File: BigArrayBigList.drv

package info (click to toggle)
libfastutil-java 8.5.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,076 kB
  • sloc: java: 19,670; sh: 1,188; makefile: 473; xml: 354
file content (1825 lines) | stat: -rw-r--r-- 63,124 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
/*
 * Copyright (C) 2002-2024 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;
import static it.unimi.dsi.fastutil.BigArrays.length;
import it.unimi.dsi.fastutil.BigList;
import it.unimi.dsi.fastutil.Size64;
#if KEYS_REFERENCE
import java.util.function.Consumer;
import java.util.stream.Collector;
#endif

#if KEYS_PRIMITIVE

/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing.
 *
 * <p>This class implements a lightweight, fast, open, optimized,
 * reuse-oriented version of big-array-based big lists. Instances of this class
 * represent a big list with a big array that is enlarged as needed when new entries
 * are created (by increasing its current length by 50%), but is
 * <em>never</em> made smaller (even on a {@link #clear()}). A family of
 * {@linkplain #trim() trimming methods} lets you control the size of the
 * backing big array; this is particularly useful if you reuse instances of this class.
 * Range checks are equivalent to those of {@link java.util}'s classes, but
 * they are delayed as much as possible. The backing big array is exposed by the
 * {@link #elements()} method.
 *
 * <p>This class implements the bulk methods {@code removeElements()},
 * {@code addElements()} and {@code getElements()} using
 * high-performance system calls (e.g., {@link
 * System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of
 * expensive loops.
 *
 * @see java.util.ArrayList
 */

public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
	private static final long serialVersionUID = -7046029254386353130L;


#else

/** A type-specific big-array-based big list; provides some additional methods that use polymorphism to avoid (un)boxing.
 *
 * <p>This class implements a lightweight, fast, open, optimized,
 * reuse-oriented version of big-array-based big lists. Instances of this class
 * represent a big list with a big array that is enlarged as needed when new entries
 * are created (by increasing its current length to 50%), but is
 * <em>never</em> made smaller (even on a {@link #clear()}). A family of
 * {@linkplain #trim() trimming methods} lets you control the size of the
 * backing big array; this is particularly useful if you reuse instances of this class.
 * Range checks are equivalent to those of {@link java.util}'s classes, but
 * they are delayed as much as possible.
 *
 * <p>The backing big array is exposed by the {@link #elements()} method. If an instance
 * of this class was created {@linkplain #wrap(Object[][],long) by wrapping},
 * backing-array reallocations will be performed using reflection, so that
 * {@link #elements()} can return a big array of the same type of the original big array; the comments
 * about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here.
 *
 * <p>This class implements the bulk methods {@code removeElements()},
 * {@code addElements()} and {@code getElements()} using
 * high-performance system calls (e.g., {@link
 * System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of
 * expensive loops.
 *
 * @see java.util.ArrayList
 */

public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
	private static final long serialVersionUID = -7046029254386353131L;


#endif

	/** The initial default capacity of a big-array big list. */
	public static final int DEFAULT_INITIAL_CAPACITY = 10;

#if ! KEYS_PRIMITIVE
	/** Whether the backing big array was passed to {@code wrap()}. In
	 * this case, we must reallocate with the same type of big array. */
	protected final boolean wrapped;
#endif

	/** The backing big array. */
	protected transient KEY_GENERIC_TYPE a[][];

	/** The current actual size of the big list (never greater than the backing-array length). */
	protected long size;

	/** Creates a new big-array big list using a given array.
	 *
	 * <p>This constructor is only meant to be used by the wrapping methods.
	 *
	 * @param a the big array that will be used to back this big-array big list.
	 */

	protected BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], @SuppressWarnings("unused") boolean dummy) {
		this.a = a;
#if ! KEYS_PRIMITIVE
		this.wrapped = true;
#endif
	}

	/** Creates a new big-array big list with given capacity.
	 *
	 * @param capacity the initial capacity of the array list (may be 0).
	 */

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public BIG_ARRAY_BIG_LIST(final long capacity) {
		if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative");
		if (capacity == 0) a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.EMPTY_BIG_ARRAY;
		else a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(capacity);
#if ! KEYS_PRIMITIVE
		wrapped = false;
#endif
	}

	/** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public BIG_ARRAY_BIG_LIST() {
		a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY; // We delay allocation
#if ! KEYS_PRIMITIVE
		wrapped = false;
#endif
	}

	/** Creates a new big-array big list and fills it with a given type-specific collection.
	 *
	 * @param c a type-specific collection that will be used to fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final COLLECTION KEY_EXTENDS_GENERIC c) {
		this(Size64.sizeOf(c));
		if (c instanceof BIG_LIST) {
			((BIG_LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = Size64.sizeOf(c));
		} else {
			for(KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext();) add(i.NEXT_KEY());
		}
	}

#if KEYS_REFERENCE

	/** Creates a new big-array big list and fills it with a given collection.
	 *
	 * @param c a collection that will be used to fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final Collection KEY_EXTENDS_GENERIC c) {
		this(Size64.sizeOf(c));
		if (c instanceof BIG_LIST) {
			((BIG_LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = Size64.sizeOf(c));
		} else {
			for(Iterator KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext();) add(i.next());
		}
	}

#endif

	/** Creates a new big-array big list and fills it with a given type-specific list.
	 *
	 * @param l a type-specific list that will be used to fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final BIG_LIST KEY_EXTENDS_GENERIC l) {
		this(l.size64());
		l.getElements(0, a, 0, size = l.size64());
	}

	/** Creates a new big-array big list and fills it with the elements of a given big array.
	 *
	 * @param a a big array whose elements will be used to fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][]) {
		this(a, 0, length(a));
	}

	/** Creates a new big-array big list and fills it with the elements of a given big array.
	 *
	 * @param a a big array whose elements will be used to fill the array list.
	 * @param offset the first element to use.
	 * @param length the number of elements to use.
	 */

	public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], final long offset, final long length) {
		this(length);
		BigArrays.copy(a, offset, this.a, 0, length);
		size = length;
	}

	/** Creates a new big-array big list and fills it with the elements returned by an iterator..
	 *
	 * @param i an iterator whose returned elements will fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final Iterator<? extends KEY_GENERIC_CLASS> i) {
		this();
		while(i.hasNext()) this.add(KEY_CLASS2TYPE(i.next()));
	}

	/** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator..
	 *
	 * @param i a type-specific iterator whose returned elements will fill the array list.
	 */

	public BIG_ARRAY_BIG_LIST(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
		this();
		while(i.hasNext()) this.add(i.NEXT_KEY());
	}

#if KEYS_PRIMITIVE
	/** Returns the backing big array of this big list.
	 *
	 * @return the backing big array.
	 */

	public KEY_GENERIC_TYPE[][] elements() {
		return a;
	}
#else
	/** Returns the backing big array of this big list.
	 *
	 * <p>If this big-array big list was created by wrapping a given big array, it is guaranteed
	 * that the type of the returned big array will be the same. Otherwise, the returned
	 * big array will be an big array of objects.
	 *
	 * @return the backing big array.
	 */

	public KEY_GENERIC_TYPE[][] elements() {
		return a;
	}
#endif

	/** Wraps a given big array into a big-array list of given size.
	 *
	 * @param a a big array to wrap.
	 * @param length the length of the resulting big-array list.
	 * @return a new big-array list of the given size, wrapping the given big array.
	 */

	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][], final long length) {
		if (length > length(a)) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + length(a) + ")");
		final BIG_ARRAY_BIG_LIST KEY_GENERIC l = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(a, false);
		l.size = length;
		return l;
	}

	/** Wraps a given big array into a big-array big list.
	 *
	 * @param a a big array to wrap.
	 * @return a new big-array big list wrapping the given array.
	 */

	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][]) {
		return wrap(a, length(a));
	}

	/** Creates a new empty big array list. 
	 *
	 * @return a new empty big-array big list.
	 */
	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC of() {
		return new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND();
	}

	/** Creates a big array list using a list of elements.
	 *
	 * @param init a list of elements that will be used to initialize the big list.
	 *   It is possible (but not assured) that the returned big-array big list will be
	 *   backed by the given array in one of its segments.
	 * @return a new big-array big list containing the given elements.
	 * @see BigArrays#wrap
	 */
	SAFE_VARARGS
	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC of(final KEY_GENERIC_TYPE... init) {
		return wrap(BigArrays.wrap(init));
	}

#if KEYS_INT_LONG_DOUBLE
	/** Collects the result of a primitive {@code Stream} into a new BigArrayBigList.
	 *
	 * <p>This method performs a terminal operation on the given {@code Stream}
	 *
	 * @apiNote Taking a primitive stream instead of returning something like a
	 * {@link java.util.stream.Collector Collector} is necessary because there is no
	 * primitive {@code Collector} equivalent in the Java API.
	 */
	 public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC toBigList(JDK_PRIMITIVE_STREAM stream) {
	 	return stream.collect(
	 		BIG_ARRAY_BIG_LIST::new,
	 		BIG_ARRAY_BIG_LIST::add,
	 		BIG_ARRAY_BIG_LIST::addAll);
	 }
	 
	/** Collects the result of a primitive {@code Stream} into a new BigArrayBigList.
	 *
	 * <p>This method performs a terminal operation on the given {@code Stream}
	 *
	 * @apiNote Taking a primitive stream instead returning something like a
	 * {@link java.util.stream.Collector Collector} is necessary because there is no
	 * primitive {@code Collector} equivalent in the Java API.
	 * @implNote The current implementation preallocates the full size for every worker thread when used on parallel streams.
	 *   This can be quite wasteful, as worker threads other then the first don't usually handle the contents of the full stream.
	 */
	public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC toBigListWithExpectedSize(JDK_PRIMITIVE_STREAM stream, long expectedSize) {
		return stream.collect(
			() -> new BIG_ARRAY_BIG_LIST KEY_GENERIC(expectedSize),
			BIG_ARRAY_BIG_LIST::add,
			BIG_ARRAY_BIG_LIST::addAll);
	}
#elif KEYS_REFERENCE
	// Collector wants a function that returns the collection being added to.
	private BIG_ARRAY_BIG_LIST KEY_GENERIC combine(BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC toAddFrom) {
		addAll(toAddFrom);
		return this;
	}

	private static final Collector<KEY_TYPE, ?, BIG_ARRAY_BIG_LIST<KEY_TYPE>> TO_LIST_COLLECTOR =
		Collector.of(
			BIG_ARRAY_BIG_LIST::new,
			BIG_ARRAY_BIG_LIST::add,
			BIG_ARRAY_BIG_LIST::combine); 

	/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList. */
	SUPPRESS_WARNINGS_KEY_UNCHECKED_RAWTYPES
	public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, BIG_ARRAY_BIG_LIST KEY_GENERIC> toBigList() {
		return (Collector) TO_LIST_COLLECTOR;
	}

 	/**
 	 * Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList.
 	 *
 	 * @implNote The current implementation preallocates the full size for every worker thread when used on parallel streams.
	 *   This can be quite wasteful, as worker threads other then the first don't usually handle the contents of the full stream.
 	 */
 	public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, BIG_ARRAY_BIG_LIST KEY_GENERIC> toBigListWithExpectedSize(long expectedSize) {
 		return Collector.of(
		() -> new BIG_ARRAY_BIG_LIST KEY_GENERIC(expectedSize),
		BIG_ARRAY_BIG_LIST::add,
		BIG_ARRAY_BIG_LIST::combine);
	}
#endif


	/** Ensures that this big-array big list can contain the given number of entries without resizing.
	 *
	 * @param capacity the new minimum capacity for this big-array big list.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public void ensureCapacity(final long capacity) {
		if (capacity <= length(a) || a == BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) return;
#if KEYS_PRIMITIVE
		a = BigArrays.forceCapacity(a, capacity, size);
#else
		if (wrapped) a = BigArrays.forceCapacity(a, capacity, size);
		else {
			if (capacity > length(a)) {
				final Object t[][] = BIG_ARRAYS.newBigArray(capacity);
				BigArrays.copy(a, 0, t, 0, size);
				a = (KEY_GENERIC_TYPE[][])t;
			}
		}
#endif
		assert size <= length(a);
	}

	/** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing,
	 * and in case increasing current capacity at least by a factor of 50%.
	 *
	 * @param capacity the new minimum capacity for this big-array big list.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	private void grow(long capacity) {
		final long oldLength = length(a);
		if (capacity <= oldLength) return;
		if (a != BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) capacity = Math.max(oldLength + (oldLength >> 1), capacity);
		else if (capacity < DEFAULT_INITIAL_CAPACITY) capacity = DEFAULT_INITIAL_CAPACITY;
#if KEYS_PRIMITIVE
		a = BigArrays.forceCapacity(a, capacity, size);
#else
		if (wrapped) a =  BigArrays.forceCapacity(a, capacity, size);
		else {
			final Object t[][] = BIG_ARRAYS.newBigArray(capacity);
			BigArrays.copy(a, 0, t, 0, size);
			a = (KEY_GENERIC_TYPE[][])t;
		}
#endif
		assert size <= length(a);
	}

	@Override
	public void add(final long index, final KEY_GENERIC_TYPE k) {
		ensureIndex(index);
		grow(size + 1);
		if (index != size) BigArrays.copy(a, index, a, index + 1, size - index);
		BigArrays.set(a, index, k);
		size++;
		assert size <= length(a);
	}

	@Override
	public boolean add(final KEY_GENERIC_TYPE k) {
		grow(size + 1);
		BigArrays.set(a, size++, k);
		assert size <= length(a);
		return true;
	}

	@Override
	public KEY_GENERIC_TYPE GET_KEY(final long index) {
		if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
		return BigArrays.get(a, index);
	}

	@Override
	public long indexOf(final KEY_TYPE k) {
		for(long i = 0; i < size; i++) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i;
		return -1;
	}

	@Override
	public long lastIndexOf(final KEY_TYPE k) {
		for(long i = size; i-- != 0;) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i;
		return -1;
	}

	@Override
	public KEY_GENERIC_TYPE REMOVE_KEY(final long index) {
		if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
		final KEY_GENERIC_TYPE old = BigArrays.get(a, index);
		size--;
		if (index != size) BigArrays.copy(a, index + 1, a, index, size - index);
#if KEYS_REFERENCE
		BigArrays.set(a, size, null);
#endif
		assert size <= length(a);
		return old;
	}

	@Override
	public boolean REMOVE(final KEY_TYPE k) {
		final long index = indexOf(k);
		if (index == -1) return false;
		REMOVE_KEY(index);
		assert size <= length(a);
		return true;
	}

	@Override
	public KEY_GENERIC_TYPE set(final long index, final KEY_GENERIC_TYPE k) {
		if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
		KEY_GENERIC_TYPE old = BigArrays.get(a, index);
		BigArrays.set(a, index, k);
		return old;
	}

#if KEYS_PRIMITIVE
	@Override
	public boolean removeAll(final COLLECTION c) {
		KEY_GENERIC_TYPE[] s = null, d = null;
		int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
		for (long i = 0; i < size; i++) {
			if (sd == BigArrays.SEGMENT_SIZE) {
				sd = 0;
				s = a[++ss];
			}
			if (!c.contains(s[sd])) {
				if (dd == BigArrays.SEGMENT_SIZE) {
					d = a[++ds];
					dd = 0;
				}
				d[dd++] = s[sd];
			}
			sd++;
		}
		final long j = BigArrays.index(ds, dd);
#if KEYS_REFERENCE
		BigArrays.fill(a, j, size, null);
#endif
		final boolean modified = size != j;
		size = j;
		return modified;
	}

#endif

	@Override
	public boolean removeAll(final Collection<?> c) {
		KEY_GENERIC_TYPE[] s = null, d = null;
		int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
		for (long i = 0; i < size; i++) {
			if (sd == BigArrays.SEGMENT_SIZE) {
				sd = 0;
				s = a[++ss];
			}
			if (!c.contains(KEY2OBJ(s[sd]))) {
				if (dd == BigArrays.SEGMENT_SIZE) {
					d = a[++ds];
					dd = 0;
				}
				d[dd++] = s[sd];
			}
			sd++;
		}
		final long j = BigArrays.index(ds, dd);
#if KEYS_REFERENCE
		BigArrays.fill(a, j, size, null);
#endif
		final boolean modified = size != j;
		size = j;
		return modified;
	}

	@Override
	public boolean addAll(long index, final STD_KEY_COLLECTION KEY_EXTENDS_GENERIC c) {
		if (c instanceof LIST) {
			return addAll(index, (LIST KEY_EXTENDS_GENERIC)c);
		}
		if (c instanceof BIG_LIST) {
			return addAll(index, (BIG_LIST KEY_EXTENDS_GENERIC)c);
		}
		ensureIndex(index);
		int n = c.size();
		if (n == 0) return false;
		grow(size + n);
		BigArrays.copy(a, index, a, index + n, size - index);
		final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator();
		size += n;
		assert size <= length(a);
		while(n-- != 0) BigArrays.set(a, index++, i.NEXT_KEY());
		return true;
	}

	@Override
	public boolean addAll(final long index, final BIG_LIST KEY_EXTENDS_GENERIC list) {
		ensureIndex(index);
		final long n = list.size64();
		if (n == 0) return false;
		grow(size + n);
		BigArrays.copy(a, index, a, index + n, size - index);
		list.getElements(0, a, index, n);
		size += n;
		assert size <= length(a);
		return true;
	}

	@Override
	public boolean addAll(final long index, final LIST KEY_EXTENDS_GENERIC list) {
		ensureIndex(index);
		int n = list.size();
		if (n == 0) return false;
		grow(size + n);
		BigArrays.copy(a, index, a, index + n, size - index);

		size += n;
		assert size <= length(a);

		int segment = BigArrays.segment(index);
		int displ = BigArrays.displacement(index);
		int pos = 0;

		while(n > 0) {
			final int l = Math.min(a[segment].length - displ, n);
			list.getElements(pos, a[segment], displ, l);
			if ((displ += l) == BigArrays.SEGMENT_SIZE) {
				displ = 0;
				segment++;
			}
			pos += l;
			n -= l;
		}

		return true;
	}

	@Override
	public void clear() {
#if KEYS_REFERENCE
		BigArrays.fill(a, 0, size, null);
#endif
		size = 0;
		assert size <= length(a);
	}

	@Override
	public long size64() {
		return size;
	}

	@Override
	public void size(final long size) {
		if (size > length(a)) a = BigArrays.forceCapacity(a, size, this.size);
		if (size > this.size) BigArrays.fill(a, this.size, size, KEY_NULL);
#if KEYS_REFERENCE
		else BigArrays.fill(a, size, this.size, KEY_NULL);
#endif
		this.size = size;
	}

	@Override
	public boolean isEmpty() {
		return size == 0;
	}

	/** Trims this big-array big list so that the capacity is equal to the size.
	 *
	 * @see java.util.ArrayList#trimToSize()
	 */
	public void trim() {
		trim(0);
	}

	/** Trims the backing big array if it is too large.
	 *
	 * If the current big array length is smaller than or equal to
	 * {@code n}, this method does nothing. Otherwise, it trims the
	 * big-array length to the maximum between {@code n} and {@link #size64()}.
	 *
	 * <p>This method is useful when reusing big lists.  {@linkplain #clear() Clearing a
	 * big list} leaves the big-array length untouched. If you are reusing a big list
	 * many times, you can call this method with a typical
	 * size to avoid keeping around a very large big array just
	 * because of a few large transient big lists.
	 *
	 * @param n the threshold for the trimming.
	 */

	public void trim(final long n) {
		final long arrayLength = length(a);
		if (n >= arrayLength || size == arrayLength) return;
		a = BigArrays.trim(a, Math.max(n, size));
		assert size <= length(a);
	}

	private class SubList extends ABSTRACT_BIG_LIST.SUBLIST_RANDOM_ACCESS KEY_GENERIC {
		private static final long serialVersionUID = -3185226345314976296L;

		protected SubList(long from, long to) {
			super(BIG_ARRAY_BIG_LIST.this, from, to);
		}

		// Needed because we can't access the parent class' instance variables directly in a different instance of SubList.
		private KEY_GENERIC_TYPE[][] getParentArray() {
			return a;
		}

		// Most of the inherited methods should be fine, but we can override a few of them for performance.

		@Override
		public KEY_GENERIC_TYPE GET_KEY(long i) {
			ensureRestrictedIndex(i);
			return BigArrays.get(a, i + from);
		}

		private final class SubListIterator extends BIG_LIST_ITERATORS.AbstractIndexBasedBigListIterator KEY_GENERIC {

			// We are using pos == 0 to be 0 relative to SubList.from (meaning you need to do a[from + i] when accessing array).
			SubListIterator(long index) {
				super(0, index);
			}

			@Override
			protected final KEY_GENERIC_TYPE get(long i) { return BigArrays.get(a, from + i); }
			@Override
			protected final void add(long i, KEY_GENERIC_TYPE k) { SubList.this.add(i, k); }
			@Override
			protected final void set(long i, KEY_GENERIC_TYPE k) { SubList.this.set(i, k); }
			@Override
			protected final void remove(long i) { SubList.this.REMOVE_KEY(i); }
			@Override
			protected final long getMaxPos() { return to - from; }

			@Override
			public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, from + (lastReturned = pos++)); }
			@Override
			public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, from + (lastReturned = --pos)); }

			@Override
			public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
				final long max = to - from;
				while(pos < max) {
					action.accept(BigArrays.get(a, from + (lastReturned = pos++)));
				}
			}
		}

		@Override
		public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator(long index) {
			return new SubListIterator(index);
		}

		private final class SubListSpliterator extends BIG_SPLITERATORS.LateBindingSizeIndexBasedSpliterator KEY_GENERIC {

			// We are using pos == 0 to be 0 relative to real array 0
			SubListSpliterator() {
				super(from);
			}

			private SubListSpliterator(long pos, long maxPos) {
				super(pos, maxPos);
			}

			@Override
			protected final long getMaxPosFromBackingStore() { return to; }

	 		@Override
			protected final KEY_GENERIC_TYPE get(long i) { return BigArrays.get(a, i); }
			@Override
			protected final SubListSpliterator makeForSplit(long pos, long maxPos) {
				return new SubListSpliterator(pos, maxPos);
			}
			@Override
			protected final long computeSplitPoint() {
				long defaultSplit = super.computeSplitPoint();
				// Align to outer array starting point if possible.
				// We add/subtract one to the bounds to ensure the new pos will always shrink the range
				return BigArrays.nearestSegmentStart(defaultSplit, pos + 1, getMaxPos() - 1);
			}
			@Override
			public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
				if (pos >= getMaxPos()) return false;
				action.accept(BigArrays.get(a, pos++));
				return true;
			}
			@Override
			public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
				final long max = getMaxPos();
				while(pos < max) {
					action.accept(BigArrays.get(a, pos++));
				}
			}
		}

		@Override
		public KEY_SPLITERATOR KEY_GENERIC spliterator() {
			return new SubListSpliterator();
		}

		boolean contentsEquals(KEY_GENERIC_TYPE[][] otherA, long otherAFrom, long otherATo) {
			if (a == otherA && from == otherAFrom && to == otherATo) return true;
			if (otherATo - otherAFrom != size64()) {
				return false;
			}
			long pos = to, otherPos = otherATo;
			// We have already assured that the two ranges are the same size, so we only need to check one bound.
			// If BigArrays.equals ever gets an overload that accepts bounds, use that instead
			// (but make sure to break out the reference equality case).
#if KEY_CLASS_Object
			while(--pos >= from) if (! java.util.Objects.equals(BigArrays.get(a, pos), BigArrays.get(otherA, --otherPos))) return false;
#else
			while(--pos >= from) if (BigArrays.get(a, pos) != BigArrays.get(otherA, --otherPos)) return false;
#endif
			return true;
		}

		@Override
		public boolean equals(Object o) {
			if (o == this) return true;
			if (o == null) return false;
			if (!(o instanceof BigList)) return false;
			if (o instanceof BIG_ARRAY_BIG_LIST) {
				SUPPRESS_WARNINGS_KEY_UNCHECKED
				BIG_ARRAY_BIG_LIST KEY_GENERIC other = (BIG_ARRAY_BIG_LIST KEY_GENERIC) o;
				return contentsEquals(other.a, 0, other.size64());
			}
			if (o instanceof BIG_ARRAY_BIG_LIST.SubList) {
				SUPPRESS_WARNINGS_KEY_UNCHECKED
				BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList other = (BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList) o;
				return contentsEquals(other.getParentArray(), other.from, other.to);
			}
			return super.equals(o);
		}

#if ! KEYS_USE_REFERENCE_EQUALITY
		SUPPRESS_WARNINGS_KEY_UNCHECKED
		int contentsCompareTo(KEY_GENERIC_TYPE[][] otherA, long otherAFrom, long otherATo) {
#if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal
			if (a == otherA && from == otherAFrom && to == otherATo) return 0;
#endif
			// TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes.
			KEY_GENERIC_TYPE e1, e2;
			int r;
			long i, j;
			for(i = from, j = otherAFrom; i < to && i < otherATo; i++, j++) {
				e1 = BigArrays.get(a, i);
				e2 = BigArrays.get(otherA, j);
				if ((r = KEY_CMP(e1, e2)) != 0) return r;
			}
			return i < otherATo ? -1 : (i < to ? 1 : 0);
		}

		SUPPRESS_WARNINGS_KEY_UNCHECKED
		@Override
		public int compareTo(final BigList <? extends KEY_GENERIC_CLASS> l) {
			if (l instanceof BIG_ARRAY_BIG_LIST) {
				SUPPRESS_WARNINGS_KEY_UNCHECKED
				BIG_ARRAY_BIG_LIST KEY_GENERIC other = (BIG_ARRAY_BIG_LIST KEY_GENERIC) l;
				return contentsCompareTo(other.a, 0, other.size64());
			}
			if (l instanceof BIG_ARRAY_BIG_LIST.SubList) {
				SUPPRESS_WARNINGS_KEY_UNCHECKED
				BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList other = (BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList) l;
				return contentsCompareTo(other.getParentArray(), other.from, other.to);
			}
			return super.compareTo(l);
		}
#endif

		// We don't override subList as we want AbstractList's "sub-sublist" nesting handling,
		// which would be tricky to do here.
		// TODO Do override it so array access isn't sent through N indirections.
		// This will likely mean making this class static.
	}

	@Override
	public BIG_LIST KEY_GENERIC subList(long from, long to) {
		if (from == 0 && to == size64()) return this;
		ensureIndex(from);
		ensureIndex(to);
		if (from > to) throw new IndexOutOfBoundsException("Start index (" + from + ") is greater than end index (" + to + ")");
		return new SubList(from, to);
	}


	/** Copies element of this type-specific list into the given big array using optimized system calls.
	 *
	 * @param from the start index (inclusive).
	 * @param a the destination big array.
	 * @param offset the offset into the destination array where to store the first element copied.
	 * @param length the number of elements to be copied.
	 */

	@Override
	public void getElements(final long from, final KEY_TYPE[][] a, final long offset, final long length) {
		BigArrays.copy(this.a, from, a, offset, length);
	}

	/** Copies element of this type-specific list into the given array using optimized system calls.
	 *
	 * @param from the start index (inclusive).
	 * @param a the destination array.
	 * @param offset the offset into the destination array where to store the first element copied.
	 * @param length the number of elements to be copied.
	 */

	@Override
	public void getElements(final long from, final KEY_TYPE[] a, final int offset, final int length) {
		BigArrays.copyFromBig(this.a, from, a, offset, length);
	}

	/** Removes elements of this type-specific list using optimized system calls.
	 *
	 * @param from the start index (inclusive).
	 * @param to the end index (exclusive).
	 */
	@Override
	public void removeElements(final long from, final long to) {
		BigArrays.ensureFromTo(size, from, to);
		BigArrays.copy(a, to, a, from, size - to);
		size -= (to - from);
#if KEYS_REFERENCE
		BigArrays.fill(a, size, size + to - from, null);
#endif
	}


	/** Adds elements to this type-specific list using optimized system calls.
	 *
	 * @param index the index at which to add elements.
	 * @param a the big array containing the elements.
	 * @param offset the offset of the first element to add.
	 * @param length the number of elements to add.
	 */
	@Override
	public void addElements(final long index, final KEY_GENERIC_TYPE a[][], final long offset, final long length) {
		ensureIndex(index);
		BigArrays.ensureOffsetLength(a, offset, length);
		grow(size + length);
		BigArrays.copy(this.a, index, this.a, index + length, size - index);
		BigArrays.copy(a, offset, this.a, index, length);
		size += length;
	}

	/** Copies elements in the given big array into this type-specific list using optimized system calls.
	 *
	 * @param index the start index (inclusive).
	 * @param a the destination big array.
	 * @param offset the offset into the destination array where to store the first element copied.
	 * @param length the number of elements to be copied.
	 */
	@Override
	public void setElements(final long index, final KEY_TYPE[][] a, final long offset, final long length) {
		BigArrays.copy(a, offset, this.a, index, length);
	}

	@Override
	public void forEach(final METHOD_ARG_KEY_CONSUMER action) {
		for (long i = 0; i < size; ++i) {
			action.accept(BigArrays.get(a, i));
		}
	}

	@Override
	public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator(final long index) {
		ensureIndex(index);

		return new KEY_BIG_LIST_ITERATOR KEY_GENERIC() {
				long pos = index, last = -1;

				@Override
				public boolean hasNext() { return pos < size; }
				@Override
				public boolean hasPrevious() { return pos > 0; }
				@Override
				public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, last = pos++); }
				@Override
				public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, last = --pos); }
				@Override
				public long nextIndex() { return pos; }
				@Override
				public long previousIndex() { return pos - 1; }
				@Override
				public void add(KEY_GENERIC_TYPE k) {
					BIG_ARRAY_BIG_LIST.this.add(pos++, k);
					last = -1;
				}
				@Override
				public void set(KEY_GENERIC_TYPE k) {
					if (last == -1) throw new IllegalStateException();
					BIG_ARRAY_BIG_LIST.this.set(last, k);
				}
				@Override
				public void remove() {
					if (last == -1) throw new IllegalStateException();
					BIG_ARRAY_BIG_LIST.this.REMOVE_KEY(last);
					/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
					if (last < pos) pos--;
					last = -1;
				}
				@Override
				public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
					while (pos < size) {
						action.accept(BigArrays.get(a, last = pos++));
					}
				}
				@Override
				public long back(long n) {
					if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
					final long remaining = size - pos;
					if (n < remaining) {
						pos -= n;
					} else {
						n = remaining;
						pos = 0;
					}
					last = pos;
					return n;
				}
				@Override
				public long skip(long n) {
					if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
					final long remaining = size - pos;
					if (n < remaining) {
						pos += n;
					} else {
						n = remaining;
						pos = size;
					}
					last = pos - 1;
					return n;
				}
			};
	}

	private final class Spliterator implements KEY_SPLITERATOR KEY_GENERIC {
		// Until we split, we will track the size of the list.
		// Once we split, then we stop updating on structural modifications.
		// Aka, size is late-binding.
		boolean hasSplit = false;
		long pos, max;

#ifdef TEST
		// Sentinel to make sure we don't accidentally use size when we mean max
		@Deprecated
		private final Object size = null;
#endif

		public Spliterator() {
			this(0, BIG_ARRAY_BIG_LIST.this.size, false);
		}

		private Spliterator(long pos, long max, boolean hasSplit) {
			assert pos <= max : "pos " + pos + " must be <= max " + max;
			this.pos = pos;
			this.max = max;
			this.hasSplit = hasSplit;
		}

		private long getWorkingMax() {
			return hasSplit ? max : BIG_ARRAY_BIG_LIST.this.size;
		}

		@Override
		public int characteristics() { return SPLITERATORS.LIST_SPLITERATOR_CHARACTERISTICS; }

		@Override
		public long estimateSize() { return getWorkingMax() - pos; }

		@Override
		public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
			if (pos >= getWorkingMax()) return false;
			action.accept(BigArrays.get(a, pos++));
			return true;
		}

		@Override
		public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
			for (final long max = getWorkingMax(); pos < max; ++pos) {
				action.accept(BigArrays.get(a, pos));
			}
		}

		@Override
		public long skip(long n) {
			if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
			final long max = getWorkingMax();
			if (pos >= max) return 0;
			final long remaining = max - pos;
			if (n < remaining) {
				pos += n;
				return n;
			}
			n = remaining;
			pos = max;
			return n;
		}

		@Override
		public KEY_SPLITERATOR KEY_GENERIC trySplit() {
			final long max = getWorkingMax();
			long retLen = (max - pos) >> 1;
			if (retLen <= 1) return null;
			// Update instance max with the last seen list size (if needed) before continuing
			this.max = max;
			long myNewPos = pos + retLen;
			// Align to an outer array boundary if possible
			// We add/subtract one to the bounds to ensure the new pos will always shrink the range
			myNewPos = BigArrays.nearestSegmentStart(myNewPos, pos + 1, max - 1);
			long retMax = myNewPos;
			long oldPos = pos;
			this.pos = myNewPos;
			this.hasSplit = true;
			return new Spliterator(oldPos, retMax, true);
		}
	}

	@Override
	public KEY_SPLITERATOR KEY_GENERIC spliterator() {
		return new Spliterator();
	}

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	@Override
	public BIG_ARRAY_BIG_LIST KEY_GENERIC clone() {
		BIG_ARRAY_BIG_LIST KEY_GENERIC c;
		// Test for fastpath we can do if exactly an BigArrayBigList
		if (getClass() == BIG_ARRAY_BIG_LIST.class) {
			c = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(size);
			c.size = size;
		} else {
			try {
				c = (BIG_ARRAY_BIG_LIST KEY_GENERIC)super.clone();
			} catch (CloneNotSupportedException e) {
				// Can't happen
				throw new InternalError(e);
			}
			c.a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(size);
		}
		BigArrays.copy(a, 0, c.a, 0, size);
		return c;
	}

	/** Compares this type-specific big-array list to another one.
	 *
	 * <p>This method exists only for sake of efficiency. The implementation
	 * inherited from the abstract implementation would already work.
	 *
	 * @param l a type-specific big-array list.
	 * @return true if the argument contains the same elements of this type-specific big-array list.
	 */
	public boolean equals(final BIG_ARRAY_BIG_LIST KEY_GENERIC l) {
		if (l == this) return true;
		long s = size64();
		if (s != l.size64()) return false;
		final KEY_GENERIC_TYPE[][] a1 = a;
		final KEY_GENERIC_TYPE[][] a2 = l.a;
		// Already checked s == l.size64 above
		if (a1 == a2) return true;
		// Backwards loop is faster then forwards loop, at least in Java 8 and below.
#if KEY_CLASS_Object
		while(s-- !=  0) if (! java.util.Objects.equals(BigArrays.get(a1, s), BigArrays.get(a2, s))) return false;
#else
		while(s-- !=  0) if (BigArrays.get(a1, s) != BigArrays.get(a2, s)) return false;
#endif
		return true;
	}

#if KEYS_PRIMITIVE
	@SuppressWarnings("unlikely-arg-type" )
#else
	@SuppressWarnings({ "unchecked", "unlikely-arg-type" })
#endif
	@Override
	public boolean equals(final Object o) {
		if (o == this) return true;
		if (o == null) return false;
		if (!(o instanceof BigList)) return false;
		if (o instanceof BIG_ARRAY_BIG_LIST) {
			// Safe cast because we are only going to take elements from other list, never give them
			return equals((BIG_ARRAY_BIG_LIST KEY_GENERIC) o);
		}
		if (o instanceof BIG_ARRAY_BIG_LIST.SubList) {
			// Safe cast because we are only going to take elements from other list, never give them
			// Sublist has an optimized sub-array based comparison, reuse that. 
			return ((BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList)o).equals(this);
		}
		return super.equals(o);
	}

#if ! KEYS_USE_REFERENCE_EQUALITY

	/** Compares this big list to another big list.
	 *
	 * <p>This method exists only for sake of efficiency. The implementation
	 * inherited from the abstract implementation would already work.
	 *
	 * @param l a big list.
	 * @return a negative integer,
	 * zero, or a positive integer as this big list is lexicographically less than, equal
	 * to, or greater than the argument.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public int compareTo(final BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC l) {
		final long s1 = size64(), s2 = l.size64();
		final KEY_GENERIC_TYPE a1[][] = a, a2[][] = l.a;
#if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal
		if (a1 == a2 && s1 == s2) return 0;
#endif
		KEY_GENERIC_TYPE e1, e2;
		int r, i;

		for(i = 0; i < s1 && i < s2; i++) {
			e1 = BigArrays.get(a1, i);
			e2 = BigArrays.get(a2, i);
			if ((r = KEY_CMP(e1, e2)) != 0) return r;
		}

		return i < s2 ? -1 : (i < s1 ? 1 : 0);
	}

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	@Override
	public int compareTo(final BigList <? extends KEY_GENERIC_CLASS> l) {
		if (l instanceof BIG_ARRAY_BIG_LIST) {
			return compareTo((BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC)l);
		}
		if (l instanceof BIG_ARRAY_BIG_LIST.SubList) {
			// Must negate because we are inverting the order of the comparison.
			return -((BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList) l).compareTo(this);
		}
		return super.compareTo(l);
	}
#endif


	private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
		s.defaultWriteObject();
		for(int i = 0; i < size; i++) s.WRITE_KEY(BigArrays.get(a, i));
	}

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
		s.defaultReadObject();
		a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(size);
		for(int i = 0; i < size; i++) BigArrays.set(a, i, KEY_GENERIC_CAST s.READ_KEY());
	}


#ifdef TEST

	private static long seed = System.currentTimeMillis();
	private static java.util.Random r = new java.util.Random(seed);

	private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
		return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
		return r.NEXT_KEY();
#elif KEY_CLASS_Object
		return Integer.toBinaryString(r.nextInt());
#else
		return new java.io.Serializable() {};
#endif
	}

	private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
	private static java.text.FieldPosition p = new java.text.FieldPosition(0);

	private static String format(double d) {
		StringBuffer s = new StringBuffer();
		return format.format(d, s, p).toString();
	}

	private static void speedTest(int n, boolean comp) {
		System.out.println("There are presently no speed tests for this class.");
	}


	private static void fatal(String msg) {
		throw new AssertionError(msg);
	}

	private static void ensure(boolean cond, String msg) {
		if (cond) return;
		fatal(msg);
	}
	
	private static void ensure(boolean cond, java.util.function.Supplier<String> msgSupplier) {
		if (cond) return;
		fatal(msgSupplier.get());
	}

	private static Object[] k, v, nk;
	private static KEY_TYPE kt[];
	private static KEY_TYPE nkt[];
	private static BIG_ARRAY_BIG_LIST topList;

	protected static void testLists(BIG_LIST m, BIG_LIST t, int n, int level) throws Exception {
		long ms;
		Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds;
		Object rt = null;
		KEY_TYPE rm = KEY_NULL;

		if (level > 4) return;


		/* Now we check that both sets agree on random keys. For m we use the polymorphic method. */

		for(int i = 0; i < n; i++) {
			int p = r.nextInt() % (n * 2);

			KEY_TYPE T = genKey();
			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.set(p, T);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			try {
				t.set(p, KEY2OBJ(T));
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");

			p = r.nextInt() % (n * 2);
			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.GET_KEY(p);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			try {
				t.get(p);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");

		}

		/* Now we check that both sets agree on random keys. For m we use the standard method. */

		for(int i = 0; i < n; i++) {
			int p = r.nextInt() % (n * 2);

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.get(p);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			try {
				t.get(p);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get(p) + ", " + t.get(p) + ")");

		}

		/* Now we check that m and t are equal. */
		if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t);

		ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start");
		ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start");



		/* Now we check that m actually holds that data. */
		for(Iterator i=t.iterator(); i.hasNext();) {
			ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)");
		}

		/* Now we check that m actually holds that data, but iterating on m. */
		for(Iterator i=m.listIterator(); i.hasNext();) {
			ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)");
		}

		/* Now we check that inquiries about random data give the same answer in m and t. For
		   m we use the polymorphic method. */

		for(int i=0; i<n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.contains(T) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)");
		}

		/* Again, we check that inquiries about random data give the same answer in m and t, but
		   for m we use the standard method. */

		for(int i=0; i<n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.contains(KEY2OBJ(T)) == t.contains(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): divergence in content between t and m (polymorphic method)");
		}

		/* Now we add and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<2*n;  i++) {
			KEY_TYPE T = genKey();

			try {
				m.add(T);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.add(KEY2OBJ(T));
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			T = genKey();
			int p = r.nextInt() % (2 * n + 1);

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.add(p, T);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.add(p, KEY2OBJ(T));
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }


			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): add() divergence in IndexOutOfBoundsException for index " + p + " for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");

			p = r.nextInt() % (2 * n + 1);

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				rm = m.REMOVE_KEY(p);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				rt = t.remove(p);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }


			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): remove() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(rt.equals(KEY2OBJ(rm)), "Error (" + level + ", " + seed + "): divergence in remove() between t and m (" + rt + ", " + rm + ")");
		}

		ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after add/remove");
		ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after add/remove");

		/* Now we add random data in m and t using addAll on a collection, checking that the result is the same. */

		for(int i=0; i<n;  i++) {
			int p = r.nextInt() % (2 * n + 1);
			java.util.Collection m1 = new java.util.ArrayList();
			int s = r.nextInt(n / 2 + 1);
			for(int j = 0; j < s; j++) m1.add(KEY2OBJ(genKey()));

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.addAll(p, m1);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.addAll(p, m1);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");

			ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after addAll");
			ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after addAll");
		}

		if (m.size64() > n) {
			m.size(n);
			while(t.size64() != n) t.remove(t.size64() -1);
		}

		/* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */

		for(int i=0; i<n;  i++) {
			int p = r.nextInt() % (2 * n + 1);
			COLLECTION m1 = new BIG_ARRAY_BIG_LIST();
			java.util.Collection t1 = new java.util.ArrayList();
			int s = r.nextInt(n / 2 + 1);
			for(int j = 0; j < s; j++) {
				KEY_TYPE x = genKey();
				m1.add(x);
				t1.add(KEY2OBJ(x));
			}

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.addAll(p, m1);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.addAll(p, t1);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): polymorphic addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");

			ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after polymorphic addAll");
			ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after polymorphic addAll");
		}

		if (m.size64() > n) {
			m.size(n);
			while(t.size64() != n) t.remove(t.size64() -1);
		}

		/* Now we add random data in m and t using addAll on a list, checking that the result is the same. */

		for(int i=0; i<n;  i++) {
			int p = r.nextInt() % (2 * n + 1);
			BIG_LIST m1 = new BIG_ARRAY_BIG_LIST();
			java.util.Collection t1 = new java.util.ArrayList();
			int s = r.nextInt(n / 2 + 1);
			for(int j = 0; j < s; j++) {
				KEY_TYPE x = genKey();
				m1.add(x);
				t1.add(KEY2OBJ(x));
			}

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.addAll(p, m1);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }

			try {
				t.addAll(p, t1);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): list addAll() divergence in IndexOutOfBoundsException for index " + p + " for " + m1 + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");

			ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after list addAll");
			ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after list addAll");
		}

		/* Now we check that both sets agree on random keys. For m we use the standard method. */

		for(int i = 0; i < n; i++) {
			int p = r.nextInt() % (n * 2);

			mThrowsOutOfBounds = tThrowsOutOfBounds  = null;

			try {
				m.get(p);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			try {
				t.get(p);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence in IndexOutOfBoundsException for index " + p + "  (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ on position " + p + " (" + m.get(p) + ", " + t.get(p) +")");

		}

		/* Now we inquiry about the content with indexOf()/lastIndexOf(). */

		for(int i=0; i<10*n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.indexOf(KEY2OBJ(T)) == t.indexOf(KEY2OBJ(T)),
					"Error (" + level + ", " + seed + "): indexOf() divergence for " + T + "  (" + m.indexOf(KEY2OBJ(T)) + ", " + t.indexOf(KEY2OBJ(T)) + ")");
			ensure(m.lastIndexOf(KEY2OBJ(T)) == t.lastIndexOf(KEY2OBJ(T)),
					"Error (" + level + ", " + seed + "): lastIndexOf() divergence for " + T + "  (" + m.lastIndexOf(KEY2OBJ(T)) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")");
			ensure(m.indexOf(T) == t.indexOf(KEY2OBJ(T)),
					"Error (" + level + ", " + seed + "): polymorphic indexOf() divergence for " + T + "  (" + m.indexOf(T) + ", " + t.indexOf(KEY2OBJ(T)) + ")");
			ensure(m.lastIndexOf(T) == t.lastIndexOf(KEY2OBJ(T)),
					"Error (" + level + ", " + seed + "): polymorphic lastIndexOf() divergence for " + T + "  (" + m.lastIndexOf(T) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")");
		}

		/* Now we check cloning. */

		if (level == 0) {
			ensure(m.equals(((BIG_ARRAY_BIG_LIST)m).clone()), "Error (" + level + ", " + seed + "): m does not equal m.clone()");
			ensure(((BIG_ARRAY_BIG_LIST)m).clone().equals(m), "Error (" + level + ", " + seed + "): m.clone() does not equal m");
		}

		/* Now we play with constructors. */
		ensure(m.equals(new BIG_ARRAY_BIG_LIST((COLLECTION)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific Collection m)");
		ensure((new BIG_ARRAY_BIG_LIST((COLLECTION)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific nCollection m) does not equal m");
		ensure(m.equals(new BIG_ARRAY_BIG_LIST((BIG_LIST)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific List m)");
		ensure((new BIG_ARRAY_BIG_LIST((BIG_LIST)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific List m) does not equal m");
		ensure(m.equals(new BIG_ARRAY_BIG_LIST(m.listIterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.listIterator())");
		ensure((new BIG_ARRAY_BIG_LIST(m.listIterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.listIterator()) does not equal m");
		ensure(m.equals(new BIG_ARRAY_BIG_LIST(m.iterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.type_specific_iterator())");
		ensure((new BIG_ARRAY_BIG_LIST(m.iterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.type_specific_iterator()) does not equal m");


		int h = m.hashCode();

		/* Now we save and read m. */

		BIG_LIST m2 = null;

		{
			java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test." + m.getClass().getSimpleName() + "." + n);
			java.io.OutputStream os = new java.io.FileOutputStream(ff);
			java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);

			oos.writeObject(m);
			oos.close();

			java.io.InputStream is = new java.io.FileInputStream(ff);
			java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);

			m2 = (BIG_LIST)ois.readObject();
			ois.close();
			ff.delete();
		}

#if ! KEYS_USE_REFERENCE_EQUALITY
		ensure(m2.hashCode() == h, "Error (" + level + ", " + seed + "): hashCode() changed after save/read");

		/* Now we check that m2 actually holds that data. */

		ensure(m2.equals(t), "Error (" + level + ", " + seed + "): ! m2.equals(t) after save/read");
		ensure(t.equals(m2), "Error (" + level + ", " + seed + "): ! t.equals(m2) after save/read");
		/* Now we take out of m everything, and check that it is empty. */

		for(Iterator i=t.iterator(); i.hasNext();) m2.remove(i.next());

		ensure(m2.isEmpty(), "Error (" + level + ", " + seed + "): m2 is not empty (as it should be)");
#endif

		/* Now we play with iterators. */

		{
			KEY_BIG_LIST_ITERATOR i;
			KEY_BIG_LIST_ITERATOR j;
			Object J;
			i = m.listIterator();
			j = t.listIterator();

			for(int k = 0; k < 2*n; k++) {
				ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext()");
				ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + level + ", " + seed + "): divergence in hasPrevious()");

				if (r.nextFloat() < .8 && i.hasNext()) {
					ensure(i.next().equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next()");

					if (r.nextFloat() < 0.2) {
						i.remove();
						j.remove();
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.set(T);
						j.set(KEY2OBJ(T));
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.add(T);
						j.add(KEY2OBJ(T));
					}
				}
				else if (r.nextFloat() < .2 && i.hasPrevious()) {
					ensure(i.previous().equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous()");

					if (r.nextFloat() < 0.2) {
						i.remove();
						j.remove();
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.set(T);
						j.set(KEY2OBJ(T));
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.add(T);
						j.add(KEY2OBJ(T));
					}
				}

				ensure(i.nextIndex() == j.nextIndex(), "Error (" + level + ", " + seed + "): divergence in nextIndex()");
				ensure(i.previousIndex() == j.previousIndex(), "Error (" + level + ", " + seed + "): divergence in previousIndex()");

			}

		}

		/* Now we play with spliterators.
		 *
		 * Or rather we would, except comparing results of spliterators directly is a bit painful.
		 * However, there is an easy workaround; use streams, which are built on Spliterators.
		 */
		{
#if KEYS_REFERENCE
			java.util.stream.Stream<KEY_TYPE> i = m.parallelStream();
			java.util.stream.Stream<KEY_TYPE> j = t.parallelStream();
#elif KEY_CLASS_Boolean
			java.util.stream.Stream<KEY_CLASS> i = m.parallelStream();
			java.util.stream.Stream<KEY_CLASS> j = t.parallelStream();
#else
			JDK_PRIMITIVE_STREAM i = m.KEY_WIDENED_PARALLEL_STREAM_METHOD();
			java.util.stream.Stream<KEY_CLASS> j = t.parallelStream();
#endif

#if KEYS_REFERENCE || KEY_CLASS_Boolean
			Object[] iArray = i.toArray();
			Object[] jArray = j.toArray();
#elif KEY_CLASS_Character
			KEY_TYPE_WIDENED[] iArray = i.toArray();
			KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(c -> (int)c.charValue()).toArray();
#else
			KEY_TYPE_WIDENED[] iArray = i.toArray();
			KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(Number::KEY_WIDENED_VALUE).toArray();
#endif
			ensure(java.util.Arrays.equals(iArray, jArray), "Error (" + level + ", " + seed + "): divergence in toArray() from streams (" + java.util.Arrays.toString(iArray) + " != " + java.util.Arrays.toString(jArray) + ")");
		}

		{
			Object previous = null;
			Object I, J;
			long from = m.isEmpty() ? 0 : (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64();
			KEY_BIG_LIST_ITERATOR i;
			KEY_BIG_LIST_ITERATOR j;
			i = m.listIterator(from);
			j = t.listIterator(from);

			for(int k = 0; k < 2*n; k++) {
				ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")");
				ensure(i.hasPrevious() == j.hasPrevious() , "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")");

				if (r.nextFloat() < .8 && i.hasNext()) {
					ensure((I = i.next()).equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")");
					//System.err.println("Done next " + I + " " + J + "  " + badPrevious);

					if (r.nextFloat() < 0.2) {
						//System.err.println("Removing in next");
						i.remove();
						j.remove();
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.set(T);
						j.set(KEY2OBJ(T));
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.add(T);
						j.add(KEY2OBJ(T));
					}
				}
				else if (r.nextFloat() < .2 && i.hasPrevious()) {
					ensure((I = i.previous()).equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")");

					if (r.nextFloat() < 0.2) {
						//System.err.println("Removing in prev");
						i.remove();
						j.remove();
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.set(T);
						j.set(KEY2OBJ(T));
					}
					else if (r.nextFloat() < 0.2) {
						KEY_TYPE T = genKey();
						i.add(T);
						j.add(KEY2OBJ(T));
					}
				}
			}

		}

		/* Now we check that m actually holds that data. */

		ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after iteration");
		ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after iteration");

		/* Now we select a pair of keys and create a subset. */

		if (! m.isEmpty()) {
			long start = (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64();
			long end = start + (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % (m.size64() - start);
			//System.err.println("Checking subList from " + start + " to " + end + " (level=" + (level+1) + ")...");
			testLists(m.subList(start, end), t.subList(start, end), n, level + 1);

			ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after subList");
			ensure(t.equals(m), () -> "Error (" + level + ", " + seed + "): ! t.equals(m) after subList");

		}

		m.clear();
		t.clear();
		ensure(m.isEmpty(), "Error (" + level + ", " + seed + "): m is not empty after clear()");
	}


	protected static void runTest(int n) throws Exception {
		BIG_ARRAY_BIG_LIST m = new BIG_ARRAY_BIG_LIST();
		BIG_LIST t = BIG_LISTS.asBigList(new ARRAY_LIST());
		topList = m;
		k = new Object[n];
		nk = new Object[n];
		kt = new KEY_TYPE[n];
		nkt = new KEY_TYPE[n];

		for(int i = 0; i < n; i++) {
#if KEYS_REFERENCE
			k[i] = kt[i] = genKey();
			nk[i] = nkt[i] = genKey();
#else
			k[i] = new KEY_CLASS(kt[i] = genKey());
			nk[i] = new KEY_CLASS(nkt[i] = genKey());
#endif
		}

		/* We add pairs to t. */
#if KEYS_PRIMITIVE
		for(int i = 0; i < n;  i++) t.add((KEY_GENERIC_CLASS)k[i]);
#else
		for(int i = 0; i < n;  i++) t.add(k[i]);
#endif

		/* We add to m the same data */
		m.addAll(t);

		testLists(m, t, n, 0);

		System.out.println("Test OK");
		return;
	}


	public static void main(String args[]) throws Exception {
		int n  = Integer.parseInt(args[1]);
		if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));


		try {
			if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
			else if ("test".equals(args[0])) runTest(n);
		} catch(Throwable e) {
			e.printStackTrace(System.err);
			System.err.println("seed: " + seed);
			throw e;
		}
	}

#endif

}