1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
|
/*
* Copyright (C) 2002-2024 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
#if KEYS_REFERENCE
import java.lang.reflect.Array;
import java.util.Comparator;
import java.util.stream.Collector;
import java.util.function.Consumer;
import java.util.function.Predicate;
#endif
#if KEYS_PRIMITIVE
/** A type-specific array-based list; provides some additional methods that use polymorphism to avoid (un)boxing.
*
* <p>This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of array-based lists. Instances of this class
* represent a list with an array that is enlarged as needed when new entries
* are created (by increasing its current length by 50%), but is
* <em>never</em> made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@code java.util}'s classes, but
* they are delayed as much as possible. The backing array is exposed by the
* {@link #elements()} method.
*
* <p>This class implements the bulk methods {@code removeElements()},
* {@code addElements()} and {@code getElements()} using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class ARRAY_LIST KEY_GENERIC extends ABSTRACT_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353130L;
#else
/** A type-specific array-based list; provides some additional methods that use polymorphism to avoid (un)boxing.
*
* <p>This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of array-based lists. Instances of this class
* represent a list with an array that is enlarged as needed when new entries
* are created (by increasing its current length by 50%), but is
* <em>never</em> made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@link java.util}'s classes, but
* they are delayed as much as possible.
*
* <p>The backing array is exposed by the {@link #elements()} method. If an instance
* of this class was created {@linkplain #wrap(Object[],int) by wrapping},
* backing-array reallocations will be performed using reflection, so that
* {@link #elements()} can return an array of the same type of the original array: the comments
* about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here.
* Moreover, you must take into consideration that assignment to an array
* not of type {@code Object[]} is slower due to type checking.
*
* <p>This class implements the bulk methods {@code removeElements()},
* {@code addElements()} and {@code getElements()} using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class ARRAY_LIST KEY_GENERIC extends ABSTRACT_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353131L;
#endif
/** The initial default capacity of an array list. */
public static final int DEFAULT_INITIAL_CAPACITY = 10;
#if ! KEYS_PRIMITIVE
/** Whether the backing array was passed to {@code wrap()}. In
* this case, we must reallocate with the same type of array. */
protected final boolean wrapped;
#endif
/** The backing array. */
protected transient KEY_GENERIC_TYPE[] a;
/** The current actual size of the list (never greater than the backing-array length). */
protected int size;
/** Ensures that the component type of the given array is the proper type.
* This is irrelevant for primitive types, so it will just do a trivial copy.
* But for Reference types, you can have a {@code String[]} masquerading as an {@code Object[]},
* which is a case we need to prepare for because we let the user give an array to use directly
* with {@link #wrap}.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
private static final KEY_GENERIC KEY_GENERIC_TYPE[] copyArraySafe(KEY_GENERIC_TYPE[] a, int length) {
if (length == 0) return KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY;
#if KEYS_PRIMITIVE
return java.util.Arrays.copyOf(a, length);
#else
return (KEY_GENERIC_TYPE[])java.util.Arrays.copyOf(a, length, KEY_TYPE[].class);
#endif
}
private static final KEY_GENERIC KEY_GENERIC_TYPE[] copyArrayFromSafe(ARRAY_LIST KEY_GENERIC l) {
return copyArraySafe(l.a, l.size);
}
/** Creates a new array list using a given array.
*
* <p>This constructor is only meant to be used by the wrapping methods.
*
* @param a the array that will be used to back this array list.
*/
protected ARRAY_LIST(final KEY_GENERIC_TYPE[] a, @SuppressWarnings("unused") boolean wrapped) {
this.a = a;
#if ! KEYS_PRIMITIVE
this.wrapped = wrapped;
#endif
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void initArrayFromCapacity(final int capacity) {
if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative");
if (capacity == 0) a = KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY;
else a = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[capacity];
}
/** Creates a new array list with given capacity.
*
* @param capacity the initial capacity of the array list (may be 0).
*/
public ARRAY_LIST(final int capacity) {
initArrayFromCapacity(capacity);
#if ! KEYS_PRIMITIVE
this.wrapped = false;
#endif
}
/** Creates a new array list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */
SUPPRESS_WARNINGS_KEY_UNCHECKED
public ARRAY_LIST() {
a = KEY_GENERIC_ARRAY_CAST ARRAYS.DEFAULT_EMPTY_ARRAY; // We delay allocation
#if ! KEYS_PRIMITIVE
wrapped = false;
#endif
}
/** Creates a new array list and fills it with a given collection.
*
* @param c a collection that will be used to fill the array list.
*/
public ARRAY_LIST(final Collection<? extends KEY_GENERIC_CLASS> c) {
if (c instanceof ARRAY_LIST) {
a = copyArrayFromSafe((ARRAY_LIST KEY_EXTENDS_GENERIC)c);
size = a.length;
} else {
initArrayFromCapacity(c.size());
if (c instanceof LIST) {
((LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = c.size());
} else {
#if KEYS_PRIMITIVE
size = ITERATORS.unwrap(ITERATORS.AS_KEY_ITERATOR(c.iterator()), a);
#else
size = ITERATORS.unwrap(c.iterator(), a);
#endif
}
}
#if ! KEYS_PRIMITIVE
this.wrapped = false;
#endif
}
/** Creates a new array list and fills it with a given type-specific collection.
*
* @param c a type-specific collection that will be used to fill the array list.
*/
public ARRAY_LIST(final COLLECTION KEY_EXTENDS_GENERIC c) {
if (c instanceof ARRAY_LIST) {
a = copyArrayFromSafe((ARRAY_LIST KEY_EXTENDS_GENERIC)c);
size = a.length;
} else {
initArrayFromCapacity(c.size());
if (c instanceof LIST) {
((LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = c.size());
} else {
size = ITERATORS.unwrap(c.iterator(), a);
}
}
#if ! KEYS_PRIMITIVE
this.wrapped = false;
#endif
}
/** Creates a new array list and fills it with a given type-specific list.
*
* @param l a type-specific list that will be used to fill the array list.
*/
public ARRAY_LIST(final LIST KEY_EXTENDS_GENERIC l) {
if (l instanceof ARRAY_LIST) {
a = copyArrayFromSafe((ARRAY_LIST KEY_EXTENDS_GENERIC)l);
size = a.length;
} else {
initArrayFromCapacity(l.size());
l.getElements(0, a, 0, size = l.size());
}
#if ! KEYS_PRIMITIVE
this.wrapped = false;
#endif
}
/** Creates a new array list and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the array list.
*/
public ARRAY_LIST(final KEY_GENERIC_TYPE[] a) {
this(a, 0, a.length);
}
/** Creates a new array list and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the array list.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public ARRAY_LIST(final KEY_GENERIC_TYPE[] a, final int offset, final int length) {
this(length);
System.arraycopy(a, offset, this.a, 0, length);
size = length;
}
/** Creates a new array list and fills it with the elements returned by an iterator..
*
* @param i an iterator whose returned elements will fill the array list.
*/
public ARRAY_LIST(final Iterator<? extends KEY_GENERIC_CLASS> i) {
this();
while(i.hasNext()) this.add(KEY_CLASS2TYPE(i.next()));
}
/** Creates a new array list and fills it with the elements returned by a type-specific iterator..
*
* @param i a type-specific iterator whose returned elements will fill the array list.
*/
public ARRAY_LIST(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
this();
while(i.hasNext()) this.add(i.NEXT_KEY());
}
#if KEYS_PRIMITIVE
/** Returns the backing array of this list.
*
* @return the backing array.
*/
public KEY_GENERIC_TYPE[] elements() {
return a;
}
#else
/** Returns the backing array of this list.
*
* <p>If this array list was created by wrapping a given array, it is guaranteed
* that the type of the returned array will be the same. Otherwise, the returned
* array will be of type {@link Object Object[]} (in spite of the declared return type).
*
* <p><strong>Warning</strong>: This behaviour may cause (unfathomable)
* run-time errors if a method expects an array
* actually of type {@code K[]}, but this methods returns an array
* of type {@link Object Object[]}.
*
* @return the backing array.
*/
public K[] elements() {
return a;
}
#endif
/** Wraps a given array into an array list of given size.
*
* <p>Note it is guaranteed
* that the type of the array returned by {@link #elements()} will be the same
* (see the comments in the class documentation).
*
* @param a an array to wrap.
* @param length the length of the resulting array list.
* @return a new array list of the given size, wrapping the given array.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE[] a, final int length) {
if (length > a.length) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + a.length + ")");
final ARRAY_LIST KEY_GENERIC l = new ARRAY_LIST KEY_GENERIC_DIAMOND(a, true);
l.size = length;
return l;
}
/** Wraps a given array into an array list.
*
* <p>Note it is guaranteed
* that the type of the array returned by {@link #elements()} will be the same
* (see the comments in the class documentation).
*
* @param a an array to wrap.
* @return a new array list wrapping the given array.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE[] a) {
return wrap(a, a.length);
}
/** Creates a new empty array list.
*
* @return a new empty array list.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC of() {
return new ARRAY_LIST KEY_GENERIC_DIAMOND();
}
/** Creates an array list using an array of elements.
*
* @param init a the array the will become the new backing array of the array list.
* @return a new array list backed by the given array.
* @see #wrap
*/
SAFE_VARARGS
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC of(final KEY_GENERIC_TYPE... init) {
return wrap(init);
}
#if KEYS_INT_LONG_DOUBLE
/** Collects the result of a primitive {@code Stream} into a new ArrayList.
*
* <p>This method performs a terminal operation on the given {@code Stream}
*
* @apiNote Taking a primitive stream instead of returning something like a
* {@link java.util.stream.Collector Collector} is necessary because there is no
* primitive {@code Collector} equivalent in the Java API.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC toList(JDK_PRIMITIVE_STREAM stream) {
return stream.collect(
ARRAY_LIST::new,
ARRAY_LIST::add,
ARRAY_LIST::addAll);
}
/** Collects the result of a primitive {@code Stream} into a new ArrayList, potentially pre-allocated to handle the given size.
*
* <p>This method performs a terminal operation on the given {@code Stream}
*
* @apiNote Taking a primitive stream instead returning something like a
* {@link java.util.stream.Collector Collector} is necessary because there is no
* primitive {@code Collector} equivalent in the Java API.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC toListWithExpectedSize(JDK_PRIMITIVE_STREAM stream, int expectedSize) {
if (expectedSize <= DEFAULT_INITIAL_CAPACITY) {
// Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier
return toList(stream);
}
return stream.collect(
new COLLECTIONS.SizeDecreasingSupplier<
#if KEYS_REFERENCE
K,
#endif
ARRAY_LIST KEY_GENERIC>(
expectedSize, (int size) ->
size <= DEFAULT_INITIAL_CAPACITY ? new ARRAY_LIST KEY_GENERIC() : new ARRAY_LIST KEY_GENERIC(size)),
ARRAY_LIST::add,
ARRAY_LIST::addAll);
}
#elif KEYS_REFERENCE
// Collector wants a function that returns the collection being added to.
ARRAY_LIST KEY_GENERIC combine(ARRAY_LIST KEY_EXTENDS_GENERIC toAddFrom) {
addAll(toAddFrom);
return this;
}
private static final Collector<KEY_TYPE, ?, ARRAY_LIST<KEY_TYPE>> TO_LIST_COLLECTOR =
Collector.of(
ARRAY_LIST::new,
ARRAY_LIST::add,
ARRAY_LIST::combine);
/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList. */
SUPPRESS_WARNINGS_KEY_UNCHECKED_RAWTYPES
public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, ARRAY_LIST KEY_GENERIC> toList() {
return (Collector) TO_LIST_COLLECTOR;
}
/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList, potentially pre-allocated to handle the given size. */
public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, ARRAY_LIST KEY_GENERIC> toListWithExpectedSize(int expectedSize) {
if (expectedSize <= DEFAULT_INITIAL_CAPACITY) {
// Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier
return toList();
}
return Collector.of(
new COLLECTIONS.SizeDecreasingSupplier<
#if KEYS_REFERENCE
K,
#endif
ARRAY_LIST KEY_GENERIC>(
expectedSize, (int size) ->
size <= DEFAULT_INITIAL_CAPACITY ? new ARRAY_LIST KEY_GENERIC() : new ARRAY_LIST KEY_GENERIC(size)),
ARRAY_LIST::add,
ARRAY_LIST::combine);
}
#endif
/** Ensures that this array list can contain the given number of entries without resizing.
*
* @param capacity the new minimum capacity for this array list.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public void ensureCapacity(final int capacity) {
if (capacity <= a.length || (a == ARRAYS.DEFAULT_EMPTY_ARRAY && capacity <= DEFAULT_INITIAL_CAPACITY)) return;
#if KEYS_PRIMITIVE
a = ARRAYS.ensureCapacity(a, capacity, size);
#else
if (wrapped) a = ARRAYS.ensureCapacity(a, capacity, size);
else {
if (capacity > a.length) {
final Object[] t = new Object[capacity];
System.arraycopy(a, 0, t, 0, size);
a = (KEY_GENERIC_TYPE[])t;
}
}
#endif
assert size <= a.length;
}
/** Grows this array list, ensuring that it can contain the given number of entries without resizing,
* and in case increasing the current capacity at least by a factor of 50%.
*
* @param capacity the new minimum capacity for this array list.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void grow(int capacity) {
if (capacity <= a.length) return;
if (a != ARRAYS.DEFAULT_EMPTY_ARRAY)
capacity = (int)Math.max(Math.min((long)a.length + (a.length >> 1), it.unimi.dsi.fastutil.Arrays.MAX_ARRAY_SIZE), capacity);
else if (capacity < DEFAULT_INITIAL_CAPACITY) capacity = DEFAULT_INITIAL_CAPACITY;
#if KEYS_PRIMITIVE
a = ARRAYS.forceCapacity(a, capacity, size);
#else
if (wrapped) a = ARRAYS.forceCapacity(a, capacity, size);
else {
final Object[] t = new Object[capacity];
System.arraycopy(a, 0, t, 0, size);
a = (KEY_GENERIC_TYPE[])t;
}
#endif
assert size <= a.length;
}
@Override
public void add(final int index, final KEY_GENERIC_TYPE k) {
ensureIndex(index);
grow(size + 1);
if (index != size) System.arraycopy(a, index, a, index + 1, size - index);
a[index] = k;
size++;
assert size <= a.length;
}
@Override
public boolean add(final KEY_GENERIC_TYPE k) {
grow(size + 1);
a[size++] = k;
assert size <= a.length;
return true;
}
@Override
public KEY_GENERIC_TYPE GET_KEY(final int index) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
return a[index];
}
@Override
public int indexOf(final KEY_TYPE k) {
final KEY_TYPE[] a = this.a;
for(int i = 0; i < size; i++) if (KEY_EQUALS(k, a[i])) return i;
return -1;
}
@Override
public int lastIndexOf(final KEY_TYPE k) {
final KEY_TYPE[] a = this.a;
for(int i = size; i-- != 0;) if (KEY_EQUALS(k, a[i])) return i;
return -1;
}
@Override
public KEY_GENERIC_TYPE REMOVE_KEY(final int index) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
final KEY_GENERIC_TYPE[] a = this.a;
final KEY_GENERIC_TYPE old = a[index];
size--;
if (index != size) System.arraycopy(a, index + 1, a, index, size - index);
#if KEYS_REFERENCE
a[size] = null;
#endif
assert size <= a.length;
return old;
}
@Override
public boolean REMOVE(final KEY_TYPE k) {
int index = indexOf(k);
if (index == -1) return false;
REMOVE_KEY(index);
assert size <= a.length;
return true;
}
@Override
public KEY_GENERIC_TYPE set(final int index, final KEY_GENERIC_TYPE k) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
KEY_GENERIC_TYPE old = a[index];
a[index] = k;
return old;
}
@Override
public void clear() {
#if KEYS_REFERENCE
Arrays.fill(a, 0, size, null);
#endif
size = 0;
assert size <= a.length;
}
@Override
public int size() {
return size;
}
@Override
public void size(final int size) {
if (size > a.length) a = ARRAYS.forceCapacity(a, size, this.size);
if (size > this.size) Arrays.fill(a, this.size, size, KEY_NULL);
#if KEYS_REFERENCE
else Arrays.fill(a, size, this.size, KEY_NULL);
#endif
this.size = size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/** Trims this array list so that the capacity is equal to the size.
*
* @see java.util.ArrayList#trimToSize()
*/
public void trim() {
trim(0);
}
/** Trims the backing array if it is too large.
*
* If the current array length is smaller than or equal to
* {@code n}, this method does nothing. Otherwise, it trims the
* array length to the maximum between {@code n} and {@link #size()}.
*
* <p>This method is useful when reusing lists. {@linkplain #clear() Clearing a
* list} leaves the array length untouched. If you are reusing a list
* many times, you can call this method with a typical
* size to avoid keeping around a very large array just
* because of a few large transient lists.
*
* @param n the threshold for the trimming.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public void trim(final int n) {
// TODO: use Arrays.trim() and preserve type only if necessary
if (n >= a.length || size == a.length) return;
final KEY_GENERIC_TYPE t[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[Math.max(n, size)];
System.arraycopy(a, 0, t, 0, size);
a = t;
assert size <= a.length;
}
private class SubList extends ABSTRACT_LIST.SUBLIST_RANDOM_ACCESS KEY_GENERIC {
private static final long serialVersionUID = -3185226345314976296L;
protected SubList(int from, int to) {
super(ARRAY_LIST.this, from, to);
}
// Most of the inherited methods should be fine, but we can override a few of them for performance.
// Needed because we can't access the parent class' instance variables directly in a different instance of SubList.
private KEY_GENERIC_TYPE[] getParentArray() {
return a;
}
@Override
public KEY_GENERIC_TYPE GET_KEY(int i) {
ensureRestrictedIndex(i);
return a[i + from];
}
private final class SubListIterator extends ITERATORS.AbstractIndexBasedListIterator KEY_GENERIC {
// We are using pos == 0 to be 0 relative to SubList.from (meaning you need to do a[from + i] when accessing array).
SubListIterator(int index) {
super(0, index);
}
@Override
protected final KEY_GENERIC_TYPE get(int i) { return a[from + i]; }
@Override
protected final void add(int i, KEY_GENERIC_TYPE k) { SubList.this.add(i, k); }
@Override
protected final void set(int i, KEY_GENERIC_TYPE k) { SubList.this.set(i, k); }
@Override
protected final void remove(int i) { SubList.this.REMOVE_KEY(i); }
@Override
protected final int getMaxPos() { return to - from; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return a[from + (lastReturned = pos++)]; }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return a[from + (lastReturned = --pos)]; }
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
final KEY_GENERIC_TYPE[] a = ARRAY_LIST.this.a;
final int max = to - from;
while(pos < max) {
action.accept(a[from + (lastReturned = pos++)]);
}
}
}
@Override
public KEY_LIST_ITERATOR KEY_GENERIC listIterator(int index) {
return new SubListIterator(index);
}
private final class SubListSpliterator extends SPLITERATORS.LateBindingSizeIndexBasedSpliterator KEY_GENERIC {
// We are using pos == 0 to be 0 relative to real array 0
SubListSpliterator() {
super(from);
}
private SubListSpliterator(int pos, int maxPos) {
super(pos, maxPos);
}
@Override
protected final int getMaxPosFromBackingStore() { return to; }
@Override
protected final KEY_GENERIC_TYPE get(int i) { return a[i]; }
@Override
protected final SubListSpliterator makeForSplit(int pos, int maxPos) {
return new SubListSpliterator(pos, maxPos);
}
@Override
public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
if (pos >= getMaxPos()) return false;
action.accept(a[pos++]);
return true;
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
final KEY_GENERIC_TYPE[] a = ARRAY_LIST.this.a;
final int max = getMaxPos();
while(pos < max) {
action.accept(a[pos++]);
}
}
}
@Override
public KEY_SPLITERATOR KEY_GENERIC spliterator() {
return new SubListSpliterator();
}
boolean contentsEquals(KEY_GENERIC_TYPE[] otherA, int otherAFrom, int otherATo) {
if (a == otherA && from == otherAFrom && to == otherATo) return true;
if (otherATo - otherAFrom != size()) {
return false;
}
int pos = from, otherPos = otherAFrom;
// We have already assured that the two ranges are the same size, so we only need to check one bound.
// TODO When minimum version of Java becomes Java 9, use the Arrays.equals which takes bounds, which is vectorized.
// Make sure to split out the reference equality case when you do this.
#if KEY_CLASS_Object
while(pos < to) if (!java.util.Objects.equals(a[pos++], otherA[otherPos++])) return false;
#else
while(pos < to) if (a[pos++] != otherA[otherPos++]) return false;
#endif
return true;
}
@Override
public boolean equals(Object o) {
if (o == this) return true;
if (o == null) return false;
if (!(o instanceof java.util.List)) return false;
if (o instanceof ARRAY_LIST) {
SUPPRESS_WARNINGS_KEY_UNCHECKED
ARRAY_LIST KEY_GENERIC other = (ARRAY_LIST KEY_GENERIC) o;
return contentsEquals(other.a, 0, other.size());
}
if (o instanceof ARRAY_LIST.SubList) {
SUPPRESS_WARNINGS_KEY_UNCHECKED
ARRAY_LIST KEY_GENERIC.SubList other = (ARRAY_LIST KEY_GENERIC.SubList) o;
return contentsEquals(other.getParentArray(), other.from, other.to);
}
return super.equals(o);
}
#if ! KEYS_USE_REFERENCE_EQUALITY
SUPPRESS_WARNINGS_KEY_UNCHECKED
int contentsCompareTo(KEY_GENERIC_TYPE[] otherA, int otherAFrom, int otherATo) {
#if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal
if (a == otherA && from == otherAFrom && to == otherATo) return 0;
#endif
// TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes.
KEY_GENERIC_TYPE e1, e2;
int r, i, j;
for(i = from, j = otherAFrom; i < to && i < otherATo; i++, j++) {
e1 = a[i];
e2 = otherA[j];
if ((r = KEY_CMP(e1, e2)) != 0) return r;
}
return i < otherATo ? -1 : (i < to ? 1 : 0);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public int compareTo(final java.util.List <? extends KEY_GENERIC_CLASS> l) {
if (l instanceof ARRAY_LIST) {
SUPPRESS_WARNINGS_KEY_UNCHECKED
ARRAY_LIST KEY_GENERIC other = (ARRAY_LIST KEY_GENERIC) l;
return contentsCompareTo(other.a, 0, other.size());
}
if (l instanceof ARRAY_LIST.SubList) {
SUPPRESS_WARNINGS_KEY_UNCHECKED
ARRAY_LIST KEY_GENERIC.SubList other = (ARRAY_LIST KEY_GENERIC.SubList) l;
return contentsCompareTo(other.getParentArray(), other.from, other.to);
}
return super.compareTo(l);
}
#endif
// We don't override subList as we want AbstractList's "sub-sublist" nesting handling,
// which would be tricky to do here.
// TODO Do override it so array access isn't sent through N indirections.
// This will likely mean making this class static.
}
@Override
public LIST KEY_GENERIC subList(int from, int to) {
if (from == 0 && to == size()) return this;
ensureIndex(from);
ensureIndex(to);
if (from > to) throw new IndexOutOfBoundsException("Start index (" + from + ") is greater than end index (" + to + ")");
return new SubList(from, to);
}
/** Copies element of this type-specific list into the given array using optimized system calls.
*
* @param from the start index (inclusive).
* @param a the destination array.
* @param offset the offset into the destination array where to store the first element copied.
* @param length the number of elements to be copied.
*/
@Override
public void getElements(final int from, final KEY_TYPE[] a, final int offset, final int length) {
ARRAYS.ensureOffsetLength(a, offset, length);
System.arraycopy(this.a, from, a, offset, length);
}
/** Removes elements of this type-specific list using optimized system calls.
*
* @param from the start index (inclusive).
* @param to the end index (exclusive).
*/
@Override
public void removeElements(final int from, final int to) {
it.unimi.dsi.fastutil.Arrays.ensureFromTo(size, from, to);
System.arraycopy(a, to, a, from, size - to);
size -= (to - from);
#if KEYS_REFERENCE
int i = to - from;
while(i-- != 0) a[size + i] = null;
#endif
}
/** Adds elements to this type-specific list using optimized system calls.
*
* @param index the index at which to add elements.
* @param a the array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
@Override
public void addElements(final int index, final KEY_GENERIC_TYPE[] a, final int offset, final int length) {
ensureIndex(index);
ARRAYS.ensureOffsetLength(a, offset, length);
grow(size + length);
System.arraycopy(this.a, index, this.a, index + length, size - index);
System.arraycopy(a, offset, this.a, index, length);
size += length;
}
/** Sets elements to this type-specific list using optimized system calls.
*
* @param index the index at which to start setting elements.
* @param a the array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
@Override
public void setElements(final int index, final KEY_GENERIC_TYPE[] a, final int offset, final int length) {
ensureIndex(index);
ARRAYS.ensureOffsetLength(a, offset, length);
if (index + length > size) throw new IndexOutOfBoundsException("End index (" + (index + length) + ") is greater than list size (" + size + ")");
System.arraycopy(a, offset, this.a, index, length);
}
@Override
public void forEach(final METHOD_ARG_KEY_CONSUMER action) {
final KEY_GENERIC_TYPE[] a = this.a;
for (int i = 0; i < size; ++i) {
action.accept(a[i]);
}
}
@Override
public boolean addAll(int index, final STD_KEY_COLLECTION KEY_EXTENDS_GENERIC c) {
if (c instanceof LIST) {
return addAll(index, (LIST KEY_EXTENDS_GENERIC)c);
}
ensureIndex(index);
int n = c.size();
if (n == 0) return false;
grow(size + n);
System.arraycopy(a, index, a, index + n, size - index);
final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator();
size += n;
while(n-- != 0) a[index++] = i.NEXT_KEY();
assert size <= a.length;
return true;
}
@Override
public boolean addAll(final int index, final LIST KEY_EXTENDS_GENERIC l) {
ensureIndex(index);
final int n = l.size();
if (n == 0) return false;
grow(size + n);
System.arraycopy(a, index, a, index + n, size - index);
l.getElements(0, a, index, n);
size += n;
assert size <= a.length;
return true;
}
@Override
public boolean removeAll(final STD_KEY_COLLECTION KEY_GENERIC_WILDCARD c) {
final KEY_TYPE[] a = this.a;
int j = 0;
for(int i = 0; i < size; i++)
if (! c.contains(a[i])) a[j++] = a[i];
#if KEYS_REFERENCE
Arrays.fill(a, j, size, null);
#endif
final boolean modified = size != j;
size = j;
return modified;
}
@Override
public boolean removeIf(final METHOD_ARG_PREDICATE filter) {
final KEY_GENERIC_TYPE[] a = this.a;
int j = 0;
for(int i = 0; i < size; i++)
if (! filter.test(a[i])) a[j++] = a[i];
#if KEYS_REFERENCE
Arrays.fill(a, j, size, null);
#endif
final boolean modified = size != j;
size = j;
return modified;
}
#if KEYS_PRIMITIVE
@Override
public KEY_TYPE[] toArray(KEY_TYPE[] a) {
if (a == null || a.length < size) a = java.util.Arrays.copyOf(a, size);
System.arraycopy(this.a, 0, a, 0, size);
return a;
}
#else
@Override
public Object[] toArray() {
final int size = size();
// A subtle part of the spec says the returned array must be Object[] exactly.
if (size == 0) return it.unimi.dsi.fastutil.objects.ObjectArrays.EMPTY_ARRAY;
return Arrays.copyOf(a, size, Object[].class);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public <T> T[] toArray(T[] a) {
if (a == null) {
a = (T[]) new Object[size()];
} else if (a.length < size()) {
a = (T[]) Array.newInstance(a.getClass().getComponentType(), size());
}
System.arraycopy(this.a, 0, a, 0, size());
if (a.length > size()) {
a[size()] = null;
}
return a;
}
#endif
@Override
public KEY_LIST_ITERATOR KEY_GENERIC listIterator(final int index) {
ensureIndex(index);
return new KEY_LIST_ITERATOR KEY_GENERIC() {
int pos = index, last = -1;
@Override
public boolean hasNext() { return pos < size; }
@Override
public boolean hasPrevious() { return pos > 0; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return a[last = pos++]; }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return a[last = --pos]; }
@Override
public int nextIndex() { return pos; }
@Override
public int previousIndex() { return pos - 1; }
@Override
public void add(KEY_GENERIC_TYPE k) {
ARRAY_LIST.this.add(pos++, k);
last = -1;
}
@Override
public void set(KEY_GENERIC_TYPE k) {
if (last == -1) throw new IllegalStateException();
ARRAY_LIST.this.set(last, k);
}
@Override
public void remove() {
if (last == -1) throw new IllegalStateException();
ARRAY_LIST.this.REMOVE_KEY(last);
/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
if (last < pos) pos--;
last = -1;
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
final KEY_GENERIC_TYPE[] a = ARRAY_LIST.this.a;
while (pos < size) {
action.accept(a[last = pos++]);
}
}
@Override
public int back(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
final int remaining = pos;
if (n < remaining) {
pos -= n;
} else {
n = remaining;
pos = 0;
}
last = pos;
return n;
}
@Override
public int skip(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
final int remaining = size - pos;
if (n < remaining) {
pos += n;
} else {
n = remaining;
pos = size;
}
last = pos - 1;
return n;
}
};
}
// If you update this, you will probably want to update ArraySet as well
private final class Spliterator implements KEY_SPLITERATOR KEY_GENERIC {
// Until we split, we will track the size of the list.
// Once we split, then we stop updating on structural modifications.
// Aka, size is late-binding.
boolean hasSplit = false;
int pos, max;
#ifdef TEST
// Sentinel to make sure we don't accidentally use size when we mean max
@Deprecated
private final Object size = null;
#endif
public Spliterator() {
this(0, ARRAY_LIST.this.size, false);
}
private Spliterator(int pos, int max, boolean hasSplit) {
assert pos <= max : "pos " + pos + " must be <= max " + max;
this.pos = pos;
this.max = max;
this.hasSplit = hasSplit;
}
private int getWorkingMax() {
return hasSplit ? max : ARRAY_LIST.this.size;
}
@Override
public int characteristics() { return SPLITERATORS.LIST_SPLITERATOR_CHARACTERISTICS; }
@Override
public long estimateSize() { return getWorkingMax() - pos; }
@Override
public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
if (pos >= getWorkingMax()) return false;
action.accept(a[pos++]);
return true;
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
final KEY_GENERIC_TYPE[] a = ARRAY_LIST.this.a;
for (final int max = getWorkingMax(); pos < max; ++pos) {
action.accept(a[pos]);
}
}
@Override
public long skip(long n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
final int max = getWorkingMax();
if (pos >= max) return 0;
final int remaining = max - pos;
if (n < remaining) {
pos = it.unimi.dsi.fastutil.SafeMath.safeLongToInt(pos + n);
return n;
}
n = remaining;
pos = max;
return n;
}
@Override
public KEY_SPLITERATOR KEY_GENERIC trySplit() {
final int max = getWorkingMax();
int retLen = (max - pos) >> 1;
if (retLen <= 1) return null;
// Update instance max with the last seen list size (if needed) before continuing
this.max = max;
int myNewPos = pos + retLen;
int retMax = myNewPos;
int oldPos = pos;
this.pos = myNewPos;
this.hasSplit = true;
return new Spliterator(oldPos, retMax, true);
}
}
/** {@inheritDoc}
*
* <p>The returned spliterator is late-binding; it will track structural changes
* after the current index, up until the first {@link java.util.Spliterator#trySplit() trySplit()},
* at which point the maximum index will be fixed.
* <br>Structural changes before the current index or after the first
* {@link java.util.Spliterator#trySplit() trySplit()} will result in unspecified behavior.
*/
@Override
public KEY_SPLITERATOR KEY_GENERIC spliterator() {
// If it wasn't for the possibility of the list being expanded or shrunk,
// we could return SPLITERATORS.wrap(a, 0, size).
return new Spliterator();
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public void sort(final KEY_COMPARATOR KEY_SUPER_GENERIC comp) {
if (comp == null) {
ARRAYS.stableSort(a, 0, size);
} else {
ARRAYS.stableSort(a, 0, size, comp);
}
}
@Override
public void unstableSort(final KEY_COMPARATOR KEY_SUPER_GENERIC comp) {
if (comp == null) {
ARRAYS.unstableSort(a, 0, size);
} else {
ARRAYS.unstableSort(a, 0, size, comp);
}
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public ARRAY_LIST KEY_GENERIC clone() {
ARRAY_LIST KEY_GENERIC cloned = null;
// Test for fastpath we can do if exactly an ArrayList
if (getClass() == ARRAY_LIST.class) {
// Preserve backwards compatibility and make new list have Object[] even if it was wrapped from some subclass.
cloned = new ARRAY_LIST KEY_GENERIC_DIAMOND(copyArraySafe(a, size), false);
cloned.size = size;
} else {
try {
cloned = (ARRAY_LIST KEY_GENERIC)super.clone();
} catch (CloneNotSupportedException err) {
// Can't happen
throw new InternalError(err);
}
// Preserve backwards compatibility and make new list have Object[] even if it was wrapped from some subclass.
cloned.a = copyArraySafe(a, size);
#if ! KEYS_PRIMITIVE
// We can't clear cloned.wrapped because it is final.
#endif
}
return cloned;
}
/** Compares this type-specific array list to another one.
*
* @apiNote This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a type-specific array list.
* @return true if the argument contains the same elements of this type-specific array list.
*/
public boolean equals(final ARRAY_LIST KEY_GENERIC l) {
// TODO When minimum version of Java becomes Java 9, use the Arrays.equals which takes bounds, which is vectorized.
if (l == this) return true;
int s = size();
if (s != l.size()) return false;
final KEY_GENERIC_TYPE[] a1 = a;
final KEY_GENERIC_TYPE[] a2 = l.a;
if (a1 == a2 && s == l.size()) return true;
#if KEY_CLASS_Object
while(s-- != 0) if (! java.util.Objects.equals(a1[s], a2[s])) return false;
#else
while(s-- != 0) if (a1[s] != a2[s]) return false;
#endif
return true;
}
#if KEYS_REFERENCE
@SuppressWarnings({"unchecked", "unlikely-arg-type"})
#else
@SuppressWarnings("unlikely-arg-type")
#endif
@Override
public boolean equals(final Object o) {
if (o == this) return true;
if (o == null) return false;
if (!(o instanceof java.util.List)) return false;
if (o instanceof ARRAY_LIST) {
// Safe cast because we are only going to take elements from other list, never give them
return equals((ARRAY_LIST KEY_GENERIC) o);
}
if (o instanceof ARRAY_LIST.SubList) {
// Safe cast because we are only going to take elements from other list, never give them
// Sublist has an optimized sub-array based comparison, reuse that.
return ((ARRAY_LIST KEY_GENERIC.SubList)o).equals(this);
}
return super.equals(o);
}
#if ! KEYS_USE_REFERENCE_EQUALITY
/** Compares this array list to another array list.
*
* @apiNote This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l an array list.
* @return a negative integer,
* zero, or a positive integer as this list is lexicographically less than, equal
* to, or greater than the argument.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public int compareTo(final ARRAY_LIST KEY_EXTENDS_GENERIC l) {
final int s1 = size(), s2 = l.size();
final KEY_GENERIC_TYPE[] a1 = a, a2 = l.a;
#if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal
if (a1 == a2 && s1 == s2) return 0;
#endif
// TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes.
KEY_GENERIC_TYPE e1, e2;
int r, i;
for(i = 0; i < s1 && i < s2; i++) {
e1 = a1[i];
e2 = a2[i];
if ((r = KEY_CMP(e1, e2)) != 0) return r;
}
return i < s2 ? -1 : (i < s1 ? 1 : 0);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public int compareTo(final java.util.List <? extends KEY_GENERIC_CLASS> l) {
if (l instanceof ARRAY_LIST) {
return compareTo((ARRAY_LIST KEY_EXTENDS_GENERIC)l);
}
if (l instanceof ARRAY_LIST.SubList) {
// Must negate because we are inverting the order of the comparison.
return -((ARRAY_LIST KEY_GENERIC.SubList) l).compareTo(this);
}
return super.compareTo(l);
}
#endif
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
s.defaultWriteObject();
final KEY_GENERIC_TYPE[] a = this.a;
for(int i = 0; i < size; i++) s.WRITE_KEY(a[i]);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
final KEY_GENERIC_TYPE[] a = this.a = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[size];
for(int i = 0; i < size; i++) a[i] = KEY_GENERIC_CAST s.READ_KEY();
}
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
return Integer.toBinaryString(r.nextInt());
#else
return new java.io.Serializable() {};
#endif
}
private static int genIndex(int size) {
return size == 0 ? 0 : r.nextInt(size);
}
private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
private static java.text.FieldPosition p = new java.text.FieldPosition(0);
private static String format(double d) {
StringBuffer s = new StringBuffer();
return format.format(d, s, p).toString();
}
private static final int WARMUP_CYCLES = 12;
private static final int NUM_RUNS = 25;
private static final int GC_EVERY = 5;
// TODO Use a ASSERTS like preprocessor variable?
private static final boolean PARALLEL_STREAMS = Boolean.getBoolean("useParallelStreams");
private static final int intDivRoundUp(int numerator, int denominator) {
return (numerator + denominator - 1) / denominator;
}
// WARNING: This benchmark runs in amortized time O(n^(3/2)). Don't choose huge n values for this test (about 10,000,000 starts showing significant slowdown)
private static void speedTest(final int n, boolean comp) {
if (n < 0) throw new IllegalArgumentException("n: " + n + " must be >0 (overflow?)");
java.util.ArrayList t;
ARRAY_LIST m;
int i;
int j;
KEY_TYPE[] k = new KEY_TYPE[n];
KEY_TYPE[] nk = new KEY_TYPE[n];
int[] randIndexes = new int[n];
long ns;
for(i = 0; i < n; i++) {
k[i] = genKey();
nk[i] = genKey();
randIndexes[i] = genIndex(i);
}
final int nRandom = (int)Math.sqrt(n);
final int nSequential = n - nRandom;
double totAddEnd = 0, totAddRandom = 0, totYes = 0, totNo = 0, totIter = 0, totRemEnd = 0, totRemRandom = 0, toStreamSum = 0, d;
if (comp) { for(j = 0; j < NUM_RUNS; j++) {
if ((j + 1) % GC_EVERY == 0) System.gc();
t = new java.util.ArrayList(16);
/* We add to t at a random position. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) t.add(randIndexes[i], KEY2OBJ(k[i]));
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totAddRandom += d;
System.out.print("AddToRandom: " + format(d) + "ns ");
/* We add to t at end. */
ns = System.nanoTime();
for(; i < n; i++) t.add(KEY2OBJ(k[i]));
d = (System.nanoTime() - ns) / (double)nSequential;
if (j >= WARMUP_CYCLES) totAddEnd += d;
System.out.print("AddToEnd: " + format(d) + "ns ");
/* We check things in t. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) t.contains(KEY2OBJ(k[i]));
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totYes += d;
System.out.print("Yes: " + format(d) + "ns ");
/* We check for things likely not in t. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) t.contains(KEY2OBJ(nk[i]));
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totNo += d;
System.out.print("No: " + format(d) + "ns ");
/* We iterate on t. */
ns = System.nanoTime();
for(java.util.Iterator it = t.iterator(); it.hasNext(); it.next());
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totIter += d;
System.out.print("Iter: " + format(d) + "ns ");
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
/* We sum on t. */
ns = System.nanoTime();
#if KEYS_BYTE_CHAR_SHORT_FLOAT
// Since the primitive stream has to upcast to a widened primitive, for fairness we will upcast here too
#endif
java.util.stream.Stream<KEY_CLASS> tStream = ((java.util.List<KEY_CLASS>)t).stream();
if (PARALLEL_STREAMS) tStream = tStream.parallel();
#if KEY_CLASS_Character
tStream.MAP_TO_KEY_WIDENED(Character::charValue).sum();
#else
tStream.MAP_TO_KEY_WIDENED(KEY_CLASS::KEY_WIDENED_VALUE).sum();
#endif
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) toStreamSum += d;
System.out.print("Stream sum: " + format(d) + "ns ");
#endif
// Don't bother with remove(KEY); that is just going to be a contains + remove random.
/* We remove from end */
ns = System.nanoTime();
for(i = 0; i < nSequential; i++) t.remove(t.size() - 1);
d = (System.nanoTime() - ns) / (double)nSequential;
if (j >= WARMUP_CYCLES) totRemEnd += d;
System.out.print("RemEnd: " + format(d) + "ns ");
/* We remove randomly */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) t.remove(randIndexes[t.size() - 1]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totRemRandom += d;
System.out.print("RemRandom: " + format(d) + "ns ");
System.out.println();
}
System.out.println();
System.out.println("java.util AddToRandom: " + format(totAddRandom/(j-WARMUP_CYCLES)) + " AddToEnd: " + format(totAddEnd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemEnd: " + format(totRemEnd/(j-WARMUP_CYCLES)) + "ns RemRandom: " + format(totRemRandom/(j-WARMUP_CYCLES)) + "ns");
System.out.println();
totAddEnd = totAddRandom = totYes = totNo = totIter = totRemEnd = totRemRandom = toStreamSum = 0;
}
for(j = 0; j < NUM_RUNS; j++) {
if ((j + 1) % GC_EVERY == 0) System.gc();
m = new ARRAY_LIST(16);
/* We add to m at a random position. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) m.add(randIndexes[i], k[i]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totAddRandom += d;
System.out.print("AddToRandom: " + format(d) + "ns ");
/* We add to m at end. */
ns = System.nanoTime();
for(; i < n; i++) m.add(k[i]);
d = (System.nanoTime() - ns) / (double)nSequential;
if (j >= WARMUP_CYCLES) totAddEnd += d;
System.out.print("AddToEnd: " + format(d) + "ns ");
/* We check things in m. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) m.contains(k[i]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totYes += d;
System.out.print("Yes: " + format(d) + "ns ");
/* We check for things likely not in m. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) m.contains(nk[i]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totNo += d;
System.out.print("No: " + format(d) + "ns ");
/* We iterate on m. */
ns = System.nanoTime();
for(KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY());
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totIter += d;
System.out.print("Iter: " + format(d) + "ns ");
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
/* We sum on m. */
ns = System.nanoTime();
JDK_PRIMITIVE_STREAM mStream = m.KEY_WIDENED_STREAM_METHOD();
if (PARALLEL_STREAMS) mStream = mStream.parallel();
mStream.sum();
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) toStreamSum += d;
System.out.print("Stream sum: " + format(d) + "ns ");
#endif
// Don't bother with rem(KEY); that is just going to be a contains + remove random.
/* We remove from end */
ns = System.nanoTime();
for(i = 0; i < nSequential; i++) m.REMOVE_KEY(m.size() - 1);
d = (System.nanoTime() - ns) / (double)nSequential;
if (j >= WARMUP_CYCLES) totRemEnd += d;
System.out.print("RemEnd: " + format(d) + "ns ");
/* We remove randomly */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) m.REMOVE_KEY(randIndexes[m.size() - 1]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totRemRandom += d;
System.out.print("RemRandom: " + format(d) + "ns ");
System.out.println();
}
System.out.println();
System.out.println("fastutil AddToRandom: " + format(totAddRandom/(j-WARMUP_CYCLES)) + " AddToEnd: " + format(totAddEnd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemEnd: " + format(totRemEnd/(j-WARMUP_CYCLES)) + "ns RemRandom: " + format(totRemRandom/(j-WARMUP_CYCLES)) + "ns");
System.out.println();
}
private static void fatal(String msg) {
throw new AssertionError(msg);
}
private static void ensure(boolean cond, String msg) {
if (cond) return;
fatal(msg);
}
private static void ensure(boolean cond, java.util.function.Supplier<String> msgSupplier) {
if (cond) return;
fatal(msgSupplier.get());
}
private static Object[] k, v, nk;
private static KEY_TYPE[] kt;
private static KEY_TYPE[] nkt;
private static ARRAY_LIST topList;
protected static void testLists(LIST m, java.util.List t, int n, int level) throws Exception {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds;
Object rt = null;
KEY_TYPE rm = KEY_NULL;
if (level > 4) return;
/* Now we check that both sets agree on random keys. For m we use the polymorphic method. */
for(int i = 0; i < n; i++) {
int p = r.nextInt() % (n * 2);
KEY_TYPE T = genKey();
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.set(p, T);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.set(p, KEY2OBJ(T));
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");
p = r.nextInt() % (n * 2);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.GET_KEY(p);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.get(p);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");
}
/* Now we check that both sets agree on random keys. For m we use the standard method. */
for(int i = 0; i < n; i++) {
int p = r.nextInt() % (n * 2);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.get(p);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.get(p);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get(p) + ", " + t.get(p) + ")");
}
/* Now we check that m and t are equal. */
if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t);
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start");
/* Now we check that m actually holds that data. */
for(Iterator i=t.iterator(); i.hasNext();) {
ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)");
}
/* Now we check that m actually holds that data, but iterating on m. */
for(Iterator i=m.listIterator(); i.hasNext();) {
ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)");
}
/* Now we check that inquiries about random data give the same answer in m and t. For
m we use the polymorphic method. */
for(int i=0; i<n; i++) {
KEY_TYPE T = genKey();
ensure(m.contains(T) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)");
}
/* Again, we check that inquiries about random data give the same answer in m and t, but
for m we use the standard method. */
for(int i=0; i<n; i++) {
KEY_TYPE T = genKey();
ensure(m.contains(KEY2OBJ(T)) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)");
}
/* Now we add and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<2*n; i++) {
KEY_TYPE T = genKey();
try {
m.add(T);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.add(KEY2OBJ(T));
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
T = genKey();
int p = r.nextInt() % (2 * n + 1);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.add(p, T);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.add(p, KEY2OBJ(T));
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): add() divergence in IndexOutOfBoundsException for index " + p + " for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
p = r.nextInt() % (2 * n + 1);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
rm = m.REMOVE_KEY(p);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
rt = t.remove(p);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): remove() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(rt.equals(KEY2OBJ(rm)), "Error (" + level + ", " + seed + "): divergence in remove() between t and m (" + rt + ", " + rm + ")");
}
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after add/remove");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after add/remove");
#if KEYS_PRIMITIVE
/* Now we sort the data and make sure the results is the same. */
m.sort(null);
t.sort(null);
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after sort");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after sort");
#endif
/* Now we add random data in m and t using addAll on a collection, checking that the result is the same. */
for(int i=0; i<n; i++) {
int p = r.nextInt() % (2 * n + 1);
Collection m1 = new java.util.ArrayList();
int s = r.nextInt(n / 2 + 1);
for(int j = 0; j < s; j++) m1.add(KEY2OBJ(genKey()));
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.addAll(p, m1);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.addAll(p, m1);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after addAll");
ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after addAll");
}
if (m.size() > n) {
m.size(n);
while(t.size() != n) t.remove(t.size() -1);
}
/* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */
for(int i=0; i<n; i++) {
int p = r.nextInt() % (2 * n + 1);
COLLECTION m1 = new ARRAY_LIST();
Collection t1 = new java.util.ArrayList();
int s = r.nextInt(n / 2 + 1);
for(int j = 0; j < s; j++) {
KEY_TYPE x = genKey();
m1.add(x);
t1.add(KEY2OBJ(x));
}
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.addAll(p, m1);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.addAll(p, t1);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): polymorphic addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after polymorphic addAll");
ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after polymorphic addAll");
}
if (m.size() > n) {
m.size(n);
while(t.size() != n) t.remove(t.size() -1);
}
/* Now we add random data in m and t using addAll on a list, checking that the result is the same. */
for(int i=0; i<n; i++) {
int p = r.nextInt() % (2 * n + 1);
LIST m1 = new ARRAY_LIST();
Collection t1 = new java.util.ArrayList();
int s = r.nextInt(n / 2 + 1);
for(int j = 0; j < s; j++) {
KEY_TYPE x = genKey();
m1.add(x);
t1.add(KEY2OBJ(x));
}
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.addAll(p, m1);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.addAll(p, t1);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): list addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after list addAll");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after list addAll");
}
/* Now we add random data in m and t using addElements, checking that the result is the same. */
for(int i=0; i<n; i++) {
int p = r.nextInt() % (2 * n + 1);
Collection t1 = new java.util.ArrayList();
int s = r.nextInt(n / 2 + 1);
KEY_TYPE[] a = new KEY_TYPE [s];
for(int j = 0; j < s; j++) {
KEY_TYPE x = genKey();
t1.add(KEY2OBJ(x));
a[j] = x;
}
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.addElements(p, a);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.addAll(p, t1);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): list addElements() divergence in IndexOutOfBoundsException for index " + p + " for " + t1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after list addElements");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after list addElements");
}
if (m.size() > n) {
m.size(n);
while(t.size() != n) t.remove(t.size() -1);
}
/* Now we check that m actually holds the same data. */
for(Iterator i=t.iterator(); i.hasNext();) {
ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after removal (iterating on t)");
}
/* Now we check that m actually holds that data, but iterating on m. */
for(Iterator i=m.listIterator(); i.hasNext();) {
ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after removal (iterating on m)");
}
/* Now we check that both sets agree on random keys. For m we use the standard method. */
for(int i = 0; i < n; i++) {
int p = r.nextInt() % (n * 2);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.get(p);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.get(p);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ on position " + p + " (" + m.get(p) + ", " + t.get(p) +")");
}
/* Now we inquiry about the content with indexOf()/lastIndexOf(). */
for(int i=0; i<10*n; i++) {
KEY_TYPE T = genKey();
ensure(m.indexOf(KEY2OBJ(T)) == t.indexOf(KEY2OBJ(T)),
"Error (" + level + ", " + seed + "): indexOf() divergence for " + T + " (" + m.indexOf(KEY2OBJ(T)) + ", " + t.indexOf(KEY2OBJ(T)) + ")");
ensure(m.lastIndexOf(KEY2OBJ(T)) == t.lastIndexOf(KEY2OBJ(T)),
"Error (" + level + ", " + seed + "): lastIndexOf() divergence for " + T + " (" + m.lastIndexOf(KEY2OBJ(T)) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")");
ensure(m.indexOf(T) == t.indexOf(KEY2OBJ(T)),
"Error (" + level + ", " + seed + "): polymorphic indexOf() divergence for " + T + " (" + m.indexOf(T) + ", " + t.indexOf(KEY2OBJ(T)) + ")");
ensure(m.lastIndexOf(T) == t.lastIndexOf(KEY2OBJ(T)),
"Error (" + level + ", " + seed + "): polymorphic lastIndexOf() divergence for " + T + " (" + m.lastIndexOf(T) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")");
}
/* Now we check cloning. */
if (level == 0) {
ensure(m.equals(((ARRAY_LIST)m).clone()), "Error (" + level + ", " + seed + "): m does not equal m.clone()");
ensure(((ARRAY_LIST)m).clone().equals(m), "Error (" + level + ", " + seed + "): m.clone() does not equal m");
}
/* Now we play with constructors. */
ensure(m.equals(new ARRAY_LIST((Collection)m)), "Error (" + level + ", " + seed + "): m does not equal new (Collection m)");
ensure((new ARRAY_LIST((Collection)m)).equals(m), "Error (" + level + ", " + seed + "): new (Collection m)does not equal m");
ensure(m.equals(new ARRAY_LIST(new java.util.ArrayList(m))), "Error (" + level + ", " + seed + "): m does not equal new (Collection m)");
ensure((new ARRAY_LIST(new java.util.ArrayList(m)).equals(m)), "Error (" + level + ", " + seed + "): new (Collection m)does not equal m");
ensure(m.equals(new ARRAY_LIST((COLLECTION)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific Collection m)");
ensure((new ARRAY_LIST((COLLECTION)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific Collection m) does not equal m");
ensure(m.equals(new ARRAY_LIST((LIST)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific List m)");
ensure((new ARRAY_LIST((LIST)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific List m) does not equal m");
ensure(m.equals(new ARRAY_LIST(m.listIterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.listIterator())");
ensure((new ARRAY_LIST(m.listIterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.listIterator()) does not equal m");
ensure(m.equals(new ARRAY_LIST(m.iterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.type_specific_iterator())");
ensure((new ARRAY_LIST(m.iterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.type_specific_iterator()) does not equal m");
/* Now we play with conversion to array, wrapping and copying. */
ensure(m.equals(new ARRAY_LIST(m.TO_KEY_ARRAY())), "Error (" + level + ", " + seed + "): m does not equal new (toArray(m))");
ensure((new ARRAY_LIST(m.TO_KEY_ARRAY())).equals(m), "Error (" + level + ", " + seed + "): new (toArray(m)) does not equal m");
ensure(m.equals(wrap(m.TO_KEY_ARRAY())), "Error (" + level + ", " + seed + "): m does not equal wrap (toArray(m))");
ensure((wrap(m.TO_KEY_ARRAY())).equals(m), "Error (" + level + ", " + seed + "): wrap (toArray(m)) does not equal m");
int h = m.hashCode();
/* Now we save and read m. */
LIST m2 = null;
{
java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test." + m.getClass().getSimpleName() + "." + n);
java.io.OutputStream os = new java.io.FileOutputStream(ff);
java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
oos.writeObject(m);
oos.close();
java.io.InputStream is = new java.io.FileInputStream(ff);
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
m2 = (LIST)ois.readObject();
ois.close();
ff.delete();
}
#if ! KEYS_USE_REFERENCE_EQUALITY
ensure(m2.hashCode() == h, "Error (" + level + ", " + seed + "): hashCode() changed after save/read");
/* Now we check that m2 actually holds that data. */
ensure(m2.equals(t), "Error (" + level + ", " + seed + "): ! m2.equals(t) after save/read");
ensure(t.equals(m2), "Error (" + level + ", " + seed + "): ! t.equals(m2) after save/read");
/* Now we take out of m everything, and check that it is empty. */
for(Iterator i=t.iterator(); i.hasNext();) m2.remove(i.next());
ensure(m2.isEmpty(), "Error (" + level + ", " + seed + "): m2 is not empty (as it should be)");
#endif
/* Now we play with iterators. */
{
KEY_LIST_ITERATOR i;
java.util.ListIterator j;
Object J;
i = m.listIterator();
j = t.listIterator();
for(int k = 0; k < 2*n; k++) {
ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext()");
ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + level + ", " + seed + "): divergence in hasPrevious()");
if (r.nextFloat() < .8 && i.hasNext()) {
ensure(i.next().equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next()");
if (r.nextFloat() < 0.2) {
i.remove();
j.remove();
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.set(T);
j.set(KEY2OBJ(T));
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.add(T);
j.add(KEY2OBJ(T));
}
}
else if (r.nextFloat() < .2 && i.hasPrevious()) {
ensure(i.previous().equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous()");
if (r.nextFloat() < 0.2) {
i.remove();
j.remove();
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.set(T);
j.set(KEY2OBJ(T));
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.add(T);
j.add(KEY2OBJ(T));
}
}
ensure(i.nextIndex() == j.nextIndex(), "Error (" + level + ", " + seed + "): divergence in nextIndex()");
ensure(i.previousIndex() == j.previousIndex(), "Error (" + level + ", " + seed + "): divergence in previousIndex()");
}
}
/* Now we play with spliterators.
*
* Or rather we would, except comparing results of spliterators directly is a bit painful.
* However, there is an easy workaround; use streams, which are built on Spliterators.
*/
{
#if KEYS_REFERENCE
java.util.stream.Stream<KEY_TYPE> i = m.stream();
java.util.stream.Stream<KEY_TYPE> j = t.stream();
#elif KEY_CLASS_Boolean
java.util.stream.Stream<KEY_CLASS> i = m.stream();
java.util.stream.Stream<KEY_CLASS> j = t.stream();
#else
JDK_PRIMITIVE_STREAM i = m.KEY_WIDENED_STREAM_METHOD();
java.util.stream.Stream<KEY_CLASS> j = t.stream();
#endif
if (PARALLEL_STREAMS) {
i = i.parallel();
j = j.parallel();
}
#if KEYS_REFERENCE || KEY_CLASS_Boolean
Object[] iArray = i.toArray();
Object[] jArray = j.toArray();
#elif KEY_CLASS_Character
KEY_TYPE_WIDENED[] iArray = i.toArray();
KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(c -> (int)c.charValue()).toArray();
#else
KEY_TYPE_WIDENED[] iArray = i.toArray();
KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(Number::KEY_WIDENED_VALUE).toArray();
#endif
ensure(java.util.Arrays.equals(iArray, jArray), "Error (" + level + ", " + seed + "): divergence in toArray() from streams (" + java.util.Arrays.toString(iArray) + " != " + java.util.Arrays.toString(jArray) + ")");
}
{
Object previous = null;
Object I, J;
int from = r.nextInt(m.size() +1);
KEY_LIST_ITERATOR i;
java.util.ListIterator j;
i = m.listIterator(from);
j = t.listIterator(from);
for(int k = 0; k < 2*n; k++) {
ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")");
ensure(i.hasPrevious() == j.hasPrevious() , "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")");
if (r.nextFloat() < .8 && i.hasNext()) {
ensure((I = i.next()).equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")");
//System.err.println("Done next " + I + " " + J + " " + badPrevious);
if (r.nextFloat() < 0.2) {
//System.err.println("Removing in next");
i.remove();
j.remove();
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.set(T);
j.set(KEY2OBJ(T));
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.add(T);
j.add(KEY2OBJ(T));
}
}
else if (r.nextFloat() < .2 && i.hasPrevious()) {
ensure((I = i.previous()).equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")");
if (r.nextFloat() < 0.2) {
//System.err.println("Removing in prev");
i.remove();
j.remove();
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.set(T);
j.set(KEY2OBJ(T));
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.add(T);
j.add(KEY2OBJ(T));
}
}
}
}
/* Now we check that m actually holds that data. */
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after iteration");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after iteration");
/* Now we select a pair of keys and create a subset. */
if (! m.isEmpty()) {
int start = r.nextInt(m.size());
int end = start + r.nextInt(m.size() - start);
//System.err.println("Checking subList from " + start + " to " + end + " (level=" + (level+1) + ")...");
testLists(m.subList(start, end), t.subList(start, end), n, level + 1);
ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after subList");
ensure(t.equals(m), () -> "Error (" + level + ", " + seed + "): ! t.equals(m) after subList");
}
m.clear();
t.clear();
ensure(m.isEmpty(), "Error (" + level + ", " + seed + "): m is not empty after clear()");
}
protected static void runTest(int n) throws Exception {
ARRAY_LIST m = new ARRAY_LIST();
java.util.ArrayList t = new java.util.ArrayList();
topList = m;
k = new Object[n];
nk = new Object[n];
kt = new KEY_TYPE[n];
nkt = new KEY_TYPE[n];
for(int i = 0; i < n; i++) {
#if KEYS_REFERENCE
k[i] = kt[i] = genKey();
nk[i] = nkt[i] = genKey();
#else
k[i] = new KEY_CLASS(kt[i] = genKey());
nk[i] = new KEY_CLASS(nkt[i] = genKey());
#endif
}
/* We add pairs to t. */
for(int i = 0; i < n; i++) t.add(k[i]);
/* We add to m the same data */
m.addAll(t);
testLists(m, t, n, 0);
System.out.println("Test OK");
return;
}
public static void main(String[] args) throws Exception {
int n = Integer.parseInt(args[1]);
if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) runTest(n);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
throw e;
}
}
#endif
}
|