
			System.out.print("No: " + format( d ) +" K/s " );

			/* We iterate on m. */
			ms = System.currentTimeMillis();
			for( KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY() );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totIter += d; 	 
			System.out.print("Iter: " + format( d ) +" K/s " );

			/* We delete pairs not in m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.remove( nk[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totRemNo += d; 	
			System.out.print("RemNo: " + format( d ) +" K/s " );

			/* We delete pairs in m. */
			ms = System.currentTimeMillis();
			for( i = 0; i < n;  i++ ) m.remove( k[i] );
			d = 1.0 * n / (System.currentTimeMillis() - ms );
			if ( j > 2 ) totRemYes += d; 				
			System.out.print("RemYes: " + format( d ) +" K/s " );	 

			System.out.println();
		}


		System.out.println();
		System.out.println( "fastutil  Add: " + format( totAdd/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s Iter: " + format( totIter/(j-3) ) + " K/s RemNo: " + format( totRemNo/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + " K/s" );

		System.out.println();
	}


	private static void fatal( String msg ) {
		System.out.println( msg );
		System.exit( 1 );
	}

	private static void ensure( boolean cond, String msg ) {
		if ( cond ) return;
		fatal( msg );
	}


	private static void printProbes( OPEN_HASH_BIG_SET m ) {
		long totProbes = 0;
		double totSquareProbes = 0;
		int maxProbes = 0;	
		final double f = (double)m.size / m.n;
		for( int i = 0, c = 0; i < m.n; i++ ) {
			if ( BooleanBigArrays.get( m.used, i ) ) c++;
			else {
				if ( c != 0 ) {
					final long p = ( c + 1 ) * ( c + 2 ) / 2;
					totProbes += p;
					totSquareProbes += (double)p * p;
				}
				maxProbes = Math.max( c, maxProbes );
				c = 0;
				totProbes++;
				totSquareProbes++;
			}
		}

		final double expected = (double)totProbes / m.n;
		System.err.println( "Expected probes: " + ( 
			3 * Math.sqrt( 3 ) * ( f / ( ( 1 - f ) * ( 1 - f ) ) ) + 4 / ( 9 * f ) - 1
		) + "; actual: " + expected + "; stddev: " + Math.sqrt( totSquareProbes / m.n - expected * expected )  + "; max probes: " + maxProbes );
	}
	private static void test( int n, float f ) {
		int c;
		OPEN_HASH_BIG_SET m = new OPEN_HASH_BIG_SET(Hash.DEFAULT_INITIAL_SIZE, f);
		java.util.Set t = new java.util.HashSet();

		/* First of all, we fill t with random data. */

		for(int i=0; i<f * n;  i++ ) t.add(KEY2OBJ(genKey()));
		  
		/* Now we add to m the same data */
		  
		m.addAll(t); 

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after insertion");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after insertion");
		printProbes( m );

		/* Now we check that m actually holds that data. */
		  
		for(java.util.Iterator i=t.iterator(); i.hasNext();  ) {
			Object e = i.next();
			if (!m.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on t)");
				System.exit( 1 );
			}
		}

		/* Now we check that m actually holds that data, but iterating on m. */

		c = 0;		  
		for(java.util.Iterator i=m.iterator(); i.hasNext();  ) {
			Object e = i.next();
			c++;
			if (!t.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on m)");
				System.exit( 1 );
			}
		}

		if ( c != t.size() ) {
			System.out.println("Error (" + seed + "): m has only " + c + " keys instead of " + t.size() + " after insertion (iterating on m)");
			System.exit( 1 );
		}
		/* Now we check that inquiries about random data give the same answer in m and t. For
		   m we use the polymorphic method. */

		for(int i=0; i<n;  i++ ) {
			KEY_TYPE T = genKey();
			if (m.contains(T) != t.contains(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in keys between t and m (polymorphic method)");
				System.exit( 1 );
			}
		}

		/* Again, we check that inquiries about random data give the same answer in m and t, but
		   for m we use the standard method. */

		for(int i=0; i<n;  i++ ) {
			KEY_TYPE T = genKey();
			if (m.contains(KEY2OBJ(T)) != t.contains(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence between t and m (standard method)");
				System.exit( 1 );
			}
		}


		/* Now we put and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<20*n;  i++ ) {
			KEY_TYPE T = genKey();
			if (m.add(KEY2OBJ(T)) != t.add(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in add() between t and m");
				System.exit( 1 );
			}
			T = genKey();
			if (m.remove(KEY2OBJ(T)) != t.remove(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in remove() between t and m");
				System.exit( 1 );
			}
		}

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after removal");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after removal");

		/* Now we check that m actually holds that data. */
		  
		for(java.util.Iterator i=t.iterator(); i.hasNext();  ) {
			Object e = i.next();
			if (!m.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on t)");
				System.exit( 1 );
			}
		}

		/* Now we check that m actually holds that data, but iterating on m. */
		  
		for(java.util.Iterator i=m.iterator(); i.hasNext();  ) {
			Object e = i.next();
			if (!t.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on m)");
				System.exit( 1 );
			}
		}

		printProbes( m );

		/* Now we make m into an array, make it again a set and check it is OK. */
		KEY_TYPE a[] = m.TO_KEY_ARRAY();
		  
		if (!new OPEN_HASH_BIG_SET(a).equals(m))
			System.out.println("Error (" + seed + "): toArray() output (or array-based constructor) is not OK");

		/* Now we check cloning. */

		ensure( m.equals( ((OPEN_HASH_BIG_SET)m).clone() ), "Error (" + seed + "): m does not equal m.clone()" );
		ensure( ((OPEN_HASH_BIG_SET)m).clone().equals( m ), "Error (" + seed + "): m.clone() does not equal m" );

		int h = m.hashCode();

		/* Now we save and read m. */

		try {
			java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test");
			java.io.OutputStream os = new java.io.FileOutputStream(ff);
			java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
				
			oos.writeObject(m);
			oos.close();
				
			java.io.InputStream is = new java.io.FileInputStream(ff);
			java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
				
			m = (OPEN_HASH_BIG_SET)ois.readObject();
			ois.close();
			ff.delete();
		}
		catch(Exception e) {
			e.printStackTrace();
			System.exit( 1 );
		}

#if !#keyclass(Reference)
		if (m.hashCode() != h) System.out.println("Error (" + seed + "): hashCode() changed after save/read");

		printProbes( m );

		/* Now we check that m actually holds that data, but iterating on m. */
		  
		for(java.util.Iterator i=m.iterator(); i.hasNext();  ) {
			Object e = i.next();
			if (!t.contains(e)) {
				System.out.println("Error (" + seed + "): m and t differ on a key ("+e+") after save/read");
				System.exit( 1 );
			}
		}
#else
		m.clear();
		m.addAll( t );
#endif

		/* Now we put and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<20*n;  i++ ) {
			KEY_TYPE T = genKey();
			if (m.add(KEY2OBJ(T)) != t.add(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in add() between t and m after save/read");
				System.exit( 1 );
			}
			T = genKey();
			if (m.remove(KEY2OBJ(T)) != t.remove(KEY2OBJ(T))) {
				System.out.println("Error (" + seed + "): divergence in remove() between t and m after save/read");
				System.exit( 1 );
			}
		}

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after post-save/read removal");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after post-save/read removal");


		/* Now we take out of m everything, and check that it is empty. */

		for(java.util.Iterator i=m.iterator(); i.hasNext(); ) { i.next(); i.remove();} 

		if (!m.isEmpty())  {
			System.out.println("Error (" + seed + "): m is not empty (as it should be)");
			System.exit( 1 );
		}

#if #keyclass(Integer) || #keyclass(Long)
		m = new OPEN_HASH_BIG_SET(n, f);
		t.clear();
		int x;

		/* Now we torture-test the hash table. This part is implemented only for integers and longs. */

		int p = m.used.length;

		for(int i=0; i<p; i++) {
			for (int j=0; j<20; j++) {
				m.add(i+(r.nextInt() % 10)*p);
				m.remove(i+(r.nextInt() % 10)*p);
			}

			for (int j=-10; j<10; j++) m.remove(i+j*p);
		}
		  
		t.addAll(m);

		/* Now all table entries are REMOVED. */
 
		int k = 0;
		for(int i=0; i<(p*f)/10; i++) {
			for (int j=0; j<10; j++) {
				k++;
				x = i+(r.nextInt() % 10)*p;
				if (m.add(x) != t.add(KEY2OBJ(x)))
					System.out.println("Error (" + seed + "): m and t differ on a key during torture-test insertion.");
			}
		}

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after torture-test insertion");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after torture-test insertion");

		for(int i=0; i<(p*f)/10; i++) {
			for (int j=0; j<10; j++) {
				x = i+(r.nextInt() % 10)*p;
				if (m.remove(x) != t.remove(KEY2OBJ(x)))
					System.out.println("Error (" + seed + "): m and t differ on a key during torture-test removal.");
			}
		}

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after torture-test removal");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after torture-test removal");

		if (!m.equals(m.clone())) System.out.println("Error (" + seed + "): !m.equals(m.clone()) after torture-test removal");
		if (!((OPEN_HASH_BIG_SET)m.clone()).equals(m)) System.out.println("Error (" + seed + "): !m.clone().equals(m) after torture-test removal");

		m.rehash();

		if (!m.equals(t)) System.out.println("Error (" + seed + "): !m.equals(t) after rehash()");
		if (!t.equals(m)) System.out.println("Error (" + seed + "): !t.equals(m) after rehash()");

#endif

		System.out.println("Test OK");
		return;
	}


	public static void main( String args[] ) {
		float f = Hash.DEFAULT_LOAD_FACTOR;
		int n  = Integer.parseInt(args[1]);
		if (args.length>2) f = Float.parseFloat(args[2]);
		if ( args.length > 3 ) r = new java.util.Random( seed = Long.parseLong( args[ 3 ] ) );
		  
		try {
			if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, f, "speedComp".equals(args[0]) );
			else if ( "test".equals( args[0] ) ) test(n, f);
		} catch( Throwable e ) {
			e.printStackTrace( System.err );
			System.err.println( "seed: " + seed );
		}
	}

#endif

}