File: BigArrays.drv

package info (click to toggle)
libfastutil-java 8.5.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,076 kB
  • sloc: java: 19,670; sh: 1,188; makefile: 473; xml: 354
file content (1823 lines) | stat: -rw-r--r-- 75,503 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
/*
 * Copyright (C) 2009-2024 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 *
 *
 * Copyright (C) 1999 CERN - European Organization for Nuclear Research.
 *
 *   Permission to use, copy, modify, distribute and sell this software and
 *   its documentation for any purpose is hereby granted without fee,
 *   provided that the above copyright notice appear in all copies and that
 *   both that copyright notice and this permission notice appear in
 *   supporting documentation. CERN makes no representations about the
 *   suitability of this software for any purpose. It is provided "as is"
 *   without expressed or implied warranty.
 */

package PACKAGE;

import java.util.Arrays;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveAction;

import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import static it.unimi.dsi.fastutil.BigArrays.ensureLength;
import static it.unimi.dsi.fastutil.BigArrays.start;
import static it.unimi.dsi.fastutil.BigArrays.segment;
import static it.unimi.dsi.fastutil.BigArrays.displacement;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_MASK;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SHIFT;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SIZE;

#if KEYS_PRIMITIVE
#if KEY_CLASS_Integer
import java.util.concurrent.atomic.AtomicIntegerArray;
#endif
#if KEY_CLASS_Long 
import java.util.concurrent.atomic.AtomicLongArray;
#endif

#if ! KEY_CLASS_Byte && ! KEY_CLASS_Boolean
import it.unimi.dsi.fastutil.bytes.ByteBigArrays;
#endif

/** A class providing static methods and objects that do useful things with {@linkplain BigArrays big arrays}.
 *
 * <p>Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO}
 * contain several methods that make it possible to load and save big arrays of primitive types as sequences
 * of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text.
 *
 * <h2>Parallel operations</h2>
 * Some algorithms provide a parallel version that will by default use the
 * {@linkplain ForkJoinPool#commonPool() common pool}, but this can be overridden by calling the
 * function in a task already in the {@link ForkJoinPool} that the operation should run in. For example,
 * something along the lines of "{@code poolToParallelSortIn.invoke(() -> parallelQuickSort(arrayToSort))}" 
 * will run the parallel sort in {@code poolToParallelSortIn} instead of the default pool.
 *
 * @see BigArrays
 */

public final class BIG_ARRAYS {

#else

import java.util.Comparator;

/** A class providing static methods and objects that do useful things with {@linkplain BigArrays big arrays}.
 *
 * <p>Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO}
 * contain several methods make it possible to load and save big arrays of primitive types as sequences
 * of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text.
 *
 * <h2>Parallel operations</h2>
 * Some algorithms provide a parallel version that will by default use the
 * {@linkplain ForkJoinPool#commonPool() common pool}, but this can be overridden by calling the
 * function in a task already in the {@link ForkJoinPool} that the operation should run in. For example,
 * something along the lines of "{@code poolToParallelSortIn.invoke(() -> parallelQuickSort(arrayToSort))}" 
 * will run the parallel sort in {@code poolToParallelSortIn} instead of the default pool.
 *
 * <p><strong>Warning:</strong> creating arrays
 * using {@linkplain java.lang.reflect.Array#newInstance(Class,int) reflection}, as it
 * happens in {@link #ensureCapacity(Object[][],long,long)} and {@link #grow(Object[][],long,long)},
 * is <em>significantly slower</em> than using {@code new}. This phenomenon is particularly
 * evident in the first growth phases of an array reallocated with doubling (or similar) logic.
 *
 * @see BigArrays
 */

public final class BIG_ARRAYS {

#endif
	private BIG_ARRAYS() {}

	/** A static, final, empty big array. */
	public static final KEY_TYPE[][] EMPTY_BIG_ARRAY = {};

	/** A static, final, empty big array to be used as default big array in allocations. An
	  * object distinct from {@link #EMPTY_BIG_ARRAY} makes it possible to have different
	  * behaviors depending on whether the user required an empty allocation, or we are
	  * just lazily delaying allocation.
	  *
	  * @see java.util.ArrayList
	  */
	public static final KEY_TYPE[][] DEFAULT_EMPTY_BIG_ARRAY = {};

	/** Returns the element of the given big array of specified index.
	 *
	 * @param array a big array.
	 * @param index a position in the big array.
	 * @return the element of the big array at the specified position.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE get(final KEY_GENERIC_TYPE[][] array, final long index) {
		return array[segment(index)][displacement(index)];
	}

	/** Sets the element of the given big array of specified index.
	 *
	 * @param array a big array.
	 * @param index a position in the big array.
	 * @param value the new value for the array element at the specified position.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void set(final KEY_GENERIC_TYPE[][] array, final long index, KEY_GENERIC_TYPE value) {
		array[segment(index)][displacement(index)] = value;
	}

	/** Swaps the element of the given big array of specified indices.
	 *
	 * @param array a big array.
	 * @param first a position in the big array.
	 * @param second a position in the big array.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void swap(final KEY_GENERIC_TYPE[][] array, final long first, final long second) {
		final KEY_GENERIC_TYPE t = array[segment(first)][displacement(first)];
		array[segment(first)][displacement(first)] = array[segment(second)][displacement(second)];
		array[segment(second)][displacement(second)] = t;
	}

#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
	/** Adds the specified increment the element of the given big array of specified index.
	 *
	 * @param array a big array.
	 * @param index a position in the big array.
	 * @param incr the increment
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static void add(final KEY_GENERIC_TYPE[][] array, final long index, KEY_GENERIC_TYPE incr) {
		array[segment(index)][displacement(index)] += incr;
	}

	/** Multiplies by the specified factor the element of the given big array of specified index.
	 *
	 * @param array a big array.
	 * @param index a position in the big array.
	 * @param factor the factor
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static void mul(final KEY_GENERIC_TYPE[][] array, final long index, KEY_GENERIC_TYPE factor) {
		array[segment(index)][displacement(index)] *= factor;
	}

	/** Increments the element of the given big array of specified index.
	 *
	 * @param array a big array.
	 * @param index a position in the big array.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static void incr(final KEY_GENERIC_TYPE[][] array, final long index) {
		array[segment(index)][displacement(index)]++;
	}

	/** Decrements the element of the given big array of specified index.
	 *
	 * @param array a big array.
	 * @param index a position in the big array.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static void decr(final KEY_GENERIC_TYPE[][] array, final long index) {
		array[segment(index)][displacement(index)]--;
	}


#endif


	/** Returns the length of the given big array.
	 *
	 * @param array a big array.
	 * @return the length of the given big array.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC long length(final KEY_GENERIC_TYPE[][] array) {
		final int length = array.length;
		return length == 0 ? 0 : start(length - 1) + array[length - 1].length;
	}

	/** Copies a big array from the specified source big array, beginning at the specified position, to the specified position of the destination big array.
	 * Handles correctly overlapping regions of the same big array.
	 *
	 * @param srcArray the source big array.
	 * @param srcPos the starting position in the source big array.
	 * @param destArray the destination big array.
	 * @param destPos the starting position in the destination data.
	 * @param length the number of elements to be copied.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void copy(final KEY_GENERIC_TYPE[][] srcArray, final long srcPos, final KEY_GENERIC_TYPE[][] destArray, final long destPos, long length) {
		BigArrays.copy(srcArray, srcPos, destArray, destPos, length);
	}

	/** Copies a big array from the specified source big array, beginning at the specified position, to the specified position of the destination array.
	 *
	 * @param srcArray the source big array.
	 * @param srcPos the starting position in the source big array.
	 * @param destArray the destination array.
	 * @param destPos the starting position in the destination data.
	 * @param length the number of elements to be copied.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void copyFromBig(final KEY_GENERIC_TYPE[][] srcArray, final long srcPos, final KEY_GENERIC_TYPE[] destArray, int destPos, int length) {
		BigArrays.copyFromBig(srcArray, srcPos, destArray, destPos, length);
	}

	/** Copies an array from the specified source array, beginning at the specified position, to the specified position of the destination big array.
	 *
	 * @param srcArray the source array.
	 * @param srcPos the starting position in the source array.
	 * @param destArray the destination big array.
	 * @param destPos the starting position in the destination data.
	 * @param length the number of elements to be copied.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void copyToBig(final KEY_GENERIC_TYPE[] srcArray, int srcPos, final KEY_GENERIC_TYPE[][] destArray, final long destPos, long length) {
		BigArrays.copyToBig(srcArray, srcPos, destArray, destPos, length);
	}

#if KEY_CLASS_Object
	/** Creates a new big array using the given one as prototype.
	 *
	 * <p>This method returns a new big array of the given length whose element
	 * are of the same class as of those of {@code prototype}. In case
	 * of an empty big array, it tries to return {@link #EMPTY_BIG_ARRAY}, if possible.
	 *
	 * @param prototype a big array that will be used to type the new one.
	 * @param length the length of the new big array.
	 * @return a new big array of given type and length.
	 */

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public static <K> K[][] newBigArray(final K[][] prototype, final long length) {
		return (K[][])newBigArray(prototype.getClass().getComponentType(), length);
	}

	/** Creates a new big array using a given component type.
	 *
	 * <p>This method returns a new big array whose segments
	 * are of class {@code componentType}. In case
	 * of an empty big array, it tries to return {@link #EMPTY_BIG_ARRAY}, if possible.
	 *
	 * @param componentType a class representing the type of segments of the array to be created.
	 * @param length the length of the new big array.
	 * @return a new big array of given type and length.
	 */

	public static Object[][] newBigArray(Class<?> componentType, final long length) {
		if (length == 0 && componentType == Object[].class) return EMPTY_BIG_ARRAY;
		ensureLength(length);
		final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT);
		Object[][] base = (Object[][])java.lang.reflect.Array.newInstance(componentType, baseLength);
		final int residual = (int)(length & SEGMENT_MASK);
		if (residual != 0) {
			for(int i = 0; i < baseLength - 1; i++) base[i] = (Object[])java.lang.reflect.Array.newInstance(componentType.getComponentType(), SEGMENT_SIZE);
			base[baseLength - 1] = (Object[])java.lang.reflect.Array.newInstance(componentType.getComponentType(), residual);
		}
		else for(int i = 0; i < baseLength; i++) base[i] = (Object[])java.lang.reflect.Array.newInstance(componentType.getComponentType(), SEGMENT_SIZE);

		return base;
	}
#endif

	/** Creates a new big array.
	 *
	 * @param length the length of the new big array.
	 * @return a new big array of given length.
	 */

	public static KEY_TYPE[][] newBigArray(final long length) {
		if (length == 0) return EMPTY_BIG_ARRAY;
		ensureLength(length);
		final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT);
		KEY_TYPE[][] base = new KEY_TYPE[baseLength][];
		final int residual = (int)(length & SEGMENT_MASK);
		if (residual != 0) {
			for(int i = 0; i < baseLength - 1; i++) base[i] = new KEY_TYPE[SEGMENT_SIZE];
			base[baseLength - 1] = new KEY_TYPE[residual];
		}
		else for(int i = 0; i < baseLength; i++) base[i] = new KEY_TYPE[SEGMENT_SIZE];

		return base;
	}

#if KEY_CLASS_Long || KEY_CLASS_Integer
	/** A static, final, empty big atomic array. */
	public static final ATOMIC_ARRAY[] EMPTY_BIG_ATOMIC_ARRAY = {};

	/** Creates a new big atomic array.
	 *
	 * @param length the length of the new big array.
	 * @return a new big atomic array of given length.
	 */

	public static ATOMIC_ARRAY[] newBigAtomicArray(final long length) {
		if (length == 0) return EMPTY_BIG_ATOMIC_ARRAY;
		ensureLength(length);
		final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT);
		ATOMIC_ARRAY[] base = new ATOMIC_ARRAY[baseLength];
		final int residual = (int)(length & SEGMENT_MASK);
		if (residual != 0) {
			for(int i = 0; i < baseLength - 1; i++) base[i] = new ATOMIC_ARRAY(SEGMENT_SIZE);
			base[baseLength - 1] = new ATOMIC_ARRAY(residual);
		}
		else for(int i = 0; i < baseLength; i++) base[i] = new ATOMIC_ARRAY(SEGMENT_SIZE);

		return base;
	}
#endif

#if KEY_CLASS_Object
	/** Turns a standard array into a big array.
	 *
	 * <p>Note that the returned big array might contain as a segment the original array.
	 *
	 * @param array an array.
	 * @return a new big array with the same length and content of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public static <K> K[][] wrap(final K[] array) {
		return BigArrays.wrap(array);
	}

#else
	/** Turns a standard array into a big array.
	 *
	 * <p>Note that the returned big array might contain as a segment the original array.
	 *
	 * @param array an array.
	 * @return a new big array with the same length and content of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_TYPE[][] wrap(final KEY_TYPE[] array) {
		return BigArrays.wrap(array);
	}
#endif
	/** Ensures that a big array can contain the given number of entries.
	 *
	 * <p>If you cannot foresee whether this big array will need again to be
	 * enlarged, you should probably use {@code grow()} instead.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new minimum length for this big array.
	 * @return {@code array}, if it contains {@code length} entries or more; otherwise,
	 * a big array with {@code length} entries whose first {@code length(array)}
	 * entries are the same as those of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] ensureCapacity(final KEY_GENERIC_TYPE[][] array, final long length) {
		return ensureCapacity(array, length, length(array));
	}

#if KEY_CLASS_Object

	/** Forces a big array to contain the given number of entries, preserving just a part of the big array.
	 *
	 * <p>This method returns a new big array of the given length whose element
	 * are of the same class as of those of {@code array}.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new minimum length for this big array.
	 * @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
	 * @return a big array with {@code length} entries whose first {@code preserve}
	 * entries are the same as those of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] forceCapacity(final KEY_GENERIC_TYPE[][] array, final long length, final long preserve) {
		return BigArrays.forceCapacity(array, length, preserve);
	}

	/** Ensures that a big array can contain the given number of entries, preserving just a part of the big array.
	 *
	 * <p>This method returns a new big array of the given length whose element
	 * are of the same class as of those of {@code array}.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new minimum length for this big array.
	 * @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
	 * @return {@code array}, if it can contain {@code length} entries or more; otherwise,
	 * a big array with {@code length} entries whose first {@code preserve}
	 * entries are the same as those of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] ensureCapacity(final KEY_GENERIC_TYPE[][] array, final long length, final long preserve) {
		return length > length(array) ? forceCapacity(array, length, preserve) : array;
	}

#else

	/** Forces a big array to contain the given number of entries, preserving just a part of the big array.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new minimum length for this big array.
	 * @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
	 * @return a big array with {@code length} entries whose first {@code preserve}
	 * entries are the same as those of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_TYPE[][] forceCapacity(final KEY_TYPE[][] array, final long length, final long preserve) {
		return BigArrays.forceCapacity(array, length, preserve);
	}

	/** Ensures that a big array can contain the given number of entries, preserving just a part of the big array.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new minimum length for this big array.
	 * @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
	 * @return {@code array}, if it can contain {@code length} entries or more; otherwise,
	 * a big array with {@code length} entries whose first {@code preserve}
	 * entries are the same as those of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_TYPE[][] ensureCapacity(final KEY_TYPE[][] array, final long length, final long preserve) {
		return length > length(array) ? forceCapacity(array, length, preserve) : array;
	}

#endif

	/** Grows the given big array to the maximum between the given length and
	 * the current length increased by 50%, provided that the given
	 * length is larger than the current length.
	 *
	 * <p>If you want complete control on the big array growth, you
	 * should probably use {@code ensureCapacity()} instead.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new minimum length for this big array.
	 * @return {@code array}, if it can contain {@code length}
	 * entries; otherwise, a big array with
	 * max({@code length},{@code length(array)}/&phi;) entries whose first
	 * {@code length(array)} entries are the same as those of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] grow(final KEY_GENERIC_TYPE[][] array, final long length) {
		final long oldLength = length(array);
		return length > oldLength ? grow(array, length, oldLength) : array;
	}

	/** Grows the given big array to the maximum between the given length and
	 * the current length increased by 50%, provided that the given
	 * length is larger than the current length, preserving just a part of the big array.
	 *
	 * <p>If you want complete control on the big array growth, you
	 * should probably use {@code ensureCapacity()} instead.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new minimum length for this big array.
	 * @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary.
	 * @return {@code array}, if it can contain {@code length}
	 * entries; otherwise, a big array with
	 * max({@code length},{@code length(array)}/&phi;) entries whose first
	 * {@code preserve} entries are the same as those of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] grow(final KEY_GENERIC_TYPE[][] array, final long length, final long preserve) {
		final long oldLength = length(array);
		return length > oldLength ? ensureCapacity(array, Math.max(oldLength + (oldLength >> 1), length), preserve) : array;
	}

#if KEY_CLASS_Object

	/** Trims the given big array to the given length.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new maximum length for the big array.
	 * @return {@code array}, if it contains {@code length}
	 * entries or less; otherwise, a big array with
	 * {@code length} entries whose entries are the same as
	 * the first {@code length} entries of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] trim(final KEY_GENERIC_TYPE[][] array, final long length) {
		return BigArrays.trim(array, length);
	}

#else

	/** Trims the given big array to the given length.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new maximum length for the big array.
	 * @return {@code array}, if it contains {@code length}
	 * entries or less; otherwise, a big array with
	 * {@code length} entries whose entries are the same as
	 * the first {@code length} entries of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] trim(final KEY_GENERIC_TYPE[][] array, final long length) {
		ensureLength(length);
		final long oldLength = length(array);
		if (length >= oldLength) return array;
		final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT);
		final KEY_TYPE[][] base = Arrays.copyOf(array, baseLength);
		final int residual = (int)(length & SEGMENT_MASK);
		if (residual != 0) base[baseLength - 1] = ARRAYS.trim(base[baseLength - 1], residual);
		return base;
	}

#endif

	/** Sets the length of the given big array.
	 *
	 * <p><strong>Warning:</strong> the returned array might use part of the segments of the original
	 * array, which must be considered read-only after calling this method.
	 *
	 * @param array a big array.
	 * @param length the new length for the big array.
	 * @return {@code array}, if it contains exactly {@code length}
	 * entries; otherwise, if it contains <em>more</em> than
	 * {@code length} entries, a big array with {@code length} entries
	 * whose entries are the same as the first {@code length} entries of
	 * {@code array}; otherwise, a big array with {@code length} entries
	 * whose first {@code length(array)} entries are the same as those of
	 * {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] setLength(final KEY_GENERIC_TYPE[][] array, final long length) {
		return BigArrays.setLength(array, length);
	}

	/** Returns a copy of a portion of a big array.
	 *
	 * @param array a big array.
	 * @param offset the first element to copy.
	 * @param length the number of elements to copy.
	 * @return a new big array containing {@code length} elements of {@code array} starting at {@code offset}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] copy(final KEY_GENERIC_TYPE[][] array, final long offset, final long length) {
		return BigArrays.copy(array, offset, length);
	}

	/** Returns a copy of a big array.
	 *
	 * @param array a big array.
	 * @return a copy of {@code array}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] copy(final KEY_GENERIC_TYPE[][] array) {
		return BigArrays.copy(array);
	}

	/** Fills the given big array with the given value.
	 *
	 * <p>This method uses a backward loop. It is significantly faster than the corresponding
	 * method in {@link java.util.Arrays}.
	 *
	 * @param array a big array.
	 * @param value the new value for all elements of the big array.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void fill(final KEY_GENERIC_TYPE[][] array, final KEY_GENERIC_TYPE value) {
		for(int i = array.length; i-- != 0;) Arrays.fill(array[i], value);
	}

	/** Fills a portion of the given big array with the given value.
	 *
	 * <p>If possible (i.e., {@code from} is 0) this method uses a
	 * backward loop. In this case, it is significantly faster than the
	 * corresponding method in {@link java.util.Arrays}.
	 *
	 * @param array a big array.
	 * @param from the starting index of the portion to fill.
	 * @param to the end index of the portion to fill.
	 * @param value the new value for all elements of the specified portion of the big array.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void fill(final KEY_GENERIC_TYPE[][] array, final long from, long to, final KEY_GENERIC_TYPE value) {
		BigArrays.fill(array, from, to, value);
	}


	/** Returns true if the two big arrays are elementwise equal.
	 *
	 * <p>This method uses a backward loop. It is significantly faster than the corresponding
	 * method in {@link java.util.Arrays}.
	 *
	 * @param a1 a big array.
	 * @param a2 another big array.
	 * @return true if the two big arrays are of the same length, and their elements are equal.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC boolean equals(final KEY_GENERIC_TYPE[][] a1, final KEY_GENERIC_TYPE a2[][]) {
		return BigArrays.equals(a1, a2);
	}

	/* Returns a string representation of the contents of the specified big array.
	 *
	 * The string representation consists of a list of the big array's elements, enclosed in square brackets ("[]"). Adjacent elements are separated by the characters ", " (a comma followed by a space). Returns "null" if {@code a} is null.
	 * @param a the big array whose string representation to return.
	 * @return the string representation of {@code a}.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC String toString(final KEY_GENERIC_TYPE[][] a) {
		return BigArrays.toString(a);
	}


	/** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits a big array.
	 *
	 * <p>This method may be used whenever a big array range check is needed.
	 *
	 * @param a a big array.
	 * @param from a start index (inclusive).
	 * @param to an end index (inclusive).
	 * @throws IllegalArgumentException if {@code from} is greater than {@code to}.
	 * @throws ArrayIndexOutOfBoundsException if {@code from} or {@code to} are greater than the big array length or negative.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void ensureFromTo(final KEY_GENERIC_TYPE[][] a, final long from, final long to) {
		BigArrays.ensureFromTo(length(a), from, to);
	}

	/** Ensures that a range given by an offset and a length fits a big array.
	 *
	 * <p>This method may be used whenever a big array range check is needed.
	 *
	 * @param a a big array.
	 * @param offset a start index.
	 * @param length a length (the number of elements in the range).
	 * @throws IllegalArgumentException if {@code length} is negative.
	 * @throws ArrayIndexOutOfBoundsException if {@code offset} is negative or {@code offset}+{@code length} is greater than the big array length.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void ensureOffsetLength(final KEY_GENERIC_TYPE[][] a, final long offset, final long length) {
		BigArrays.ensureOffsetLength(length(a), offset, length);
	}

	/** Ensures that two big arrays are of the same length.
	 *
	 * @param a a big array.
	 * @param b another big array.
	 * @throws IllegalArgumentException if the two argument arrays are not of the same length.
	 * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}.
	 */
	@Deprecated
	public static KEY_GENERIC void ensureSameLength(final KEY_GENERIC_TYPE[][] a, final KEY_GENERIC_TYPE[][] b) {
		if (length(a) != length(b)) throw new IllegalArgumentException("Array size mismatch: " + length(a) + " != " + length(b));
	}


	/** A type-specific content-based hash strategy for big arrays. */

	private static final class BigArrayHashStrategy KEY_GENERIC implements Hash.Strategy<KEY_GENERIC_TYPE[][]>, java.io.Serializable {
		private static final long serialVersionUID = -7046029254386353129L;

		@Override
		public int hashCode(final KEY_GENERIC_TYPE[][] o) { return java.util.Arrays.deepHashCode(o); }

		@Override
		public boolean equals(final KEY_GENERIC_TYPE[][] a, final KEY_GENERIC_TYPE[][] b) { return BIG_ARRAYS.equals(a, b); }
	}

	/** A type-specific content-based hash strategy for big arrays.
	 *
	 * <p>This hash strategy may be used in custom hash collections whenever keys are
	 * big arrays, and they must be considered equal by content. This strategy
	 * will handle {@code null} correctly, and it is serializable.
	 */

	@SuppressWarnings({"rawtypes"})
	public static final Hash.Strategy HASH_STRATEGY = new BigArrayHashStrategy();

	private static final int QUICKSORT_NO_REC = 7;
	private static final int PARALLEL_QUICKSORT_NO_FORK = 8192;
	private static final int MEDIUM = 40;

	private static ForkJoinPool getPool() {
		// Make sure to update Arrays.drv, BigArrays.drv, and src/it/unimi/dsi/fastutil/Arrays.java as well
		ForkJoinPool current = ForkJoinTask.getPool();
		return current == null ? ForkJoinPool.commonPool() : current;
	}

	private static KEY_GENERIC void swap(final KEY_GENERIC_TYPE[][] x, long a, long b, final long n) {
		for(int i = 0; i < n; i++, a++, b++) BigArrays.swap(x, a, b);
	}

	private static KEY_GENERIC long med3(final KEY_GENERIC_TYPE x[][], final long a, final long b, final long c, KEY_COMPARATOR KEY_GENERIC comp) {
		int ab = comp.compare(BigArrays.get(x, a), BigArrays.get(x, b));
		int ac = comp.compare(BigArrays.get(x, a), BigArrays.get(x, c));
		int bc = comp.compare(BigArrays.get(x, b), BigArrays.get(x, c));
		return (ab < 0 ?
			(bc < 0 ? b : ac < 0 ? c : a) :
			(bc > 0 ? b : ac > 0 ? c : a));
	}

	private static KEY_GENERIC void selectionSort(final KEY_GENERIC_TYPE[][] a, final long from, final long to, final KEY_COMPARATOR KEY_GENERIC comp) {
		for(long i = from; i < to - 1; i++) {
			long m = i;
			for(long j = i + 1; j < to; j++) if (comp.compare(BigArrays.get(a, j), BigArrays.get(a, m)) < 0) m = j;
			if (m != i) BigArrays.swap(a, i, m);
		}
	}

	/** Sorts the specified range of elements according to the order induced by the specified
	 * comparator using quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * @param x the big array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 * @param comp the comparator to determine the sorting order.
	 */
	public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[][] x, final long from, final long to, final KEY_COMPARATOR KEY_GENERIC comp) {
		final long len = to - from;

		// Selection sort on smallest arrays
		if (len < QUICKSORT_NO_REC) {
			selectionSort(x, from, to, comp);
			return;
		}

		// Choose a partition element, v
		long m = from + len / 2;	 // Small arrays, middle element
		if (len > QUICKSORT_NO_REC) {
			long l = from;
			long n = to - 1;
			if (len > MEDIUM) {		// Big arrays, pseudomedian of 9
				long s = len / 8;
				l = med3(x, l, l + s, l + 2 * s, comp);
				m = med3(x, m - s, m, m + s, comp);
				n = med3(x, n - 2 * s, n - s, n, comp);
			}
			m = med3(x, l, m, n, comp); // Mid-size, med of 3
		}

		final KEY_GENERIC_TYPE v = BigArrays.get(x, m);

		// Establish Invariant: v* (<v)* (>v)* v*
		long a = from, b = a, c = to - 1, d = c;
		while(true) {
			int comparison;
			while (b <= c && (comparison = comp.compare(BigArrays.get(x, b), v)) <= 0) {
				if (comparison == 0) BigArrays.swap(x, a++, b);
				b++;
			}
			while (c >= b && (comparison = comp.compare(BigArrays.get(x, c), v)) >=0) {
				if (comparison == 0) BigArrays.swap(x, c, d--);
				c--;
			}
			if (b > c) break;
			BigArrays.swap(x, b++, c--);
		}

		// Swap partition elements back to middle
		long s, n = to;
		s = Math.min(a - from, b - a);
		swap(x, from, b - s, s);
		s = Math.min(d - c, n - d- 1);
		swap(x, b, n - s, s);

		// Recursively sort non-partition-elements
		if ((s = b - a) > 1) quickSort(x, from, from + s, comp);
		if ((s = d - c) > 1) quickSort(x, n - s, n, comp);

	}

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	private static KEY_GENERIC long med3(final KEY_GENERIC_TYPE x[][], final long a, final long b, final long c) {
		int ab = KEY_CMP(BigArrays.get(x, a), BigArrays.get(x, b));
		int ac = KEY_CMP(BigArrays.get(x, a), BigArrays.get(x, c));
		int bc = KEY_CMP(BigArrays.get(x, b), BigArrays.get(x, c));
		return (ab < 0 ?
			(bc < 0 ? b : ac < 0 ? c : a) :
			(bc > 0 ? b : ac > 0 ? c : a));
	}


	SUPPRESS_WARNINGS_KEY_UNCHECKED
	private static KEY_GENERIC void selectionSort(final KEY_GENERIC_TYPE[][] a, final long from, final long to) {
		for(long i = from; i < to - 1; i++) {
			long m = i;
			for(long j = i + 1; j < to; j++) if (KEY_LESS(BigArrays.get(a, j), BigArrays.get(a, m))) m = j;
			if (m != i) BigArrays.swap(a, i, m);
		}
	}

	/** Sorts the specified big array according to the order induced by the specified
	 * comparator using quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * @param x the big array to be sorted.
	 * @param comp the comparator to determine the sorting order.
	 *
	 */
	public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[][] x, final KEY_COMPARATOR KEY_GENERIC comp) {
		quickSort(x, 0, BigArrays.length(x), comp);
	}

	/** Sorts the specified range of elements according to the natural ascending order using quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * @param x the big array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 */

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[][] x, final long from, final long to) {
		final long len = to - from;

		// Selection sort on smallest arrays
		if (len < QUICKSORT_NO_REC) {
			selectionSort(x, from, to);
			return;
		}

		// Choose a partition element, v
		long m = from + len / 2;	 // Small arrays, middle element
		if (len > QUICKSORT_NO_REC) {
			long l = from;
			long n = to - 1;
			if (len > MEDIUM) {		// Big arrays, pseudomedian of 9
				long s = len / 8;
				l = med3(x, l, l + s, l + 2 * s);
				m = med3(x, m - s, m, m + s);
				n = med3(x, n - 2 * s, n - s, n);
			}
			m = med3(x, l, m, n); // Mid-size, med of 3
		}

		final KEY_GENERIC_TYPE v = BigArrays.get(x, m);

		// Establish Invariant: v* (<v)* (>v)* v*
		long a = from, b = a, c = to - 1, d = c;
		while(true) {
			int comparison;
			while (b <= c && (comparison = KEY_CMP(BigArrays.get(x, b), v)) <= 0) {
				if (comparison == 0) BigArrays.swap(x, a++, b);
				b++;
			}
			while (c >= b && (comparison = KEY_CMP(BigArrays.get(x, c), v)) >=0) {
				if (comparison == 0) BigArrays.swap(x, c, d--);
				c--;
			}
			if (b > c) break;
			BigArrays.swap(x, b++, c--);
		}

		// Swap partition elements back to middle
		long s, n = to;
		s = Math.min(a - from, b - a);
		swap(x, from, b - s, s);
		s = Math.min(d - c, n - d- 1);
		swap(x, b, n - s, s);

		// Recursively sort non-partition-elements
		if ((s = b - a) > 1) quickSort(x, from, from + s);
		if ((s = d - c) > 1) quickSort(x, n - s, n);

	}


	/** Sorts the specified big array according to the natural ascending order using quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * @param x the big array to be sorted.
	 */

	public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[][] x) {
		quickSort(x, 0, BigArrays.length(x));
	}


	protected static class ForkJoinQuickSort KEY_GENERIC extends RecursiveAction {
		private static final long serialVersionUID = 1L;
		private final long from;
		private final long to;
		private final KEY_GENERIC_TYPE[][] x;

		public ForkJoinQuickSort(final KEY_GENERIC_TYPE[][] x , final long from , final long to) {
			this.from = from;
			this.to = to;
			this.x = x;
		}

		@Override
		SUPPRESS_WARNINGS_KEY_UNCHECKED
		protected void compute() {
			final KEY_GENERIC_TYPE[][] x = this.x;
			final long len = to - from;
			if (len < PARALLEL_QUICKSORT_NO_FORK) {
				quickSort(x, from, to);
				return;
			}
			// Choose a partition element, v
			long m = from + len / 2;
			long l = from;
			long n = to - 1;
			long s = len / 8;
			l = med3(x, l, l + s, l + 2 * s);
			m = med3(x, m - s, m, m + s);
			n = med3(x, n - 2 * s, n - s, n);
			m = med3(x, l, m, n);
			final KEY_GENERIC_TYPE v = BigArrays.get(x, m);
			// Establish Invariant: v* (<v)* (>v)* v*
			long a = from, b = a, c = to - 1, d = c;
			while (true) {
				int comparison;
				while (b <= c && (comparison = KEY_CMP(BigArrays.get(x, b), v)) <= 0) {
					if (comparison == 0) BigArrays.swap(x, a++, b);
					b++;
				}
				while (c >= b && (comparison = KEY_CMP(BigArrays.get(x, c), v)) >= 0) {
					if (comparison == 0) BigArrays.swap(x, c, d--);
					c--;
				}
				if (b > c) break;
				BigArrays.swap(x, b++, c--);
			}
			// Swap partition elements back to middle
			long t;
			s = Math.min(a - from, b - a);
			swap(x, from, b - s, s);
			s = Math.min(d - c, to - d - 1);
			swap(x, b, to - s, s);
			// Recursively sort non-partition-elements
			s = b - a;
			t = d - c;
			if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, from, from + s), new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, to - t, to));
			else if (s > 1) invokeAll(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, from, from + s));
			else invokeAll(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, to - t, to));
		}
	}

	/**  Sorts the specified range of elements according to the natural ascending order using a parallel quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * @param x the big array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 */
	public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[][] x, final long from, final long to) {
		ForkJoinPool pool = getPool();
		if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSort(x, from, to);
		else {
			pool.invoke(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, from, to));
		}
	}

	/** Sorts a big array according to the natural ascending order using a parallel quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * @param x the big array to be sorted.
	 */
	public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[][] x) {
		parallelQuickSort(x, 0, BigArrays.length(x));
	}


	protected static class ForkJoinQuickSortComp KEY_GENERIC extends RecursiveAction {
		private static final long serialVersionUID = 1L;
		private final long from;
		private final long to;
		private final KEY_GENERIC_TYPE[][] x;
		private final KEY_COMPARATOR KEY_GENERIC comp;

		public ForkJoinQuickSortComp(final KEY_GENERIC_TYPE[][] x , final long from , final long to, final KEY_COMPARATOR KEY_GENERIC comp) {
			this.from = from;
			this.to = to;
			this.x = x;
			this.comp = comp;
		}

		@Override
		protected void compute() {
			final KEY_GENERIC_TYPE[][] x = this.x;
			final long len = to - from;
			if (len < PARALLEL_QUICKSORT_NO_FORK) {
				quickSort(x, from, to, comp);
				return;
			}
			// Choose a partition element, v
			long m = from + len / 2;
			long l = from;
			long n = to - 1;
			long s = len / 8;
			l = med3(x, l, l + s, l + 2 * s, comp);
			m = med3(x, m - s, m, m + s, comp);
			n = med3(x, n - 2 * s, n - s, n, comp);
			m = med3(x, l, m, n, comp);
			final KEY_GENERIC_TYPE v = BigArrays.get(x, m);
			// Establish Invariant: v* (<v)* (>v)* v*
			long a = from, b = a, c = to - 1, d = c;
			while (true) {
				int comparison;
				while (b <= c && (comparison = comp.compare(BigArrays.get(x, b), v)) <= 0) {
					if (comparison == 0) BigArrays.swap(x, a++, b);
					b++;
				}
				while (c >= b && (comparison = comp.compare(BigArrays.get(x, c), v)) >= 0) {
					if (comparison == 0) BigArrays.swap(x, c, d--);
					c--;
				}
				if (b > c) break;
				BigArrays.swap(x, b++, c--);
			}
			// Swap partition elements back to middle
			long t;
			s = Math.min(a - from, b - a);
			swap(x, from, b - s, s);
			s = Math.min(d - c, to - d - 1);
			swap(x, b, to - s, s);
			// Recursively sort non-partition-elements
			s = b - a;
			t = d - c;
			if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, from, from + s, comp), new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, to - t, to, comp));
			else if (s > 1) invokeAll(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, from, from + s, comp));
			else invokeAll(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, to - t, to, comp));
		}
	}

	/** Sorts the specified range of elements according to the order induced by the specified
	 * comparator using a parallel quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * @param x the big array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 * @param comp the comparator to determine the sorting order.
	 */
	public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[][] x, final long from, final long to, final KEY_COMPARATOR KEY_GENERIC comp) {
		ForkJoinPool pool = getPool();
		if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSort(x, from, to, comp);
		else {
			pool.invoke(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, from, to, comp));
		}
	}

	/** Sorts a big array according to the order induced by the specified
	 * comparator using a parallel quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * @param x the big array to be sorted.
	 * @param comp the comparator to determine the sorting order.
	 */
	public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[][] x, final KEY_COMPARATOR KEY_GENERIC comp) {
		parallelQuickSort(x, 0, BigArrays.length(x), comp);
	}


#if ! KEY_CLASS_Boolean

	/**
	 * Searches a range of the specified big array for the specified value using
	 * the binary search algorithm. The range must be sorted prior to making this call.
	 * If it is not sorted, the results are undefined. If the range contains multiple elements with
	 * the specified value, there is no guarantee which one will be found.
	 *
	 * @param a the big array to be searched.
	 * @param from  the index of the first element (inclusive) to be searched.
	 * @param to  the index of the last element (exclusive) to be searched.
	 * @param key the value to be searched for.
	 * @return index of the search key, if it is contained in the big array;
	 *             otherwise, <code>(-(<i>insertion point</i>) - 1)</code>.  The <i>insertion
	 *             point</i> is defined as the the point at which the value would
	 *             be inserted into the big array: the index of the first
	 *             element greater than the key, or the length of the big array, if all
	 *             elements in the big array are less than the specified key.  Note
	 *             that this guarantees that the return value will be &gt;= 0 if
	 *             and only if the key is found.
	 * @see java.util.Arrays
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public static KEY_GENERIC long binarySearch(final KEY_GENERIC_TYPE[][] a, long from, long to, final KEY_GENERIC_TYPE key) {
		KEY_GENERIC_TYPE midVal;
		to--;
		while (from <= to) {
			final long mid = (from + to) >>> 1;
			midVal = BigArrays.get(a, mid);
#if KEYS_PRIMITIVE
			if (midVal < key) from = mid + 1;
			else if (midVal > key) to = mid - 1;
			else return mid;
#else
			final int cmp = ((Comparable KEY_SUPER_GENERIC)midVal).compareTo(key);
			if (cmp < 0) from = mid + 1;
			else if (cmp > 0) to = mid - 1;
			else return mid;
#endif
		}
		return -(from + 1);
	}

	/**
	 * Searches a big array for the specified value using
	 * the binary search algorithm. The range must be sorted prior to making this call.
	 * If it is not sorted, the results are undefined. If the range contains multiple elements with
	 * the specified value, there is no guarantee which one will be found.
	 *
	 * @param a the big array to be searched.
	 * @param key the value to be searched for.
	 * @return index of the search key, if it is contained in the big array;
	 *             otherwise, <code>(-(<i>insertion point</i>) - 1)</code>.  The <i>insertion
	 *             point</i> is defined as the the point at which the value would
	 *             be inserted into the big array: the index of the first
	 *             element greater than the key, or the length of the big array, if all
	 *             elements in the big array are less than the specified key.  Note
	 *             that this guarantees that the return value will be &gt;= 0 if
	 *             and only if the key is found.
	 * @see java.util.Arrays
	 */
	public static KEY_GENERIC long binarySearch(final KEY_GENERIC_TYPE[][] a, final KEY_TYPE key) {
		return binarySearch(a, 0, BigArrays.length(a), key);
	}

	/**
	 * Searches a range of the specified big array for the specified value using
	 * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call.
	 * If it is not sorted, the results are undefined. If the range contains multiple elements with
	 * the specified value, there is no guarantee which one will be found.
	 *
	 * @param a the big array to be searched.
	 * @param from  the index of the first element (inclusive) to be searched.
	 * @param to  the index of the last element (exclusive) to be searched.
	 * @param key the value to be searched for.
	 * @param c a comparator.
	 * @return index of the search key, if it is contained in the big array;
	 *             otherwise, <code>(-(<i>insertion point</i>) - 1)</code>.  The <i>insertion
	 *             point</i> is defined as the the point at which the value would
	 *             be inserted into the big array: the index of the first
	 *             element greater than the key, or the length of the big array, if all
	 *             elements in the big array are less than the specified key.  Note
	 *             that this guarantees that the return value will be &gt;= 0 if
	 *             and only if the key is found.
	 * @see java.util.Arrays
	 */
	public static KEY_GENERIC long binarySearch(final KEY_GENERIC_TYPE[][] a, long from, long to, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c) {
		KEY_GENERIC_TYPE midVal;
		to--;
		while (from <= to) {
			final long mid = (from + to) >>> 1;
			midVal = BigArrays.get(a, mid);
			final int cmp = c.compare(midVal, key);
			if (cmp < 0) from = mid + 1;
			else if (cmp > 0) to = mid - 1;
			else return mid; // key found
		}
		return -(from + 1);
	}

	/**
	 * Searches a big array for the specified value using
	 * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call.
	 * If it is not sorted, the results are undefined. If the range contains multiple elements with
	 * the specified value, there is no guarantee which one will be found.
	 *
	 * @param a the big array to be searched.
	 * @param key the value to be searched for.
	 * @param c a comparator.
	 * @return index of the search key, if it is contained in the big array;
	 *             otherwise, <code>(-(<i>insertion point</i>) - 1)</code>.  The <i>insertion
	 *             point</i> is defined as the the point at which the value would
	 *             be inserted into the big array: the index of the first
	 *             element greater than the key, or the length of the big array, if all
	 *             elements in the big array are less than the specified key.  Note
	 *             that this guarantees that the return value will be &gt;= 0 if
	 *             and only if the key is found.
	 * @see java.util.Arrays
	 */
	public static KEY_GENERIC long binarySearch(final KEY_GENERIC_TYPE[][] a, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c) {
		return binarySearch(a, 0, BigArrays.length(a), key, c);
	}


#if KEYS_PRIMITIVE
	/** The size of a digit used during radix sort (must be a power of 2). */
	private static final int DIGIT_BITS = 8;
	/** The mask to extract a digit of {@link #DIGIT_BITS} bits. */
	private static final int DIGIT_MASK = (1 << DIGIT_BITS) - 1;
	/** The number of digits per element. */
	private static final int DIGITS_PER_ELEMENT = KEY_CLASS.SIZE / DIGIT_BITS;

	/** This method fixes negative numbers so that the combination exponent/significand is lexicographically sorted. */
#if KEY_CLASS_Double
	private static final long fixDouble(final double d) {
		final long l = Double.doubleToRawLongBits(d);
		return l >= 0 ? l : l ^ 0x7FFFFFFFFFFFFFFFL;
	}
#elif KEY_CLASS_Float
	private static final int fixFloat(final float f) {
		final int i = Float.floatToRawIntBits(f);
		return i >= 0 ? i : i ^ 0x7FFFFFFF;
	}
#endif


	/** Sorts the specified big array using radix sort.
	 *
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * @implSpec This implementation is significantly faster than quicksort
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order.
	 * It will allocate a support array of bytes with the same number of elements as the array to be sorted.
	 *
	 * @param a the big array to be sorted.
	 */
	public static void radixSort(final KEY_TYPE[][] a) {
		radixSort(a, 0, BigArrays.length(a));
	}

	/** Sorts the specified big array using radix sort.
	 *
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * @implSpec This implementation is significantly faster than quicksort
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order.
	 * It will allocate a support array of bytes with the same number of elements as the array to be sorted.
	 *
	 * @param a the big array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 */
	public static void radixSort(final KEY_TYPE[][] a, final long from, final long to) {
		final int maxLevel = DIGITS_PER_ELEMENT - 1;

		final int stackSize = ((1 << DIGIT_BITS) - 1) * (DIGITS_PER_ELEMENT - 1) + 1;
		final long[] offsetStack = new long[stackSize];
		int offsetPos = 0;
		final long[] lengthStack = new long[stackSize];
		int lengthPos = 0;
		final int[] levelStack = new int[stackSize];
		int levelPos = 0;

		offsetStack[offsetPos++] = from;
		lengthStack[lengthPos++] = to - from;
		levelStack[levelPos++] = 0;

		final long[] count = new long[1 << DIGIT_BITS];
		final long[] pos = new long[1 << DIGIT_BITS];
		final byte[][] digit = ByteBigArrays.newBigArray(to - from);

		while(offsetPos > 0) {
			final long first = offsetStack[--offsetPos];
			final long length = lengthStack[--lengthPos];
			final int level = levelStack[--levelPos];
#if KEY_CLASS_Character
			final int signMask = 0;
#else
			final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif

			if (length < MEDIUM) {
				selectionSort(a, first, first + length);
				continue;
			}

			final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key

			// Count keys.

			for(long i = length; i-- != 0;) BigArrays.set(digit, i, (byte)(((KEY2LEXINT(BigArrays.get(a, first + i)) >>> shift) & DIGIT_MASK) ^ signMask));
			for(long i = length; i-- != 0;) count[BigArrays.get(digit, i) & 0xFF]++;
			// Compute cumulative distribution and push non-singleton keys on stack.
			int lastUsed = -1;

			long p = 0;
			for(int i = 0; i < 1 << DIGIT_BITS; i++) {
				if (count[i] != 0) {
					lastUsed = i;
					if (level < maxLevel && count[i] > 1){
						//System.err.println(" Pushing " + new StackEntry(first + pos[i - 1], first + pos[i], level + 1));
						offsetStack[offsetPos++] = p + first;
						lengthStack[lengthPos++] = count[i];
						levelStack[levelPos++] = level + 1;
					}
				}
				pos[i] = (p += count[i]);
			}

			// When all slots are OK, the last slot is necessarily OK.
			final long end = length - count[lastUsed];
			count[lastUsed] = 0;

			// i moves through the start of each block
			int c = -1;
			for(long i = 0, d; i < end; i += count[c], count[c] = 0) {
				KEY_TYPE t = BigArrays.get(a, i +first);
				c = BigArrays.get(digit, i) & 0xFF;
				while((d = --pos[c]) > i) {
					final KEY_TYPE z = t;
					final int zz = c;
					t = BigArrays.get(a, d + first);
					c = BigArrays.get(digit, d) & 0xFF;
					BigArrays.set(a, d + first, z);
					BigArrays.set(digit, d, (byte)zz);
				}

				BigArrays.set(a, i + first, t);
			}
		}
	}


	private static void selectionSort(final KEY_TYPE[][] a, final KEY_TYPE[][] b, final long from, final long to) {
		for(long i = from; i < to - 1; i++) {
			long m = i;
			for(long j = i + 1; j < to; j++)
				if (KEY_LESS(BigArrays.get(a, j), BigArrays.get(a, m)) || KEY_CMP_EQ(BigArrays.get(a, j), BigArrays.get(a, m)) && KEY_LESS(BigArrays.get(b, j), BigArrays.get(b, m))) m = j;

			if (m != i) {
				KEY_TYPE t = BigArrays.get(a, i);
				BigArrays.set(a, i, BigArrays.get(a, m));
				BigArrays.set(a, m, t);
				t = BigArrays.get(b, i);
				BigArrays.set(b, i, BigArrays.get(b, m));
				BigArrays.set(b, m, t);
			}
		}
	}

	/** Sorts the specified pair of big arrays lexicographically using radix sort.
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implements a <em>lexicographical</em> sorting of the arguments. Pairs of elements
	 * in the same position in the two provided arrays will be considered a single key, and permuted
	 * accordingly. In the end, either {@code a[i] &lt; a[i + 1]} or {@code a[i] == a[i + 1]} and {@code b[i] &lt;= b[i + 1]}.
	 *
	 * @implSpec This implementation is significantly faster than quicksort
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
	 *
	 * @param a the first big array to be sorted.
	 * @param b the second big array to be sorted.
	 */

	public static void radixSort(final KEY_TYPE[][] a, final KEY_TYPE[][] b) {
		radixSort(a, b, 0, BigArrays.length(a));
	}

	/** Sorts the specified pair of big arrays lexicographically using radix sort.
	 *
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993),
	 * and further improved using the digit-oracle idea described by
	 * Juha K&auml;rkk&auml;inen and Tommi Rantala in &ldquo;Engineering radix sort for strings&rdquo;,
	 * <i>String Processing and Information Retrieval, 15th International Symposium</i>, volume 5280 of
	 * Lecture Notes in Computer Science, pages 3&minus;14, Springer (2008).
	 *
	 * <p>This method implements a <em>lexicographical</em> sorting of the arguments. Pairs of elements
	 * in the same position in the two provided arrays will be considered a single key, and permuted
	 * accordingly. In the end, either {@code a[i] &lt; a[i + 1]} or {@code a[i] == a[i + 1]} and {@code b[i] &lt;= b[i + 1]}.
	 *
	 * @implSpec This implementation is significantly faster than quicksort
	 * already at small sizes (say, more than 10000 elements), but it can only
	 * sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted.
	 *
	 * @param a the first big array to be sorted.
	 * @param b the second big array to be sorted.
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 */
	public static void radixSort(final KEY_TYPE[][] a, final KEY_TYPE[][] b, final long from, final long to) {
		final int layers = 2;
		if (BigArrays.length(a) != BigArrays.length(b)) throw new IllegalArgumentException("Array size mismatch.");
		final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;

		final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1;
		final long[] offsetStack = new long[stackSize];
		int offsetPos = 0;
		final long[] lengthStack = new long[stackSize];
		int lengthPos = 0;
		final int[] levelStack = new int[stackSize];
		int levelPos = 0;

		offsetStack[offsetPos++] = from;
		lengthStack[lengthPos++] = to - from;
		levelStack[levelPos++] = 0;

		final long[] count = new long[1 << DIGIT_BITS];
		final long[] pos = new long[1 << DIGIT_BITS];
		final byte[][] digit = ByteBigArrays.newBigArray(to - from);

		while(offsetPos > 0) {
			final long first = offsetStack[--offsetPos];
			final long length = lengthStack[--lengthPos];
			final int level = levelStack[--levelPos];
#if KEY_CLASS_Character
			final int signMask = 0;
#else
			final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif

			if (length < MEDIUM) {
				selectionSort(a, b, first, first + length);
				continue;
			}

			final KEY_TYPE[][] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array
			final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key

			// Count keys.
			for(long i = length; i-- != 0;) BigArrays.set(digit, i, (byte)(((KEY2LEXINT(BigArrays.get(k, first + i)) >>> shift) & DIGIT_MASK) ^ signMask));
			for(long i = length; i-- != 0;) count[BigArrays.get(digit, i) & 0xFF]++;
			// Compute cumulative distribution and push non-singleton keys on stack.
			int lastUsed = -1;

			long p = 0;
			for(int i = 0; i < 1 << DIGIT_BITS; i++) {
				if (count[i] != 0) {
					lastUsed = i;
					if (level < maxLevel && count[i] > 1){
						offsetStack[offsetPos++] = p + first;
						lengthStack[lengthPos++] = count[i];
						levelStack[levelPos++] = level + 1;
					}
				}
				pos[i] = (p += count[i]);
			}

			// When all slots are OK, the last slot is necessarily OK.
			final long end = length - count[lastUsed];
			count[lastUsed] = 0;

			// i moves through the start of each block
			int c = -1;
			for(long i = 0, d; i < end; i += count[c], count[c] = 0) {
				KEY_TYPE t = BigArrays.get(a, i + first);
				KEY_TYPE u = BigArrays.get(b, i + first);
				c = BigArrays.get(digit, i) & 0xFF;
				while((d = --pos[c]) > i) {
					KEY_TYPE z = t;
					final int zz = c;
					t = BigArrays.get(a, d + first);
					BigArrays.set(a, d + first, z);
					z = u;
					u = BigArrays.get(b, d + first);
					BigArrays.set(b, d + first, z);
					c = BigArrays.get(digit, d) & 0xFF;
					BigArrays.set(digit, d, (byte)zz);
				}

				BigArrays.set(a, i + first, t);
				BigArrays.set(b, i + first, u);
			}
		}
	}


	private static final int RADIXSORT_NO_REC = 1024;

	private static KEY_GENERIC void insertionSortIndirect(final long[][] perm, final KEY_TYPE[][] a, final KEY_TYPE[][] b, final long from, final long to) {
		for (long i = from; ++i < to;) {
			long t = BigArrays.get(perm, i);
			long j = i;
			for (long u = BigArrays.get(perm, j - 1); KEY_LESS(BigArrays.get(a, t), BigArrays.get(a, u)) || KEY_CMP_EQ(BigArrays.get(a, t), BigArrays.get(a, u)) && KEY_LESS(BigArrays.get(b, t), BigArrays.get(b, u)); u = BigArrays.get(perm, --j - 1)) {
				BigArrays.set(perm, j, u);
				if (from == j - 1) {
					--j;
					break;
				}
			}
			BigArrays.set(perm, j, t);
		}
	}

	/** Sorts the specified pair of arrays lexicographically using indirect radix sort.
	 *
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993).
	 *
	 * <p>This method implement an <em>indirect</em> sort. The elements of {@code perm} (which must
	 * be exactly the numbers in the interval {@code [0..length(perm))}) will be permuted so that
	 * {@code a[perm[i]] &le; a[perm[i + 1]]} or {@code a[perm[i]] == a[perm[i + 1]]} and {@code b[perm[i]] &le; b[perm[i + 1]]}.
	 *
	 * @implSpec This implementation will allocate, in the stable case, a further support array as large as {@code perm} (note that the stable
	 * version is slightly faster).
	 *
	 * @param perm a permutation array indexing {@code a}.
	 * @param a the array to be sorted.
	 * @param b the second array to be sorted.
	 * @param stable whether the sorting algorithm should be stable.
	 */
	public static void radixSortIndirect(final long[][] perm, final KEY_TYPE[][] a, final KEY_TYPE[][] b, final boolean stable) {
		ensureSameLength(a, b);
		radixSortIndirect(perm, a, b, 0, BigArrays.length(a), stable);
	}

	/** Sorts the specified pair of arrays lexicographically using indirect radix sort.
	 *
	 * <p>The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas
	 * McIlroy, &ldquo;Engineering radix sort&rdquo;, <i>Computing Systems</i>, 6(1), pages 5&minus;27 (1993).
	 *
	 * <p>This method implement an <em>indirect</em> sort. The elements of {@code perm} (which must
	 * be exactly the numbers in the interval {@code [0..length(perm))}) will be permuted so that
	 * {@code a[perm[i]] &le; a[perm[i + 1]]} or {@code a[perm[i]] == a[perm[i + 1]]} and {@code b[perm[i]] &le; b[perm[i + 1]]}.
	 *
	 * @implSpec This implementation will allocate, in the stable case, a further support array as large as {@code perm} (note that the stable
	 * version is slightly faster).
	 *
	 * @param perm a permutation array indexing {@code a}.
	 * @param a the array to be sorted.
	 * @param b the second array to be sorted.
	 * @param from the index of the first element of {@code perm} (inclusive) to be permuted.
	 * @param to the index of the last element of {@code perm} (exclusive) to be permuted.
	 * @param stable whether the sorting algorithm should be stable.
	 */
	public static void radixSortIndirect(final long[][] perm, final KEY_TYPE[][] a, final KEY_TYPE[][] b, final long from, final long to, final boolean stable) {
		if (to - from < RADIXSORT_NO_REC) {
			insertionSortIndirect(perm, a, b, from, to);
			return;
		}

		final int layers = 2;
		final int maxLevel = DIGITS_PER_ELEMENT * layers - 1;

		final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1;
		int stackPos = 0;
		final long[] offsetStack = new long[stackSize];
		final long[] lengthStack = new long[stackSize];
		final int[] levelStack = new int[stackSize];

		offsetStack[stackPos] = from;
		lengthStack[stackPos] = to - from;
		levelStack[stackPos++] = 0;

		final long[] count = new long[1 << DIGIT_BITS];
		final long[] pos = new long[1 << DIGIT_BITS];
		final long[][] support = stable ? it.unimi.dsi.fastutil.longs.LongBigArrays.newBigArray(BigArrays.length(perm)) : null;

		while(stackPos > 0) {
			final long first = offsetStack[--stackPos];
			final long length = lengthStack[stackPos];
			final int level = levelStack[stackPos];
#if KEY_CLASS_Character
			final int signMask = 0;
#else
			final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0;
#endif

			final KEY_TYPE[][] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array
			final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key

			// Count keys.
			for(long i = first + length; i-- != first;) count[INT(KEY2LEXINT(BigArrays.get(k, BigArrays.get(perm, i))) >>> shift & DIGIT_MASK ^ signMask)]++;
			// Compute cumulative distribution
			int lastUsed = -1;
			long p = stable ? 0 : first;
			for (int i = 0; i < 1 << DIGIT_BITS; i++) {
				if (count[i] != 0) lastUsed = i;
				pos[i] = (p += count[i]);
			}

			if (stable) {
				for(long i = first + length; i-- != first;) BigArrays.set(support, --pos[INT(KEY2LEXINT(BigArrays.get(k, BigArrays.get(perm, i))) >>> shift & DIGIT_MASK ^ signMask)], BigArrays.get(perm, i));
				BigArrays.copy(support, 0, perm, first, length);
				p = first;
				for(int i = 0; i < 1 << DIGIT_BITS; i++) {
					if (level < maxLevel && count[i] > 1) {
						if (count[i] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, p, p + count[i]);
						else {
							offsetStack[stackPos] = p;
							lengthStack[stackPos] = count[i];
							levelStack[stackPos++] = level + 1;
						}
					}
					p += count[i];
				}
				java.util.Arrays.fill(count, 0);
			}
			else {
				final long end = first + length - count[lastUsed];
				// i moves through the start of each block
				int c = -1;
				for(long i = first, d; i <= end; i += count[c], count[c] = 0) {
					long t = BigArrays.get(perm, i);
					c = INT(KEY2LEXINT(BigArrays.get(k, t)) >>> shift & DIGIT_MASK ^ signMask);

					if (i < end) { // When all slots are OK, the last slot is necessarily OK.
						while((d = --pos[c]) > i) {
							final long z = t;
							t = BigArrays.get(perm, d);
							BigArrays.set(perm, d, z);
							c = INT(KEY2LEXINT(BigArrays.get(k, t)) >>> shift & DIGIT_MASK ^ signMask);
						}
						BigArrays.set(perm, i, t);
					}


					if (level < maxLevel && count[c] > 1) {
						if (count[c] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, i, i + count[c]);
						else {
							offsetStack[stackPos] = i;
							lengthStack[stackPos] = count[c];
							levelStack[stackPos++] = level + 1;
						}
					}
				}
			}
		}
	}




#endif

#endif


	/** Shuffles the specified big array fragment using the specified pseudorandom number generator.
	 *
	 * @param a the big array to be shuffled.
	 * @param from the index of the first element (inclusive) to be shuffled.
	 * @param to the index of the last element (exclusive) to be shuffled.
	 * @param random a pseudorandom number generator.
	 * @return {@code a}.
	 */
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] shuffle(final KEY_GENERIC_TYPE[][] a, final long from, final long to, final Random random) {
		return BigArrays.shuffle(a, from, to, random);
	}

	/** Shuffles the specified big array using the specified pseudorandom number generator.
	 *
	 * @param a the big array to be shuffled.
	 * @param random a pseudorandom number generator.
	 * @return {@code a}.
	 */
	public static KEY_GENERIC KEY_GENERIC_TYPE[][] shuffle(final KEY_GENERIC_TYPE[][] a, final Random random) {
		return BigArrays.shuffle(a, random);
	}


#if KEY_CLASS_Integer
#ifdef TEST

	private static long seed = System.currentTimeMillis();
	private static java.util.Random r = new java.util.Random(seed);

	private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
		return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
		return r.NEXT_KEY();
#elif KEY_CLASS_Object
		return Integer.toBinaryString(r.nextInt());
#else
		return new java.io.Serializable() {};
#endif
	}

	private static Object[] k, v, nk;
	private static KEY_TYPE kt[];
	private static KEY_TYPE nkt[];
	private static BIG_ARRAY_BIG_LIST topList;

	protected static void speedTest(int n, boolean b) {}

	protected static void runTest(int n) {
		KEY_TYPE[][] a = BIG_ARRAYS.newBigArray(n);
		for(int i = 0; i < n; i++) BigArrays.set(a, i, i);
		BIG_ARRAYS.copy(a, 0, a, 1, n - 2);
		assert a[0][0] == 0;
		for(int i = 0; i < n - 2; i++) assert BigArrays.get(a, i + 1) == i;

		for(int i = 0; i < n; i++) BigArrays.set(a, i, i);
		BIG_ARRAYS.copy(a, 1, a, 0, n - 1);
		for(int i = 0; i < n - 1; i++) assert BigArrays.get(a, i) == i + 1;

		for(int i = 0; i < n; i++) BigArrays.set(a, i, i);
		KEY_TYPE[] b = new KEY_TYPE[n];
		for(int i = 0; i < n; i++) b[i] = i;

		assert equals(wrap(b), a);

		System.out.println("Test OK");
		return;

	}


	public static void main(String args[]) throws Exception {
		int n  = Integer.parseInt(args[1]);
		if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));

		try {
			if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
			else if ("test".equals(args[0])) runTest(n);
		} catch(Throwable e) {
			e.printStackTrace(System.err);
			System.err.println("seed: " + seed);
			throw e;
		}
	}

#endif
#endif

}