1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
/*
* Copyright (C) 2010-2024 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* For the sorting code:
*
* Copyright (C) 1999 CERN - European Organization for Nuclear Research.
*
* Permission to use, copy, modify, distribute and sell this software and
* its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation. CERN makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without expressed or implied warranty.
*/
package it.unimi.dsi.fastutil;
import it.unimi.dsi.fastutil.ints.IntBigArrayBigList;
import it.unimi.dsi.fastutil.longs.LongComparator;
import it.unimi.dsi.fastutil.bytes.ByteBigArrays;
import it.unimi.dsi.fastutil.booleans.BooleanBigArrays;
import it.unimi.dsi.fastutil.chars.CharBigArrays;
import it.unimi.dsi.fastutil.shorts.ShortBigArrays;
import it.unimi.dsi.fastutil.ints.IntBigArrays;
import it.unimi.dsi.fastutil.longs.LongBigArrays;
import it.unimi.dsi.fastutil.floats.FloatBigArrays;
import it.unimi.dsi.fastutil.doubles.DoubleBigArrays;
import it.unimi.dsi.fastutil.objects.ObjectBigArrays;
import it.unimi.dsi.fastutil.booleans.BooleanArrays;
import it.unimi.dsi.fastutil.bytes.ByteArrays;
import it.unimi.dsi.fastutil.chars.CharArrays;
import it.unimi.dsi.fastutil.shorts.ShortArrays;
import it.unimi.dsi.fastutil.ints.IntArrays;
import it.unimi.dsi.fastutil.longs.LongArrays;
import it.unimi.dsi.fastutil.floats.FloatArrays;
import it.unimi.dsi.fastutil.doubles.DoubleArrays;
import it.unimi.dsi.fastutil.objects.ObjectArrays;
import java.util.concurrent.atomic.AtomicIntegerArray;
import java.util.concurrent.atomic.AtomicLongArray;
import java.util.Random;
/**
* A class providing static methods and objects that do useful things with big
* arrays.
*
* <h2>Introducing big arrays</h2>
*
* <p>
* A <em>big array</em> is an array-of-arrays representation of an array. The
* length of a big array is bounded by {@link #SEGMENT_SIZE} *
* {@link Integer#MAX_VALUE} = {@value #SEGMENT_SIZE} * (2<sup>31</sup> −
* 1) rather than {@link Integer#MAX_VALUE}. The type of a big array is that of
* an array-of-arrays, so a big array of integers is of type
* {@code int[][]}. Note that {@link #SEGMENT_SIZE} has been chosen so that
* a single segment is smaller than 2<sup>31</sup> bytes independently of the
* data type. It might be enlarged in the future.
*
* <p>
* If {@code a} is a big array, {@code a[0]}, {@code a[1]},
* … are called the <em>segments</em> of the big array. All segments,
* except possibly for the last one, are of length {@link #SEGMENT_SIZE}. Given
* an index {@code i} into a big array, there is an associated
* <em>{@linkplain #segment(long) segment}</em> and an associated
* <em>{@linkplain #displacement(long)
* displacement}</em> into that segment. Access to single members happens by
* means of accessors (see, e.g., {@link #get(int[][], long)} and
* {@link #set(int[][], long, int)}), but you can also use the
* methods {@link #segment(long)}/{@link #displacement(long)} to access entries
* manually.
*
* <p>The intended usage of most of the methods of this class is that they
* will be imported statically: for example,
* <pre>
* import static it.unimi.dsi.fastutil.BigArrays.copy;
* import static it.unimi.dsi.fastutil.BigArrays.get;
* import static it.unimi.dsi.fastutil.BigArrays.length;
* import static it.unimi.dsi.fastutil.BigArrays.set;
* </pre>
*
* <p>Dynamic binding will take care of selecting the right method depending
* on the array type.
*
* <h2>Scanning big arrays</h2>
*
* <p>
* You can scan a big array using the following idiomatic form:
*
* <pre>
* for(int s = 0; s < a.length; s++) {
* final int[] t = a[s];
* final int l = t.length;
* for(int d = 0; d < l; d++) {
* do something with t[d]
* }
* }
* </pre>
*
* or using the simpler reversed version:
*
* <pre>
* for(int s = a.length; s-- != 0;) {
* final int[] t = a[s];
* for(int d = t.length; d-- != 0;) {
* do something with t[d]
* }
* }
* </pre>
* <p>
* Inside the inner loop, the original index in {@code a} can be retrieved
* using {@link #index(int, int) index(segment, displacement)}. You can also
* use an additional long to keep track of the index.
*
* <p>
* Note that caching is essential in making these loops essentially as fast as
* those scanning standard arrays (as iterations of the outer loop happen very
* rarely). Using loops of this kind is extremely faster than using a standard
* loop and accessors.
*
* <p>
* In some situations, you might want to iterate over a part of a big array
* having an offset and a length. In this case, the idiomatic loops are as
* follows:
*
* <pre>
* for(int s = segment(offset); s < segment(offset + length + SEGMENT_MASK); s++) {
* final int[] t = a[s];
* final int l = (int)Math.min(t.length, offset + length - start(s));
* for(int d = (int)Math.max(0, offset - start(s)); d < l; d++) {
* do something with t[d]
* }
* }
* </pre>
*
* or, in a reversed form,
*
* <pre>
* for(int s = segment(offset + length + SEGMENT_MASK); s-- != segment(offset);) {
* final int[] t = a[s];
* final int b = (int)Math.max(0, offset - start(s));
* for(int d = (int)Math.min(t.length, offset + length - start(s)); d-- != b ;) {
* do something with t[d]
* }
* }
* </pre>
*
* <h2>Literal big arrays</h2>
*
* <p>
* A literal big array can be easily created by using the suitable type-specific
* {@code wrap()} method (e.g., {@link BigArrays#wrap(int[])}) around a
* standard Java literal array.
*
* <h2>Atomic big arrays</h2>
*
* <p>Limited support is available for atomic big arrays of integers and longs, with a similar syntax. Atomic big arrays are
* arrays of instances of {@link java.util.concurrent.atomic.AtomicIntegerArray} or
* {@link java.util.concurrent.atomic.AtomicLongArray} of length {@link #SEGMENT_SIZE} (or less, for
* the last segment, as usual) and their size cannot be changed. Some methods from those classes are
* available in {@link BigArrays} for atomic big arrays (e.g.,
* {@link BigArrays#incrementAndGet(AtomicIntegerArray[], long)}).
*
* <h2>Big alternatives</h2>
*
* <p>
* If you find the kind of “bare hands” approach to big arrays not
* enough object-oriented, please use big lists based on big arrays (e.g.,
* {@link IntBigArrayBigList}). Big arrays follow the Java tradition of
* considering arrays as a “legal alien”—something in-between
* an object and a primitive type. This approach lacks the consistency of a full
* object-oriented approach, but provides some significant performance gains.
*
* <h2>Additional methods</h2>
*
* <p>In particular, the {@code ensureCapacity()}, {@code grow()},
* {@code trim()} and {@code setLength()} methods allow to handle
* arrays much like array lists.
*
* <p>
* In addition to commodity methods, this class contains {@link BigSwapper}-based
* implementations of
* {@linkplain #quickSort(long, long, LongComparator, BigSwapper) quicksort} and
* of a stable, in-place
* {@linkplain #mergeSort(long, long, LongComparator, BigSwapper) mergesort}.
* These generic sorting methods can be used to sort any kind of list, but they
* find their natural usage, for instance, in sorting big arrays in parallel.
*
* @see it.unimi.dsi.fastutil.Arrays
*/
public class BigArrays {
/**
* The shift used to compute the segment associated with an index
* (equivalently, the logarithm of the segment size).
*/
public static final int SEGMENT_SHIFT = 27;
/**
* The current size of a segment (2<sup>27</sup>) is the largest size that
* makes the physical memory allocation for a single segment strictly
* smaller than 2<sup>31</sup> bytes.
*/
public static final int SEGMENT_SIZE = 1 << SEGMENT_SHIFT;
/** The mask used to compute the displacement associated to an index. */
public static final int SEGMENT_MASK = SEGMENT_SIZE - 1;
protected BigArrays() {
}
/**
* Computes the segment associated with a given index.
*
* @param index
* an index into a big array.
* @return the associated segment.
*/
public static int segment(final long index) {
return (int) (index >>> SEGMENT_SHIFT);
}
/**
* Computes the displacement associated with a given index.
*
* @param index
* an index into a big array.
* @return the associated displacement (in the associated
* {@linkplain #segment(long) segment}).
*/
public static int displacement(final long index) {
return (int) (index & SEGMENT_MASK);
}
/**
* Computes the starting index of a given segment.
*
* @param segment
* the segment of a big array.
* @return the starting index of the segment.
*/
public static long start(final int segment) {
return (long) segment << SEGMENT_SHIFT;
}
/**
* Computes the nearest segment starting index of a given index.
*
* <p>This will either be {@code start(segment(index)} or {@code start(segment(index) + 1)},
* whichever is closer, given the bounds can be respected. If neither segment start is within
* the bounds, then the index is returned unmodified.
*
* <p>This method can be useful for operations that seek to align on the outer array's boundaries
* when possible.
*
* @implSpec The current implementation is branch heavy and is thus not suitable for use in
* inner loops. However, it should be fine for the recursive step, where split points are
* computed.
*
* @param index
* an index into a big array.
* @param min
* the minimum (inclusive) valid index of the big array in question
* @param max
* the maximum (exclusive) valid index of the big array in question
* @return the closest segment starting index to {@code index}
* @since 8.5.0
*/
public static long nearestSegmentStart(final long index, final long min, final long max) {
// There probably is a less branchy, bit twiddly way to do this, but this is fine for now.
// This isn't going to be used in inner loops, only the recursive call.
final long lower = start(segment(index));
final long upper = start(segment(index) + 1);
if (upper >= max) {
if (lower < min) {
return index;
}
return lower;
}
if (lower < min) return upper;
// Overflow avoiding midpoint computation
final long mid = lower + ((upper - lower) >> 1);
return index <= mid ? lower : upper;
}
/**
* Computes the index associated with given segment and displacement.
*
* @param segment
* the segment of a big array.
* @param displacement
* the displacement into the segment.
* @return the associated index: that is, {@link #segment(long)
* segment(index(segment, displacement)) == segment} and
* {@link #displacement(long) displacement(index(segment,
* displacement)) == displacement}.
*/
public static long index(final int segment, final int displacement) {
return start(segment) + displacement;
}
/**
* Ensures that a range given by its first (inclusive) and last (exclusive)
* elements fits a big array of given length.
*
* <p>
* This method may be used whenever a big array range check is needed.
*
* @param bigArrayLength
* a big-array length (must be nonnegative).
* @param from
* a start index (inclusive).
* @param to
* an end index (inclusive).
* @throws IllegalArgumentException
* if {@code from} is greater than {@code to}.
* @throws ArrayIndexOutOfBoundsException
* if {@code from} or {@code to} are greater than
* {@code bigArrayLength} or negative.
*
* @implNote An {@code assert} checks whether {@code bigArrayLength} is nonnegative.
*/
public static void ensureFromTo(final long bigArrayLength, final long from, final long to) {
assert bigArrayLength >= 0;
if (from < 0) throw new ArrayIndexOutOfBoundsException("Start index (" + from + ") is negative");
if (from > to) throw new IllegalArgumentException("Start index (" + from + ") is greater than end index (" + to + ")");
if (to > bigArrayLength) throw new ArrayIndexOutOfBoundsException("End index (" + to + ") is greater than big-array length (" + bigArrayLength + ")");
}
/**
* Ensures that a range given by an offset and a length fits a big array of
* given length.
*
* <p>
* This method may be used whenever a big array range check is needed.
*
* @param bigArrayLength
* a big-array length (must be nonnegative).
* @param offset
* a start index for the fragment
* @param length
* a length (the number of elements in the fragment).
* @throws IllegalArgumentException
* if {@code length} is negative.
* @throws ArrayIndexOutOfBoundsException
* if {@code offset} is negative or {@code offset} +
* {@code length} is greater than
* {@code bigArrayLength}.
*
* @implNote An {@code assert} checks whether {@code bigArrayLength} is nonnegative.
*/
public static void ensureOffsetLength(final long bigArrayLength, final long offset, final long length) {
assert bigArrayLength >= 0;
if (offset < 0) throw new ArrayIndexOutOfBoundsException("Offset (" + offset + ") is negative");
if (length < 0) throw new IllegalArgumentException("Length (" + length + ") is negative");
if (length > bigArrayLength - offset) throw new ArrayIndexOutOfBoundsException("Last index (" + Long.toUnsignedString(offset + length) + ") is greater than big-array length (" + bigArrayLength + ")");
}
/**
* Ensures that a big-array length is legal.
*
* @param bigArrayLength
* a big-array length.
* @throws IllegalArgumentException
* if {@code length} is negative, or larger than or equal
* to {@link #SEGMENT_SIZE} * {@link Integer#MAX_VALUE}.
*/
public static void ensureLength(final long bigArrayLength) {
if (bigArrayLength < 0) throw new IllegalArgumentException("Negative big-array size: " + bigArrayLength);
if (bigArrayLength >= (long) Integer.MAX_VALUE << SEGMENT_SHIFT) throw new IllegalArgumentException("Big-array size too big: " + bigArrayLength);
}
private static final int SMALL = 7;
private static final int MEDIUM = 40;
/**
* Transforms two consecutive sorted ranges into a single sorted range. The
* initial ranges are {@code [first, middle)} and
* {@code [middle, last)}, and the resulting range is
* {@code [first, last)}. Elements in the first input range will
* precede equal elements in the second.
*/
private static void inPlaceMerge(final long from, long mid, final long to, final LongComparator comp, final BigSwapper swapper) {
if (from >= mid || mid >= to) return;
if (to - from == 2) {
if (comp.compare(mid, from) < 0) {
swapper.swap(from, mid);
}
return;
}
long firstCut;
long secondCut;
if (mid - from > to - mid) {
firstCut = from + (mid - from) / 2;
secondCut = lowerBound(mid, to, firstCut, comp);
} else {
secondCut = mid + (to - mid) / 2;
firstCut = upperBound(from, mid, secondCut, comp);
}
long first2 = firstCut;
long middle2 = mid;
long last2 = secondCut;
if (middle2 != first2 && middle2 != last2) {
long first1 = first2;
long last1 = middle2;
while (first1 < --last1)
swapper.swap(first1++, last1);
first1 = middle2;
last1 = last2;
while (first1 < --last1)
swapper.swap(first1++, last1);
first1 = first2;
last1 = last2;
while (first1 < --last1)
swapper.swap(first1++, last1);
}
mid = firstCut + (secondCut - mid);
inPlaceMerge(from, firstCut, mid, comp, swapper);
inPlaceMerge(mid, secondCut, to, comp, swapper);
}
/**
* Performs a binary search on an already sorted range: finds the first
* position where an element can be inserted without violating the ordering.
* Sorting is by a user-supplied comparison function.
*
* @param mid
* Beginning of the range.
* @param to
* One past the end of the range.
* @param firstCut
* Element to be searched for.
* @param comp
* Comparison function.
* @return The largest index i such that, for every j in the range
* {@code [first, i)}, {@code comp.apply(array[j], x)} is
* {@code true}.
*/
private static long lowerBound(long mid, final long to, final long firstCut, final LongComparator comp) {
long len = to - mid;
while (len > 0) {
long half = len / 2;
long middle = mid + half;
if (comp.compare(middle, firstCut) < 0) {
mid = middle + 1;
len -= half + 1;
} else {
len = half;
}
}
return mid;
}
/** Returns the index of the median of three elements. */
private static long med3(final long a, final long b, final long c, final LongComparator comp) {
final int ab = comp.compare(a, b);
final int ac = comp.compare(a, c);
final int bc = comp.compare(b, c);
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a));
}
/**
* Sorts the specified range of elements using the specified big swapper and
* according to the order induced by the specified comparator using
* mergesort.
*
* <p>
* This sort is guaranteed to be <i>stable</i>: equal elements will not be
* reordered as a result of the sort. The sorting algorithm is an in-place
* mergesort that is significantly slower than a standard mergesort, as its
* running time is
* <i>O</i>(<var>n</var> (log <var>n</var>)<sup>2</sup>), but it
* does not allocate additional memory; as a result, it can be used as a
* generic sorting algorithm.
*
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
* @param comp
* the comparator to determine the order of the generic data
* (arguments are positions).
* @param swapper
* an object that knows how to swap the elements at any two
* positions.
*/
public static void mergeSort(final long from, final long to, final LongComparator comp, final BigSwapper swapper) {
final long length = to - from;
// Insertion sort on smallest arrays
if (length < SMALL) {
for (long i = from; i < to; i++) {
for (long j = i; j > from && (comp.compare(j - 1, j) > 0); j--) {
swapper.swap(j, j - 1);
}
}
return;
}
// Recursively sort halves
long mid = (from + to) >>> 1;
mergeSort(from, mid, comp, swapper);
mergeSort(mid, to, comp, swapper);
// If list is already sorted, nothing left to do. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (comp.compare(mid - 1, mid) <= 0) return;
// Merge sorted halves
inPlaceMerge(from, mid, to, comp, swapper);
}
/**
* Sorts the specified range of elements using the specified big swapper and
* according to the order induced by the specified comparator using
* quicksort.
*
* <p>
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* <i>Software: Practice and Experience</i>, 23(11), pages 1249−1265,
* 1993.
*
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
* @param comp
* the comparator to determine the order of the generic data.
* @param swapper
* an object that knows how to swap the elements at any two
* positions.
*/
public static void quickSort(final long from, final long to, final LongComparator comp, final BigSwapper swapper) {
final long len = to - from;
// Insertion sort on smallest arrays
if (len < SMALL) {
for (long i = from; i < to; i++)
for (long j = i; j > from && (comp.compare(j - 1, j) > 0); j--) {
swapper.swap(j, j - 1);
}
return;
}
// Choose a partition element, v
long m = from + len / 2; // Small arrays, middle element
if (len > SMALL) {
long l = from, n = to - 1;
if (len > MEDIUM) { // Big arrays, pseudomedian of 9
long s = len / 8;
l = med3(l, l + s, l + 2 * s, comp);
m = med3(m - s, m, m + s, comp);
n = med3(n - 2 * s, n - s, n, comp);
}
m = med3(l, m, n, comp); // Mid-size, med of 3
}
// long v = x[m];
long a = from, b = a, c = to - 1, d = c;
// Establish Invariant: v* (<v)* (>v)* v*
while (true) {
int comparison;
while (b <= c && ((comparison = comp.compare(b, m)) <= 0)) {
if (comparison == 0) {
if (a == m) m = b; // moving target; DELTA to JDK !!!
else if (b == m) m = a; // moving target; DELTA to JDK !!!
swapper.swap(a++, b);
}
b++;
}
while (c >= b && ((comparison = comp.compare(c, m)) >= 0)) {
if (comparison == 0) {
if (c == m) m = d; // moving target; DELTA to JDK !!!
else if (d == m) m = c; // moving target; DELTA to JDK !!!
swapper.swap(c, d--);
}
c--;
}
if (b > c) break;
if (b == m) m = d; // moving target; DELTA to JDK !!!
else if (c == m) m = c; // moving target; DELTA to JDK !!!
swapper.swap(b++, c--);
}
// Swap partition elements back to middle
long s;
long n = from + len;
s = Math.min(a - from, b - a);
vecSwap(swapper, from, b - s, s);
s = Math.min(d - c, n - d - 1);
vecSwap(swapper, b, n - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1) quickSort(from, from + s, comp, swapper);
if ((s = d - c) > 1) quickSort(n - s, n, comp, swapper);
}
/**
* Performs a binary search on an already-sorted range: finds the last
* position where an element can be inserted without violating the ordering.
* Sorting is by a user-supplied comparison function.
*
* @param from
* Beginning of the range.
* @param mid
* One past the end of the range.
* @param secondCut
* Element to be searched for.
* @param comp
* Comparison function.
* @return The largest index i such that, for every j in the range
* {@code [first, i)}, {@code comp.apply(x, array[j])} is
* {@code false}.
*/
private static long upperBound(long from, final long mid, final long secondCut, final LongComparator comp) {
long len = mid - from;
while (len > 0) {
long half = len / 2;
long middle = from + half;
if (comp.compare(secondCut, middle) < 0) {
len = half;
} else {
from = middle + 1;
len -= half + 1;
}
}
return from;
}
/** Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */
private static void vecSwap(final BigSwapper swapper, long from, long l, final long s) {
for (int i = 0; i < s; i++, from++, l++)
swapper.swap(from, l);
}
#include "src/it/unimi/dsi/fastutil/ByteBigArraysFragment.h"
#undef KEY_CLASS_Byte
#include "src/it/unimi/dsi/fastutil/IntBigArraysFragment.h"
#undef KEY_CLASS_Integer
#include "src/it/unimi/dsi/fastutil/LongBigArraysFragment.h"
#undef KEY_CLASS_Long
#include "src/it/unimi/dsi/fastutil/DoubleBigArraysFragment.h"
#undef KEY_CLASS_Double
#include "src/it/unimi/dsi/fastutil/BooleanBigArraysFragment.h"
#undef KEY_CLASS_Boolean
#include "src/it/unimi/dsi/fastutil/ShortBigArraysFragment.h"
#undef KEY_CLASS_Short
#include "src/it/unimi/dsi/fastutil/CharBigArraysFragment.h"
#undef KEY_CLASS_Character
#include "src/it/unimi/dsi/fastutil/FloatBigArraysFragment.h"
#undef KEY_CLASS_Float
#undef KEYS_PRIMITIVE
#include "src/it/unimi/dsi/fastutil/ObjectBigArraysFragment.h"
public static void main(final String arg[]) {
int[][] a = IntBigArrays.newBigArray(1L << Integer.parseInt(arg[0]));
long x, y, z, start;
for (int k = 10; k-- != 0;) {
start = -System.currentTimeMillis();
x = 0;
for (long i = length(a); i-- != 0;)
x ^= i ^ get(a, i);
if (x == 0) System.err.println();
System.out.println("Single loop: " + (start + System.currentTimeMillis()) + "ms");
start = -System.currentTimeMillis();
y = 0;
for (int i = a.length; i-- != 0;) {
final int[] t = a[i];
for (int d = t.length; d-- != 0;)
y ^= t[d] ^ index(i, d);
}
if (y == 0) System.err.println();
if (x != y) throw new AssertionError();
System.out.println("Double loop: " + (start + System.currentTimeMillis()) + "ms");
z = 0;
long j = length(a);
for (int i = a.length; i-- != 0;) {
final int[] t = a[i];
for (int d = t.length; d-- != 0;)
y ^= t[d] ^ --j;
}
if (z == 0) System.err.println();
if (x != z) throw new AssertionError();
System.out.println("Double loop (with additional index): " + (start + System.currentTimeMillis()) + "ms");
}
}
}
|