1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
|
/*
* Copyright (C) 2009-2024 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*
* Copyright (C) 1999 CERN - European Organization for Nuclear Research.
*
* Permission to use, copy, modify, distribute and sell this software and
* its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation. CERN makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without expressed or implied warranty.
*/
package PACKAGE;
import java.util.Arrays;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveAction;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import static it.unimi.dsi.fastutil.BigArrays.ensureLength;
import static it.unimi.dsi.fastutil.BigArrays.start;
import static it.unimi.dsi.fastutil.BigArrays.segment;
import static it.unimi.dsi.fastutil.BigArrays.displacement;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_MASK;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SHIFT;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SIZE;
#if KEYS_PRIMITIVE
#if KEY_CLASS_Integer
import java.util.concurrent.atomic.AtomicIntegerArray;
#endif
#if KEY_CLASS_Long
import java.util.concurrent.atomic.AtomicLongArray;
#endif
#if ! KEY_CLASS_Byte && ! KEY_CLASS_Boolean
import it.unimi.dsi.fastutil.bytes.ByteBigArrays;
#endif
/** A class providing static methods and objects that do useful things with {@linkplain BigArrays big arrays}.
*
* <p>Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO}
* contain several methods that make it possible to load and save big arrays of primitive types as sequences
* of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text.
*
* <h2>Parallel operations</h2>
* Some algorithms provide a parallel version that will by default use the
* {@linkplain ForkJoinPool#commonPool() common pool}, but this can be overridden by calling the
* function in a task already in the {@link ForkJoinPool} that the operation should run in. For example,
* something along the lines of "{@code poolToParallelSortIn.invoke(() -> parallelQuickSort(arrayToSort))}"
* will run the parallel sort in {@code poolToParallelSortIn} instead of the default pool.
*
* @see BigArrays
*/
public final class BIG_ARRAYS {
#else
import java.util.Comparator;
/** A class providing static methods and objects that do useful things with {@linkplain BigArrays big arrays}.
*
* <p>Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO}
* contain several methods make it possible to load and save big arrays of primitive types as sequences
* of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text.
*
* <h2>Parallel operations</h2>
* Some algorithms provide a parallel version that will by default use the
* {@linkplain ForkJoinPool#commonPool() common pool}, but this can be overridden by calling the
* function in a task already in the {@link ForkJoinPool} that the operation should run in. For example,
* something along the lines of "{@code poolToParallelSortIn.invoke(() -> parallelQuickSort(arrayToSort))}"
* will run the parallel sort in {@code poolToParallelSortIn} instead of the default pool.
*
* <p><strong>Warning:</strong> creating arrays
* using {@linkplain java.lang.reflect.Array#newInstance(Class,int) reflection}, as it
* happens in {@link #ensureCapacity(Object[][],long,long)} and {@link #grow(Object[][],long,long)},
* is <em>significantly slower</em> than using {@code new}. This phenomenon is particularly
* evident in the first growth phases of an array reallocated with doubling (or similar) logic.
*
* @see BigArrays
*/
public final class BIG_ARRAYS {
#endif
private BIG_ARRAYS() {}
/** A static, final, empty big array. */
public static final KEY_TYPE[][] EMPTY_BIG_ARRAY = {};
/** A static, final, empty big array to be used as default big array in allocations. An
* object distinct from {@link #EMPTY_BIG_ARRAY} makes it possible to have different
* behaviors depending on whether the user required an empty allocation, or we are
* just lazily delaying allocation.
*
* @see java.util.ArrayList
*/
public static final KEY_TYPE[][] DEFAULT_EMPTY_BIG_ARRAY = {};
/** Returns the element of the given big array of specified index.
*
* @param array a big array.
* @param index a position in the big array.
* @return the element of the big array at the specified position.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE get(final KEY_GENERIC_TYPE[][] array, final long index) {
return array[segment(index)][displacement(index)];
}
/** Sets the element of the given big array of specified index.
*
* @param array a big array.
* @param index a position in the big array.
* @param value the new value for the array element at the specified position.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void set(final KEY_GENERIC_TYPE[][] array, final long index, KEY_GENERIC_TYPE value) {
array[segment(index)][displacement(index)] = value;
}
/** Swaps the element of the given big array of specified indices.
*
* @param array a big array.
* @param first a position in the big array.
* @param second a position in the big array.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void swap(final KEY_GENERIC_TYPE[][] array, final long first, final long second) {
final KEY_GENERIC_TYPE t = array[segment(first)][displacement(first)];
array[segment(first)][displacement(first)] = array[segment(second)][displacement(second)];
array[segment(second)][displacement(second)] = t;
}
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
/** Adds the specified increment the element of the given big array of specified index.
*
* @param array a big array.
* @param index a position in the big array.
* @param incr the increment
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static void add(final KEY_GENERIC_TYPE[][] array, final long index, KEY_GENERIC_TYPE incr) {
array[segment(index)][displacement(index)] += incr;
}
/** Multiplies by the specified factor the element of the given big array of specified index.
*
* @param array a big array.
* @param index a position in the big array.
* @param factor the factor
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static void mul(final KEY_GENERIC_TYPE[][] array, final long index, KEY_GENERIC_TYPE factor) {
array[segment(index)][displacement(index)] *= factor;
}
/** Increments the element of the given big array of specified index.
*
* @param array a big array.
* @param index a position in the big array.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static void incr(final KEY_GENERIC_TYPE[][] array, final long index) {
array[segment(index)][displacement(index)]++;
}
/** Decrements the element of the given big array of specified index.
*
* @param array a big array.
* @param index a position in the big array.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static void decr(final KEY_GENERIC_TYPE[][] array, final long index) {
array[segment(index)][displacement(index)]--;
}
#endif
/** Returns the length of the given big array.
*
* @param array a big array.
* @return the length of the given big array.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC long length(final KEY_GENERIC_TYPE[][] array) {
final int length = array.length;
return length == 0 ? 0 : start(length - 1) + array[length - 1].length;
}
/** Copies a big array from the specified source big array, beginning at the specified position, to the specified position of the destination big array.
* Handles correctly overlapping regions of the same big array.
*
* @param srcArray the source big array.
* @param srcPos the starting position in the source big array.
* @param destArray the destination big array.
* @param destPos the starting position in the destination data.
* @param length the number of elements to be copied.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void copy(final KEY_GENERIC_TYPE[][] srcArray, final long srcPos, final KEY_GENERIC_TYPE[][] destArray, final long destPos, long length) {
BigArrays.copy(srcArray, srcPos, destArray, destPos, length);
}
/** Copies a big array from the specified source big array, beginning at the specified position, to the specified position of the destination array.
*
* @param srcArray the source big array.
* @param srcPos the starting position in the source big array.
* @param destArray the destination array.
* @param destPos the starting position in the destination data.
* @param length the number of elements to be copied.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void copyFromBig(final KEY_GENERIC_TYPE[][] srcArray, final long srcPos, final KEY_GENERIC_TYPE[] destArray, int destPos, int length) {
BigArrays.copyFromBig(srcArray, srcPos, destArray, destPos, length);
}
/** Copies an array from the specified source array, beginning at the specified position, to the specified position of the destination big array.
*
* @param srcArray the source array.
* @param srcPos the starting position in the source array.
* @param destArray the destination big array.
* @param destPos the starting position in the destination data.
* @param length the number of elements to be copied.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void copyToBig(final KEY_GENERIC_TYPE[] srcArray, int srcPos, final KEY_GENERIC_TYPE[][] destArray, final long destPos, long length) {
BigArrays.copyToBig(srcArray, srcPos, destArray, destPos, length);
}
#if KEY_CLASS_Object
/** Creates a new big array using the given one as prototype.
*
* <p>This method returns a new big array of the given length whose element
* are of the same class as of those of {@code prototype}. In case
* of an empty big array, it tries to return {@link #EMPTY_BIG_ARRAY}, if possible.
*
* @param prototype a big array that will be used to type the new one.
* @param length the length of the new big array.
* @return a new big array of given type and length.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public static <K> K[][] newBigArray(final K[][] prototype, final long length) {
return (K[][])newBigArray(prototype.getClass().getComponentType(), length);
}
/** Creates a new big array using a given component type.
*
* <p>This method returns a new big array whose segments
* are of class {@code componentType}. In case
* of an empty big array, it tries to return {@link #EMPTY_BIG_ARRAY}, if possible.
*
* @param componentType a class representing the type of segments of the array to be created.
* @param length the length of the new big array.
* @return a new big array of given type and length.
*/
public static Object[][] newBigArray(Class<?> componentType, final long length) {
if (length == 0 && componentType == Object[].class) return EMPTY_BIG_ARRAY;
ensureLength(length);
final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT);
Object[][] base = (Object[][])java.lang.reflect.Array.newInstance(componentType, baseLength);
final int residual = (int)(length & SEGMENT_MASK);
if (residual != 0) {
for(int i = 0; i < baseLength - 1; i++) base[i] = (Object[])java.lang.reflect.Array.newInstance(componentType.getComponentType(), SEGMENT_SIZE);
base[baseLength - 1] = (Object[])java.lang.reflect.Array.newInstance(componentType.getComponentType(), residual);
}
else for(int i = 0; i < baseLength; i++) base[i] = (Object[])java.lang.reflect.Array.newInstance(componentType.getComponentType(), SEGMENT_SIZE);
return base;
}
#endif
/** Creates a new big array.
*
* @param length the length of the new big array.
* @return a new big array of given length.
*/
public static KEY_TYPE[][] newBigArray(final long length) {
if (length == 0) return EMPTY_BIG_ARRAY;
ensureLength(length);
final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT);
KEY_TYPE[][] base = new KEY_TYPE[baseLength][];
final int residual = (int)(length & SEGMENT_MASK);
if (residual != 0) {
for(int i = 0; i < baseLength - 1; i++) base[i] = new KEY_TYPE[SEGMENT_SIZE];
base[baseLength - 1] = new KEY_TYPE[residual];
}
else for(int i = 0; i < baseLength; i++) base[i] = new KEY_TYPE[SEGMENT_SIZE];
return base;
}
#if KEY_CLASS_Long || KEY_CLASS_Integer
/** A static, final, empty big atomic array. */
public static final ATOMIC_ARRAY[] EMPTY_BIG_ATOMIC_ARRAY = {};
/** Creates a new big atomic array.
*
* @param length the length of the new big array.
* @return a new big atomic array of given length.
*/
public static ATOMIC_ARRAY[] newBigAtomicArray(final long length) {
if (length == 0) return EMPTY_BIG_ATOMIC_ARRAY;
ensureLength(length);
final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT);
ATOMIC_ARRAY[] base = new ATOMIC_ARRAY[baseLength];
final int residual = (int)(length & SEGMENT_MASK);
if (residual != 0) {
for(int i = 0; i < baseLength - 1; i++) base[i] = new ATOMIC_ARRAY(SEGMENT_SIZE);
base[baseLength - 1] = new ATOMIC_ARRAY(residual);
}
else for(int i = 0; i < baseLength; i++) base[i] = new ATOMIC_ARRAY(SEGMENT_SIZE);
return base;
}
#endif
#if KEY_CLASS_Object
/** Turns a standard array into a big array.
*
* <p>Note that the returned big array might contain as a segment the original array.
*
* @param array an array.
* @return a new big array with the same length and content of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
SUPPRESS_WARNINGS_KEY_UNCHECKED
public static <K> K[][] wrap(final K[] array) {
return BigArrays.wrap(array);
}
#else
/** Turns a standard array into a big array.
*
* <p>Note that the returned big array might contain as a segment the original array.
*
* @param array an array.
* @return a new big array with the same length and content of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_TYPE[][] wrap(final KEY_TYPE[] array) {
return BigArrays.wrap(array);
}
#endif
/** Ensures that a big array can contain the given number of entries.
*
* <p>If you cannot foresee whether this big array will need again to be
* enlarged, you should probably use {@code grow()} instead.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new minimum length for this big array.
* @return {@code array}, if it contains {@code length} entries or more; otherwise,
* a big array with {@code length} entries whose first {@code length(array)}
* entries are the same as those of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE[][] ensureCapacity(final KEY_GENERIC_TYPE[][] array, final long length) {
return ensureCapacity(array, length, length(array));
}
#if KEY_CLASS_Object
/** Forces a big array to contain the given number of entries, preserving just a part of the big array.
*
* <p>This method returns a new big array of the given length whose element
* are of the same class as of those of {@code array}.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new minimum length for this big array.
* @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
* @return a big array with {@code length} entries whose first {@code preserve}
* entries are the same as those of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
SUPPRESS_WARNINGS_KEY_UNCHECKED
public static KEY_GENERIC KEY_GENERIC_TYPE[][] forceCapacity(final KEY_GENERIC_TYPE[][] array, final long length, final long preserve) {
return BigArrays.forceCapacity(array, length, preserve);
}
/** Ensures that a big array can contain the given number of entries, preserving just a part of the big array.
*
* <p>This method returns a new big array of the given length whose element
* are of the same class as of those of {@code array}.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new minimum length for this big array.
* @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
* @return {@code array}, if it can contain {@code length} entries or more; otherwise,
* a big array with {@code length} entries whose first {@code preserve}
* entries are the same as those of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE[][] ensureCapacity(final KEY_GENERIC_TYPE[][] array, final long length, final long preserve) {
return length > length(array) ? forceCapacity(array, length, preserve) : array;
}
#else
/** Forces a big array to contain the given number of entries, preserving just a part of the big array.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new minimum length for this big array.
* @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
* @return a big array with {@code length} entries whose first {@code preserve}
* entries are the same as those of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_TYPE[][] forceCapacity(final KEY_TYPE[][] array, final long length, final long preserve) {
return BigArrays.forceCapacity(array, length, preserve);
}
/** Ensures that a big array can contain the given number of entries, preserving just a part of the big array.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new minimum length for this big array.
* @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
* @return {@code array}, if it can contain {@code length} entries or more; otherwise,
* a big array with {@code length} entries whose first {@code preserve}
* entries are the same as those of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_TYPE[][] ensureCapacity(final KEY_TYPE[][] array, final long length, final long preserve) {
return length > length(array) ? forceCapacity(array, length, preserve) : array;
}
#endif
/** Grows the given big array to the maximum between the given length and
* the current length increased by 50%, provided that the given
* length is larger than the current length.
*
* <p>If you want complete control on the big array growth, you
* should probably use {@code ensureCapacity()} instead.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new minimum length for this big array.
* @return {@code array}, if it can contain {@code length}
* entries; otherwise, a big array with
* max({@code length},{@code length(array)}/φ) entries whose first
* {@code length(array)} entries are the same as those of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE[][] grow(final KEY_GENERIC_TYPE[][] array, final long length) {
final long oldLength = length(array);
return length > oldLength ? grow(array, length, oldLength) : array;
}
/** Grows the given big array to the maximum between the given length and
* the current length increased by 50%, provided that the given
* length is larger than the current length, preserving just a part of the big array.
*
* <p>If you want complete control on the big array growth, you
* should probably use {@code ensureCapacity()} instead.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new minimum length for this big array.
* @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
* @return {@code array}, if it can contain {@code length}
* entries; otherwise, a big array with
* max({@code length},{@code length(array)}/φ) entries whose first
* {@code preserve} entries are the same as those of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE[][] grow(final KEY_GENERIC_TYPE[][] array, final long length, final long preserve) {
final long oldLength = length(array);
return length > oldLength ? ensureCapacity(array, Math.max(oldLength + (oldLength >> 1), length), preserve) : array;
}
#if KEY_CLASS_Object
/** Trims the given big array to the given length.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new maximum length for the big array.
* @return {@code array}, if it contains {@code length}
* entries or less; otherwise, a big array with
* {@code length} entries whose entries are the same as
* the first {@code length} entries of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE[][] trim(final KEY_GENERIC_TYPE[][] array, final long length) {
return BigArrays.trim(array, length);
}
#else
/** Trims the given big array to the given length.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new maximum length for the big array.
* @return {@code array}, if it contains {@code length}
* entries or less; otherwise, a big array with
* {@code length} entries whose entries are the same as
* the first {@code length} entries of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE[][] trim(final KEY_GENERIC_TYPE[][] array, final long length) {
ensureLength(length);
final long oldLength = length(array);
if (length >= oldLength) return array;
final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT);
final KEY_TYPE[][] base = Arrays.copyOf(array, baseLength);
final int residual = (int)(length & SEGMENT_MASK);
if (residual != 0) base[baseLength - 1] = ARRAYS.trim(base[baseLength - 1], residual);
return base;
}
#endif
/** Sets the length of the given big array.
*
* <p><strong>Warning:</strong> the returned array might use part of the segments of the original
* array, which must be considered read-only after calling this method.
*
* @param array a big array.
* @param length the new length for the big array.
* @return {@code array}, if it contains exactly {@code length}
* entries; otherwise, if it contains <em>more</em> than
* {@code length} entries, a big array with {@code length} entries
* whose entries are the same as the first {@code length} entries of
* {@code array}; otherwise, a big array with {@code length} entries
* whose first {@code length(array)} entries are the same as those of
* {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE[][] setLength(final KEY_GENERIC_TYPE[][] array, final long length) {
return BigArrays.setLength(array, length);
}
/** Returns a copy of a portion of a big array.
*
* @param array a big array.
* @param offset the first element to copy.
* @param length the number of elements to copy.
* @return a new big array containing {@code length} elements of {@code array} starting at {@code offset}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE[][] copy(final KEY_GENERIC_TYPE[][] array, final long offset, final long length) {
return BigArrays.copy(array, offset, length);
}
/** Returns a copy of a big array.
*
* @param array a big array.
* @return a copy of {@code array}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC KEY_GENERIC_TYPE[][] copy(final KEY_GENERIC_TYPE[][] array) {
return BigArrays.copy(array);
}
/** Fills the given big array with the given value.
*
* <p>This method uses a backward loop. It is significantly faster than the corresponding
* method in {@link java.util.Arrays}.
*
* @param array a big array.
* @param value the new value for all elements of the big array.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void fill(final KEY_GENERIC_TYPE[][] array, final KEY_GENERIC_TYPE value) {
for(int i = array.length; i-- != 0;) Arrays.fill(array[i], value);
}
/** Fills a portion of the given big array with the given value.
*
* <p>If possible (i.e., {@code from} is 0) this method uses a
* backward loop. In this case, it is significantly faster than the
* corresponding method in {@link java.util.Arrays}.
*
* @param array a big array.
* @param from the starting index of the portion to fill.
* @param to the end index of the portion to fill.
* @param value the new value for all elements of the specified portion of the big array.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void fill(final KEY_GENERIC_TYPE[][] array, final long from, long to, final KEY_GENERIC_TYPE value) {
BigArrays.fill(array, from, to, value);
}
/** Returns true if the two big arrays are elementwise equal.
*
* <p>This method uses a backward loop. It is significantly faster than the corresponding
* method in {@link java.util.Arrays}.
*
* @param a1 a big array.
* @param a2 another big array.
* @return true if the two big arrays are of the same length, and their elements are equal.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC boolean equals(final KEY_GENERIC_TYPE[][] a1, final KEY_GENERIC_TYPE a2[][]) {
return BigArrays.equals(a1, a2);
}
/* Returns a string representation of the contents of the specified big array.
*
* The string representation consists of a list of the big array's elements, enclosed in square brackets ("[]"). Adjacent elements are separated by the characters ", " (a comma followed by a space). Returns "null" if {@code a} is null.
* @param a the big array whose string representation to return.
* @return the string representation of {@code a}.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC String toString(final KEY_GENERIC_TYPE[][] a) {
return BigArrays.toString(a);
}
/** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits a big array.
*
* <p>This method may be used whenever a big array range check is needed.
*
* @param a a big array.
* @param from a start index (inclusive).
* @param to an end index (inclusive).
* @throws IllegalArgumentException if {@code from} is greater than {@code to}.
* @throws ArrayIndexOutOfBoundsException if {@code from} or {@code to} are greater than the big array length or negative.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void ensureFromTo(final KEY_GENERIC_TYPE[][] a, final long from, final long to) {
BigArrays.ensureFromTo(length(a), from, to);
}
/** Ensures that a range given by an offset and a length fits a big array.
*
* <p>This method may be used whenever a big array range check is needed.
*
* @param a a big array.
* @param offset a start index.
* @param length a length (the number of elements in the range).
* @throws IllegalArgumentException if {@code length} is negative.
* @throws ArrayIndexOutOfBoundsException if {@code offset} is negative or {@code offset}+{@code length} is greater than the big array length.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void ensureOffsetLength(final KEY_GENERIC_TYPE[][] a, final long offset, final long length) {
BigArrays.ensureOffsetLength(length(a), offset, length);
}
/** Ensures that two big arrays are of the same length.
*
* @param a a big array.
* @param b another big array.
* @throws IllegalArgumentException if the two argument arrays are not of the same length.
* @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
*/
@Deprecated
public static KEY_GENERIC void ensureSameLength(final KEY_GENERIC_TYPE[][] a, final KEY_GENERIC_TYPE[][] b) {
if (length(a) != length(b)) throw new IllegalArgumentException("Array size mismatch: " + length(a) + " != " + length(b));
}
/** A type-specific content-based hash strategy for big arrays. */
private static final class BigArrayHashStrategy KEY_GENERIC implements Hash.Strategy<KEY_GENERIC_TYPE[][]>, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353129L;
@Override
public int hashCode(final KEY_GENERIC_TYPE[][] o) { return java.util.Arrays.deepHashCode(o); }
@Override
public boolean equals(final KEY_GENERIC_TYPE[][] a, final KEY_GENERIC_TYPE[][] b) { return BIG_ARRAYS.equals(a, b); }
}
/** A type-specific content-based hash strategy for big arrays.
*
* <p>This hash strategy may be used in custom hash collections whenever keys are
* big arrays, and they must be considered equal by content. This strategy
* will handle {@code null} correctly, and it is serializable.
*/
@SuppressWarnings({"rawtypes"})
public static final Hash.Strategy HASH_STRATEGY = new BigArrayHashStrategy();
private static final int QUICKSORT_NO_REC = 7;
private static final int PARALLEL_QUICKSORT_NO_FORK = 8192;
private static final int MEDIUM = 40;
private static ForkJoinPool getPool() {
// Make sure to update Arrays.drv, BigArrays.drv, and src/it/unimi/dsi/fastutil/Arrays.java as well
ForkJoinPool current = ForkJoinTask.getPool();
return current == null ? ForkJoinPool.commonPool() : current;
}
private static KEY_GENERIC void swap(final KEY_GENERIC_TYPE[][] x, long a, long b, final long n) {
for(int i = 0; i < n; i++, a++, b++) BigArrays.swap(x, a, b);
}
private static KEY_GENERIC long med3(final KEY_GENERIC_TYPE x[][], final long a, final long b, final long c, KEY_COMPARATOR KEY_GENERIC comp) {
int ab = comp.compare(BigArrays.get(x, a), BigArrays.get(x, b));
int ac = comp.compare(BigArrays.get(x, a), BigArrays.get(x, c));
int bc = comp.compare(BigArrays.get(x, b), BigArrays.get(x, c));
return (ab < 0 ?
(bc < 0 ? b : ac < 0 ? c : a) :
(bc > 0 ? b : ac > 0 ? c : a));
}
private static KEY_GENERIC void selectionSort(final KEY_GENERIC_TYPE[][] a, final long from, final long to, final KEY_COMPARATOR KEY_GENERIC comp) {
for(long i = from; i < to - 1; i++) {
long m = i;
for(long j = i + 1; j < to; j++) if (comp.compare(BigArrays.get(a, j), BigArrays.get(a, m)) < 0) m = j;
if (m != i) BigArrays.swap(a, i, m);
}
}
/** Sorts the specified range of elements according to the order induced by the specified
* comparator using quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* @param x the big array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
*/
public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[][] x, final long from, final long to, final KEY_COMPARATOR KEY_GENERIC comp) {
final long len = to - from;
// Selection sort on smallest arrays
if (len < QUICKSORT_NO_REC) {
selectionSort(x, from, to, comp);
return;
}
// Choose a partition element, v
long m = from + len / 2; // Small arrays, middle element
if (len > QUICKSORT_NO_REC) {
long l = from;
long n = to - 1;
if (len > MEDIUM) { // Big arrays, pseudomedian of 9
long s = len / 8;
l = med3(x, l, l + s, l + 2 * s, comp);
m = med3(x, m - s, m, m + s, comp);
n = med3(x, n - 2 * s, n - s, n, comp);
}
m = med3(x, l, m, n, comp); // Mid-size, med of 3
}
final KEY_GENERIC_TYPE v = BigArrays.get(x, m);
// Establish Invariant: v* (<v)* (>v)* v*
long a = from, b = a, c = to - 1, d = c;
while(true) {
int comparison;
while (b <= c && (comparison = comp.compare(BigArrays.get(x, b), v)) <= 0) {
if (comparison == 0) BigArrays.swap(x, a++, b);
b++;
}
while (c >= b && (comparison = comp.compare(BigArrays.get(x, c), v)) >=0) {
if (comparison == 0) BigArrays.swap(x, c, d--);
c--;
}
if (b > c) break;
BigArrays.swap(x, b++, c--);
}
// Swap partition elements back to middle
long s, n = to;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, n - d- 1);
swap(x, b, n - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1) quickSort(x, from, from + s, comp);
if ((s = d - c) > 1) quickSort(x, n - s, n, comp);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private static KEY_GENERIC long med3(final KEY_GENERIC_TYPE x[][], final long a, final long b, final long c) {
int ab = KEY_CMP(BigArrays.get(x, a), BigArrays.get(x, b));
int ac = KEY_CMP(BigArrays.get(x, a), BigArrays.get(x, c));
int bc = KEY_CMP(BigArrays.get(x, b), BigArrays.get(x, c));
return (ab < 0 ?
(bc < 0 ? b : ac < 0 ? c : a) :
(bc > 0 ? b : ac > 0 ? c : a));
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private static KEY_GENERIC void selectionSort(final KEY_GENERIC_TYPE[][] a, final long from, final long to) {
for(long i = from; i < to - 1; i++) {
long m = i;
for(long j = i + 1; j < to; j++) if (KEY_LESS(BigArrays.get(a, j), BigArrays.get(a, m))) m = j;
if (m != i) BigArrays.swap(a, i, m);
}
}
/** Sorts the specified big array according to the order induced by the specified
* comparator using quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* @param x the big array to be sorted.
* @param comp the comparator to determine the sorting order.
*
*/
public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[][] x, final KEY_COMPARATOR KEY_GENERIC comp) {
quickSort(x, 0, BigArrays.length(x), comp);
}
/** Sorts the specified range of elements according to the natural ascending order using quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* @param x the big array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[][] x, final long from, final long to) {
final long len = to - from;
// Selection sort on smallest arrays
if (len < QUICKSORT_NO_REC) {
selectionSort(x, from, to);
return;
}
// Choose a partition element, v
long m = from + len / 2; // Small arrays, middle element
if (len > QUICKSORT_NO_REC) {
long l = from;
long n = to - 1;
if (len > MEDIUM) { // Big arrays, pseudomedian of 9
long s = len / 8;
l = med3(x, l, l + s, l + 2 * s);
m = med3(x, m - s, m, m + s);
n = med3(x, n - 2 * s, n - s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
final KEY_GENERIC_TYPE v = BigArrays.get(x, m);
// Establish Invariant: v* (<v)* (>v)* v*
long a = from, b = a, c = to - 1, d = c;
while(true) {
int comparison;
while (b <= c && (comparison = KEY_CMP(BigArrays.get(x, b), v)) <= 0) {
if (comparison == 0) BigArrays.swap(x, a++, b);
b++;
}
while (c >= b && (comparison = KEY_CMP(BigArrays.get(x, c), v)) >=0) {
if (comparison == 0) BigArrays.swap(x, c, d--);
c--;
}
if (b > c) break;
BigArrays.swap(x, b++, c--);
}
// Swap partition elements back to middle
long s, n = to;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, n - d- 1);
swap(x, b, n - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1) quickSort(x, from, from + s);
if ((s = d - c) > 1) quickSort(x, n - s, n);
}
/** Sorts the specified big array according to the natural ascending order using quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* @param x the big array to be sorted.
*/
public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[][] x) {
quickSort(x, 0, BigArrays.length(x));
}
protected static class ForkJoinQuickSort KEY_GENERIC extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final long from;
private final long to;
private final KEY_GENERIC_TYPE[][] x;
public ForkJoinQuickSort(final KEY_GENERIC_TYPE[][] x , final long from , final long to) {
this.from = from;
this.to = to;
this.x = x;
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
protected void compute() {
final KEY_GENERIC_TYPE[][] x = this.x;
final long len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSort(x, from, to);
return;
}
// Choose a partition element, v
long m = from + len / 2;
long l = from;
long n = to - 1;
long s = len / 8;
l = med3(x, l, l + s, l + 2 * s);
m = med3(x, m - s, m, m + s);
n = med3(x, n - 2 * s, n - s, n);
m = med3(x, l, m, n);
final KEY_GENERIC_TYPE v = BigArrays.get(x, m);
// Establish Invariant: v* (<v)* (>v)* v*
long a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = KEY_CMP(BigArrays.get(x, b), v)) <= 0) {
if (comparison == 0) BigArrays.swap(x, a++, b);
b++;
}
while (c >= b && (comparison = KEY_CMP(BigArrays.get(x, c), v)) >= 0) {
if (comparison == 0) BigArrays.swap(x, c, d--);
c--;
}
if (b > c) break;
BigArrays.swap(x, b++, c--);
}
// Swap partition elements back to middle
long t;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
s = b - a;
t = d - c;
if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, from, from + s), new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, to - t, to));
else if (s > 1) invokeAll(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, from, from + s));
else invokeAll(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, to - t, to));
}
}
/** Sorts the specified range of elements according to the natural ascending order using a parallel quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* @param x the big array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[][] x, final long from, final long to) {
ForkJoinPool pool = getPool();
if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSort(x, from, to);
else {
pool.invoke(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, from, to));
}
}
/** Sorts a big array according to the natural ascending order using a parallel quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* @param x the big array to be sorted.
*/
public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[][] x) {
parallelQuickSort(x, 0, BigArrays.length(x));
}
protected static class ForkJoinQuickSortComp KEY_GENERIC extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final long from;
private final long to;
private final KEY_GENERIC_TYPE[][] x;
private final KEY_COMPARATOR KEY_GENERIC comp;
public ForkJoinQuickSortComp(final KEY_GENERIC_TYPE[][] x , final long from , final long to, final KEY_COMPARATOR KEY_GENERIC comp) {
this.from = from;
this.to = to;
this.x = x;
this.comp = comp;
}
@Override
protected void compute() {
final KEY_GENERIC_TYPE[][] x = this.x;
final long len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSort(x, from, to, comp);
return;
}
// Choose a partition element, v
long m = from + len / 2;
long l = from;
long n = to - 1;
long s = len / 8;
l = med3(x, l, l + s, l + 2 * s, comp);
m = med3(x, m - s, m, m + s, comp);
n = med3(x, n - 2 * s, n - s, n, comp);
m = med3(x, l, m, n, comp);
final KEY_GENERIC_TYPE v = BigArrays.get(x, m);
// Establish Invariant: v* (<v)* (>v)* v*
long a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = comp.compare(BigArrays.get(x, b), v)) <= 0) {
if (comparison == 0) BigArrays.swap(x, a++, b);
b++;
}
while (c >= b && (comparison = comp.compare(BigArrays.get(x, c), v)) >= 0) {
if (comparison == 0) BigArrays.swap(x, c, d--);
c--;
}
if (b > c) break;
BigArrays.swap(x, b++, c--);
}
// Swap partition elements back to middle
long t;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
s = b - a;
t = d - c;
if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, from, from + s, comp), new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, to - t, to, comp));
else if (s > 1) invokeAll(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, from, from + s, comp));
else invokeAll(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, to - t, to, comp));
}
}
/** Sorts the specified range of elements according to the order induced by the specified
* comparator using a parallel quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* @param x the big array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
*/
public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[][] x, final long from, final long to, final KEY_COMPARATOR KEY_GENERIC comp) {
ForkJoinPool pool = getPool();
if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSort(x, from, to, comp);
else {
pool.invoke(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, from, to, comp));
}
}
/** Sorts a big array according to the order induced by the specified
* comparator using a parallel quicksort.
*
* <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
* McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages
* 1249−1265, 1993.
*
* @param x the big array to be sorted.
* @param comp the comparator to determine the sorting order.
*/
public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[][] x, final KEY_COMPARATOR KEY_GENERIC comp) {
parallelQuickSort(x, 0, BigArrays.length(x), comp);
}
#if ! KEY_CLASS_Boolean
/**
* Searches a range of the specified big array for the specified value using
* the binary search algorithm. The range must be sorted prior to making this call.
* If it is not sorted, the results are undefined. If the range contains multiple elements with
* the specified value, there is no guarantee which one will be found.
*
* @param a the big array to be searched.
* @param from the index of the first element (inclusive) to be searched.
* @param to the index of the last element (exclusive) to be searched.
* @param key the value to be searched for.
* @return index of the search key, if it is contained in the big array;
* otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The <i>insertion
* point</i> is defined as the the point at which the value would
* be inserted into the big array: the index of the first
* element greater than the key, or the length of the big array, if all
* elements in the big array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public static KEY_GENERIC long binarySearch(final KEY_GENERIC_TYPE[][] a, long from, long to, final KEY_GENERIC_TYPE key) {
KEY_GENERIC_TYPE midVal;
to--;
while (from <= to) {
final long mid = (from + to) >>> 1;
midVal = BigArrays.get(a, mid);
#if KEYS_PRIMITIVE
if (midVal < key) from = mid + 1;
else if (midVal > key) to = mid - 1;
else return mid;
#else
final int cmp = ((Comparable KEY_SUPER_GENERIC)midVal).compareTo(key);
if (cmp < 0) from = mid + 1;
else if (cmp > 0) to = mid - 1;
else return mid;
#endif
}
return -(from + 1);
}
/**
* Searches a big array for the specified value using
* the binary search algorithm. The range must be sorted prior to making this call.
* If it is not sorted, the results are undefined. If the range contains multiple elements with
* the specified value, there is no guarantee which one will be found.
*
* @param a the big array to be searched.
* @param key the value to be searched for.
* @return index of the search key, if it is contained in the big array;
* otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The <i>insertion
* point</i> is defined as the the point at which the value would
* be inserted into the big array: the index of the first
* element greater than the key, or the length of the big array, if all
* elements in the big array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
public static KEY_GENERIC long binarySearch(final KEY_GENERIC_TYPE[][] a, final KEY_TYPE key) {
return binarySearch(a, 0, BigArrays.length(a), key);
}
/**
* Searches a range of the specified big array for the specified value using
* the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call.
* If it is not sorted, the results are undefined. If the range contains multiple elements with
* the specified value, there is no guarantee which one will be found.
*
* @param a the big array to be searched.
* @param from the index of the first element (inclusive) to be searched.
* @param to the index of the last element (exclusive) to be searched.
* @param key the value to be searched for.
* @param c a comparator.
* @return index of the search key, if it is contained in the big array;
* otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The <i>insertion
* point</i> is defined as the the point at which the value would
* be inserted into the big array: the index of the first
* element greater than the key, or the length of the big array, if all
* elements in the big array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
public static KEY_GENERIC long binarySearch(final KEY_GENERIC_TYPE[][] a, long from, long to, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c) {
KEY_GENERIC_TYPE midVal;
to--;
while (from <= to) {
final long mid = (from + to) >>> 1;
midVal = BigArrays.get(a, mid);
final int cmp = c.compare(midVal, key);
if (cmp < 0) from = mid + 1;
else if (cmp > 0) to = mid - 1;
else return mid; // key found
}
return -(from + 1);
}
/**
* Searches a big array for the specified value using
* the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call.
* If it is not sorted, the results are undefined. If the range contains multiple elements with
* the specified value, there is no guarantee which one will be found.
*
* @param a the big array to be searched.
* @param key the value to be searched for.
* @param c a comparator.
* @return index of the search key, if it is contained in the big array;
* otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The <i>insertion
* point</i> is defined as the the point at which the value would
* be inserted into the big array: the index of the first
* element greater than the key, or the length of the big array, if all
* elements in the big array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
public static KEY_GENERIC long binarySearch(final KEY_GENERIC_TYPE[][] a, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c) {
return binarySearch(a, 0, BigArrays.length(a), key, c);
}
#if KEYS_PRIMITIVE
/** The size of a digit used during radix sort (must be a power of 2). */
private static final int DIGIT_BITS = 8;
/** The mask to extract a digit of {@link #DIGIT_BITS} bits. */
private static final int DIGIT_MASK = (1 << DIGIT_BITS) - 1;
/** The number of digits per element. */
private static final int DIGITS_PER_ELEMENT = KEY_CLASS.SIZE / DIGIT_BITS;
/** This method fixes negative numbers so that the combination exponent/significand is lexicographically sorted. */
#if KEY_CLASS_Double
private static final long fixDouble(final double d) {
final long l = Double.doubleToRawLongBits(d);
return l >= 0 ? l : l ^ 0x7FFFFFFFFFFFFFFFL;
}
#elif KEY_CLASS_Float
private static final int fixFloat(final float f) {
final int i = Float.floatToRawIntBits(f);
return i >= 0 ? i : i ^ 0x7FFFFFFF;
}
#endif
/** Sorts the specified big array using radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* @implSpec This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order.
* It will allocate a support array of bytes with the same number of elements as the array to be sorted.
*
* @param a the big array to be sorted.
*/
public static void radixSort(final KEY_TYPE[][] a) {
radixSort(a, 0, BigArrays.length(a));
}
/** Sorts the specified big array using radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* @implSpec This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order.
* It will allocate a support array of bytes with the same number of elements as the array to be sorted.
*
* @param a the big array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static void radixSort(final KEY_TYPE[][] a, final long from, final long to) {
final int maxLevel = DIGITS_PER_ELEMENT - 1;
final int stackSize = ((1 << DIGIT_BITS) - 1) * (DIGITS_PER_ELEMENT - 1) + 1;
final long[] offsetStack = new long[stackSize];
int offsetPos = 0;
final long[] lengthStack = new long[stackSize];
int lengthPos = 0;
final int[] levelStack = new int[stackSize];
int levelPos = 0;
offsetStack[offsetPos++] = from;
lengthStack[lengthPos++] = to - from;
levelStack[levelPos++] = 0;
final long[] count = new long[1 << DIGIT_BITS];
final long[] pos = new long[1 << DIGIT_BITS];
final byte[][] digit = ByteBigArrays.newBigArray(to - from);
while(offsetPos > 0) {
final long first = offsetStack[--offsetPos];
final long length = lengthStack[--lengthPos];
final int level = levelStack[--levelPos];
#if KEY_CLASS_Character
final int signMask = 0;
#else
final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
if (length < MEDIUM) {
selectionSort(a, first, first + length);
continue;
}
final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key
// Count keys.
for(long i = length; i-- != 0;) BigArrays.set(digit, i, (byte)(((KEY2LEXINT(BigArrays.get(a, first + i)) >>> shift) & DIGIT_MASK) ^ signMask));
for(long i = length; i-- != 0;) count[BigArrays.get(digit, i) & 0xFF]++;
// Compute cumulative distribution and push non-singleton keys on stack.
int lastUsed = -1;
long p = 0;
for(int i = 0; i < 1 << DIGIT_BITS; i++) {
if (count[i] != 0) {
lastUsed = i;
if (level < maxLevel && count[i] > 1){
//System.err.println(" Pushing " + new StackEntry(first + pos[i - 1], first + pos[i], level + 1));
offsetStack[offsetPos++] = p + first;
lengthStack[lengthPos++] = count[i];
levelStack[levelPos++] = level + 1;
}
}
pos[i] = (p += count[i]);
}
// When all slots are OK, the last slot is necessarily OK.
final long end = length - count[lastUsed];
count[lastUsed] = 0;
// i moves through the start of each block
int c = -1;
for(long i = 0, d; i < end; i += count[c], count[c] = 0) {
KEY_TYPE t = BigArrays.get(a, i +first);
c = BigArrays.get(digit, i) & 0xFF;
while((d = --pos[c]) > i) {
final KEY_TYPE z = t;
final int zz = c;
t = BigArrays.get(a, d + first);
c = BigArrays.get(digit, d) & 0xFF;
BigArrays.set(a, d + first, z);
BigArrays.set(digit, d, (byte)zz);
}
BigArrays.set(a, i + first, t);
}
}
}
private static void selectionSort(final KEY_TYPE[][] a, final KEY_TYPE[][] b, final long from, final long to) {
for(long i = from; i < to - 1; i++) {
long m = i;
for(long j = i + 1; j < to; j++)
if (KEY_LESS(BigArrays.get(a, j), BigArrays.get(a, m)) || KEY_CMP_EQ(BigArrays.get(a, j), BigArrays.get(a, m)) && KEY_LESS(BigArrays.get(b, j), BigArrays.get(b, m))) m = j;
if (m != i) {
KEY_TYPE t = BigArrays.get(a, i);
BigArrays.set(a, i, BigArrays.get(a, m));
BigArrays.set(a, m, t);
t = BigArrays.get(b, i);
BigArrays.set(b, i, BigArrays.get(b, m));
BigArrays.set(b, m, t);
}
}
}
/** Sorts the specified pair of big arrays lexicographically using radix sort.
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implements a <em>lexicographical</em> sorting of the arguments. Pairs of elements
* in the same position in the two provided arrays will be considered a single key, and permuted
* accordingly. In the end, either {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and {@code b[i] <= b[i + 1]}.
*
* @implSpec This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
*
* @param a the first big array to be sorted.
* @param b the second big array to be sorted.
*/
public static void radixSort(final KEY_TYPE[][] a, final KEY_TYPE[][] b) {
radixSort(a, b, 0, BigArrays.length(a));
}
/** Sorts the specified pair of big arrays lexicographically using radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993),
* and further improved using the digit-oracle idea described by
* Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”,
* <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
* Lecture Notes in Computer Science, pages 3−14, Springer (2008).
*
* <p>This method implements a <em>lexicographical</em> sorting of the arguments. Pairs of elements
* in the same position in the two provided arrays will be considered a single key, and permuted
* accordingly. In the end, either {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and {@code b[i] <= b[i + 1]}.
*
* @implSpec This implementation is significantly faster than quicksort
* already at small sizes (say, more than 10000 elements), but it can only
* sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
*
* @param a the first big array to be sorted.
* @param b the second big array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static void radixSort(final KEY_TYPE[][] a, final KEY_TYPE[][] b, final long from, final long to) {
final int layers = 2;
if (BigArrays.length(a) != BigArrays.length(b)) throw new IllegalArgumentException("Array size mismatch.");
final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;
final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1;
final long[] offsetStack = new long[stackSize];
int offsetPos = 0;
final long[] lengthStack = new long[stackSize];
int lengthPos = 0;
final int[] levelStack = new int[stackSize];
int levelPos = 0;
offsetStack[offsetPos++] = from;
lengthStack[lengthPos++] = to - from;
levelStack[levelPos++] = 0;
final long[] count = new long[1 << DIGIT_BITS];
final long[] pos = new long[1 << DIGIT_BITS];
final byte[][] digit = ByteBigArrays.newBigArray(to - from);
while(offsetPos > 0) {
final long first = offsetStack[--offsetPos];
final long length = lengthStack[--lengthPos];
final int level = levelStack[--levelPos];
#if KEY_CLASS_Character
final int signMask = 0;
#else
final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
if (length < MEDIUM) {
selectionSort(a, b, first, first + length);
continue;
}
final KEY_TYPE[][] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array
final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key
// Count keys.
for(long i = length; i-- != 0;) BigArrays.set(digit, i, (byte)(((KEY2LEXINT(BigArrays.get(k, first + i)) >>> shift) & DIGIT_MASK) ^ signMask));
for(long i = length; i-- != 0;) count[BigArrays.get(digit, i) & 0xFF]++;
// Compute cumulative distribution and push non-singleton keys on stack.
int lastUsed = -1;
long p = 0;
for(int i = 0; i < 1 << DIGIT_BITS; i++) {
if (count[i] != 0) {
lastUsed = i;
if (level < maxLevel && count[i] > 1){
offsetStack[offsetPos++] = p + first;
lengthStack[lengthPos++] = count[i];
levelStack[levelPos++] = level + 1;
}
}
pos[i] = (p += count[i]);
}
// When all slots are OK, the last slot is necessarily OK.
final long end = length - count[lastUsed];
count[lastUsed] = 0;
// i moves through the start of each block
int c = -1;
for(long i = 0, d; i < end; i += count[c], count[c] = 0) {
KEY_TYPE t = BigArrays.get(a, i + first);
KEY_TYPE u = BigArrays.get(b, i + first);
c = BigArrays.get(digit, i) & 0xFF;
while((d = --pos[c]) > i) {
KEY_TYPE z = t;
final int zz = c;
t = BigArrays.get(a, d + first);
BigArrays.set(a, d + first, z);
z = u;
u = BigArrays.get(b, d + first);
BigArrays.set(b, d + first, z);
c = BigArrays.get(digit, d) & 0xFF;
BigArrays.set(digit, d, (byte)zz);
}
BigArrays.set(a, i + first, t);
BigArrays.set(b, i + first, u);
}
}
}
private static final int RADIXSORT_NO_REC = 1024;
private static KEY_GENERIC void insertionSortIndirect(final long[][] perm, final KEY_TYPE[][] a, final KEY_TYPE[][] b, final long from, final long to) {
for (long i = from; ++i < to;) {
long t = BigArrays.get(perm, i);
long j = i;
for (long u = BigArrays.get(perm, j - 1); KEY_LESS(BigArrays.get(a, t), BigArrays.get(a, u)) || KEY_CMP_EQ(BigArrays.get(a, t), BigArrays.get(a, u)) && KEY_LESS(BigArrays.get(b, t), BigArrays.get(b, u)); u = BigArrays.get(perm, --j - 1)) {
BigArrays.set(perm, j, u);
if (from == j - 1) {
--j;
break;
}
}
BigArrays.set(perm, j, t);
}
}
/** Sorts the specified pair of arrays lexicographically using indirect radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993).
*
* <p>This method implement an <em>indirect</em> sort. The elements of {@code perm} (which must
* be exactly the numbers in the interval {@code [0..length(perm))}) will be permuted so that
* {@code a[perm[i]] ≤ a[perm[i + 1]]} or {@code a[perm[i]] == a[perm[i + 1]]} and {@code b[perm[i]] ≤ b[perm[i + 1]]}.
*
* @implSpec This implementation will allocate, in the stable case, a further support array as large as {@code perm} (note that the stable
* version is slightly faster).
*
* @param perm a permutation array indexing {@code a}.
* @param a the array to be sorted.
* @param b the second array to be sorted.
* @param stable whether the sorting algorithm should be stable.
*/
public static void radixSortIndirect(final long[][] perm, final KEY_TYPE[][] a, final KEY_TYPE[][] b, final boolean stable) {
ensureSameLength(a, b);
radixSortIndirect(perm, a, b, 0, BigArrays.length(a), stable);
}
/** Sorts the specified pair of arrays lexicographically using indirect radix sort.
*
* <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
* McIlroy, “Engineering radix sort”, <i>Computing Systems</i>, 6(1), pages 5−27 (1993).
*
* <p>This method implement an <em>indirect</em> sort. The elements of {@code perm} (which must
* be exactly the numbers in the interval {@code [0..length(perm))}) will be permuted so that
* {@code a[perm[i]] ≤ a[perm[i + 1]]} or {@code a[perm[i]] == a[perm[i + 1]]} and {@code b[perm[i]] ≤ b[perm[i + 1]]}.
*
* @implSpec This implementation will allocate, in the stable case, a further support array as large as {@code perm} (note that the stable
* version is slightly faster).
*
* @param perm a permutation array indexing {@code a}.
* @param a the array to be sorted.
* @param b the second array to be sorted.
* @param from the index of the first element of {@code perm} (inclusive) to be permuted.
* @param to the index of the last element of {@code perm} (exclusive) to be permuted.
* @param stable whether the sorting algorithm should be stable.
*/
public static void radixSortIndirect(final long[][] perm, final KEY_TYPE[][] a, final KEY_TYPE[][] b, final long from, final long to, final boolean stable) {
if (to - from < RADIXSORT_NO_REC) {
insertionSortIndirect(perm, a, b, from, to);
return;
}
final int layers = 2;
final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;
final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1;
int stackPos = 0;
final long[] offsetStack = new long[stackSize];
final long[] lengthStack = new long[stackSize];
final int[] levelStack = new int[stackSize];
offsetStack[stackPos] = from;
lengthStack[stackPos] = to - from;
levelStack[stackPos++] = 0;
final long[] count = new long[1 << DIGIT_BITS];
final long[] pos = new long[1 << DIGIT_BITS];
final long[][] support = stable ? it.unimi.dsi.fastutil.longs.LongBigArrays.newBigArray(BigArrays.length(perm)) : null;
while(stackPos > 0) {
final long first = offsetStack[--stackPos];
final long length = lengthStack[stackPos];
final int level = levelStack[stackPos];
#if KEY_CLASS_Character
final int signMask = 0;
#else
final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif
final KEY_TYPE[][] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array
final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key
// Count keys.
for(long i = first + length; i-- != first;) count[INT(KEY2LEXINT(BigArrays.get(k, BigArrays.get(perm, i))) >>> shift & DIGIT_MASK ^ signMask)]++;
// Compute cumulative distribution
int lastUsed = -1;
long p = stable ? 0 : first;
for (int i = 0; i < 1 << DIGIT_BITS; i++) {
if (count[i] != 0) lastUsed = i;
pos[i] = (p += count[i]);
}
if (stable) {
for(long i = first + length; i-- != first;) BigArrays.set(support, --pos[INT(KEY2LEXINT(BigArrays.get(k, BigArrays.get(perm, i))) >>> shift & DIGIT_MASK ^ signMask)], BigArrays.get(perm, i));
BigArrays.copy(support, 0, perm, first, length);
p = first;
for(int i = 0; i < 1 << DIGIT_BITS; i++) {
if (level < maxLevel && count[i] > 1) {
if (count[i] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, p, p + count[i]);
else {
offsetStack[stackPos] = p;
lengthStack[stackPos] = count[i];
levelStack[stackPos++] = level + 1;
}
}
p += count[i];
}
java.util.Arrays.fill(count, 0);
}
else {
final long end = first + length - count[lastUsed];
// i moves through the start of each block
int c = -1;
for(long i = first, d; i <= end; i += count[c], count[c] = 0) {
long t = BigArrays.get(perm, i);
c = INT(KEY2LEXINT(BigArrays.get(k, t)) >>> shift & DIGIT_MASK ^ signMask);
if (i < end) { // When all slots are OK, the last slot is necessarily OK.
while((d = --pos[c]) > i) {
final long z = t;
t = BigArrays.get(perm, d);
BigArrays.set(perm, d, z);
c = INT(KEY2LEXINT(BigArrays.get(k, t)) >>> shift & DIGIT_MASK ^ signMask);
}
BigArrays.set(perm, i, t);
}
if (level < maxLevel && count[c] > 1) {
if (count[c] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, i, i + count[c]);
else {
offsetStack[stackPos] = i;
lengthStack[stackPos] = count[c];
levelStack[stackPos++] = level + 1;
}
}
}
}
}
}
#endif
#endif
/** Shuffles the specified big array fragment using the specified pseudorandom number generator.
*
* @param a the big array to be shuffled.
* @param from the index of the first element (inclusive) to be shuffled.
* @param to the index of the last element (exclusive) to be shuffled.
* @param random a pseudorandom number generator.
* @return {@code a}.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[][] shuffle(final KEY_GENERIC_TYPE[][] a, final long from, final long to, final Random random) {
return BigArrays.shuffle(a, from, to, random);
}
/** Shuffles the specified big array using the specified pseudorandom number generator.
*
* @param a the big array to be shuffled.
* @param random a pseudorandom number generator.
* @return {@code a}.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[][] shuffle(final KEY_GENERIC_TYPE[][] a, final Random random) {
return BigArrays.shuffle(a, random);
}
#if KEY_CLASS_Integer
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
return Integer.toBinaryString(r.nextInt());
#else
return new java.io.Serializable() {};
#endif
}
private static Object[] k, v, nk;
private static KEY_TYPE kt[];
private static KEY_TYPE nkt[];
private static BIG_ARRAY_BIG_LIST topList;
protected static void speedTest(int n, boolean b) {}
protected static void runTest(int n) {
KEY_TYPE[][] a = BIG_ARRAYS.newBigArray(n);
for(int i = 0; i < n; i++) BigArrays.set(a, i, i);
BIG_ARRAYS.copy(a, 0, a, 1, n - 2);
assert a[0][0] == 0;
for(int i = 0; i < n - 2; i++) assert BigArrays.get(a, i + 1) == i;
for(int i = 0; i < n; i++) BigArrays.set(a, i, i);
BIG_ARRAYS.copy(a, 1, a, 0, n - 1);
for(int i = 0; i < n - 1; i++) assert BigArrays.get(a, i) == i + 1;
for(int i = 0; i < n; i++) BigArrays.set(a, i, i);
KEY_TYPE[] b = new KEY_TYPE[n];
for(int i = 0; i < n; i++) b[i] = i;
assert equals(wrap(b), a);
System.out.println("Test OK");
return;
}
public static void main(String args[]) throws Exception {
int n = Integer.parseInt(args[1]);
if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) runTest(n);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
throw e;
}
}
#endif
#endif
}
|