File: HeapPriorityQueue.drv

package info (click to toggle)
libfastutil-java 8.5.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,076 kB
  • sloc: java: 19,670; sh: 1,188; makefile: 473; xml: 354
file content (503 lines) | stat: -rw-r--r-- 17,487 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*
 * Copyright (C) 2003-2024 Paolo Boldi and Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

#if KEY_CLASS_Object
import java.util.Arrays;
import java.util.Comparator;

import it.unimi.dsi.fastutil.PriorityQueue;
#else
import java.util.Iterator;
#endif

import java.util.Collection;
import java.util.NoSuchElementException;


/** A type-specific heap-based priority queue.
 *
 * <p>Instances of this class represent a priority queue using a heap. The heap is enlarged as needed, but
 * it is never shrunk. Use the {@link #trim()} method to reduce its size, if necessary.
 */

public class HEAP_PRIORITY_QUEUE KEY_GENERIC implements PRIORITY_QUEUE KEY_GENERIC, java.io.Serializable {
	private static final long serialVersionUID = 1L;

	/** The heap array. */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	protected transient KEY_GENERIC_TYPE[] heap = KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY;

	/** The number of elements in this queue. */
	protected int size;

	/** The type-specific comparator used in this queue. */
	protected KEY_COMPARATOR KEY_SUPER_GENERIC c;

	/** Creates a new empty queue with a given capacity and comparator.
	 *
	 * @param capacity the initial capacity of this queue.
	 * @param c the comparator used in this queue, or {@code null} for the natural order.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public HEAP_PRIORITY_QUEUE(int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c) {
		if (capacity > 0) this.heap = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[capacity];
		this.c = c;
	}

	/** Creates a new empty queue with a given capacity and using the natural order.
	 *
	 * @param capacity the initial capacity of this queue.
	 */
	public HEAP_PRIORITY_QUEUE(int capacity) {
		this(capacity, null);
	}

	/** Creates a new empty queue with a given comparator.
	 *
	 * @param c the comparator used in this queue, or {@code null} for the natural order.
	 */
	public HEAP_PRIORITY_QUEUE(KEY_COMPARATOR KEY_SUPER_GENERIC c) {
		this(0, c);
	}

	/** Creates a new empty queue using the natural order.
	 */
	public HEAP_PRIORITY_QUEUE() {
		this(0, null);
	}

	/** Wraps a given array in a queue using a given comparator.
	 *
	 * <p>The queue returned by this method will be backed by the given array.
	 * The first {@code size} element of the array will be rearranged so to form a heap (this is
	 * more efficient than enqueing the elements of {@code a} one by one).
	 *
	 * @param a an array.
	 * @param size the number of elements to be included in the queue.
	 * @param c the comparator used in this queue, or {@code null} for the natural order.
	 */
	public HEAP_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
		this(c);
		this.heap = a;
		this.size = size;
		HEAPS.makeHeap(a, size, c);
	}


	/** Wraps a given array in a queue using a given comparator.
	 *
	 * <p>The queue returned by this method will be backed by the given array.
	 * The elements of the array will be rearranged so to form a heap (this is
	 * more efficient than enqueing the elements of {@code a} one by one).
	 *
	 * @param a an array.
	 * @param c the comparator used in this queue, or {@code null} for the natural order.
	 */
	public HEAP_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
		this(a, a.length, c);
	}

	/** Wraps a given array in a queue using the natural order.
	 *
	 * <p>The queue returned by this method will be backed by the given array.
	 * The first {@code size} element of the array will be rearranged so to form a heap (this is
	 * more efficient than enqueing the elements of {@code a} one by one).
	 *
	 * @param a an array.
	 * @param size the number of elements to be included in the queue.
	 */
	public HEAP_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] a, int size) {
		this(a, size, null);
	}


	/** Wraps a given array in a queue using the natural order.
	 *
	 * <p>The queue returned by this method will be backed by the given array.
	 * The elements of the array will be rearranged so to form a heap (this is
	 * more efficient than enqueing the elements of {@code a} one by one).
	 *
	 * @param a an array.
	 */
	public HEAP_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] a) {
		this(a, a.length);
	}

#if KEYS_PRIMITIVE

	/** Creates a queue using the elements in a type-specific collection using a given comparator.
	 *
	 * <p>This constructor is more efficient than enqueing the elements of {@code collection} one by one.
	 *
	 * @param collection a collection; its elements will be used to initialize the queue.
	 * @param c the comparator used in this queue, or {@code null} for the natural order.
	 */
	public HEAP_PRIORITY_QUEUE(final COLLECTION KEY_EXTENDS_GENERIC collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
		this(collection.TO_KEY_ARRAY(), c);
	}

	/** Creates a queue using the elements in a type-specific collection using the natural order.
	 *
	 * <p>This constructor is
	 * more efficient than enqueing the elements of {@code collection} one by one.
	 *
	 * @param collection a collection; its elements will be used to initialize the queue.
	 */
	public HEAP_PRIORITY_QUEUE(final COLLECTION KEY_EXTENDS_GENERIC collection) {
		this(collection, null);
	}

	/** Creates a queue using the elements in a collection using a given comparator.
	 *
	 * <p>This constructor is more efficient than enqueing the elements of {@code collection} one by one.
	 *
	 * @param collection a collection; its elements will be used to initialize the queue.
	 * @param c the comparator used in this queue, or {@code null} for the natural order.
	 */
	public HEAP_PRIORITY_QUEUE(final Collection<? extends KEY_GENERIC_CLASS> collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
		this(collection.size(), c);
		final Iterator<? extends KEY_GENERIC_CLASS> iterator = collection.iterator();
		final int size = collection.size();
		for(int i = 0 ; i < size; i++) heap[i] = KEY_OBJ2TYPE(iterator.next());
	}

	/** Creates a queue using the elements in a collection using the natural order.
	 *
	 * <p>This constructor is
	 * more efficient than enqueing the elements of {@code collection} one by one.
	 *
	 * @param collection a collection; its elements will be used to initialize the queue.
	 */
	public HEAP_PRIORITY_QUEUE(final Collection<? extends KEY_GENERIC_CLASS> collection) {
		this(collection, null);
	}
#else
	/** Creates a queue using the elements in a collection using a given comparator.
	 *
	 * <p>This constructor is more efficient than enqueing the elements of {@code collection} one by one.
	 *
	 * @param collection a collection; its elements will be used to initialize the queue.
	 * @param c the comparator used in this queue, or {@code null} for the natural order.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public HEAP_PRIORITY_QUEUE(final Collection<? extends KEY_GENERIC_CLASS> collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
		this(KEY_GENERIC_ARRAY_CAST collection.toArray(), c);
	}

	/** Creates a queue using the elements in a collection using the natural order.
	 *
	 * <p>This constructor is
	 * more efficient than enqueing the elements of {@code collection} one by one.
	 *
	 * @param collection a collection; its elements will be used to initialize the queue.
	 */
	public HEAP_PRIORITY_QUEUE(final Collection<? extends KEY_GENERIC_CLASS> collection) {
		this(collection, null);
	}
#endif

	@Override
		public void enqueue(KEY_GENERIC_TYPE x) {
		if (size == heap.length) heap = ARRAYS.grow(heap, size + 1);

		heap[size++] = x;
		HEAPS.upHeap(heap, size, size - 1, c);
	}

	@Override
	public KEY_GENERIC_TYPE DEQUEUE() {
		if (size == 0) throw new NoSuchElementException();

		final KEY_GENERIC_TYPE result = heap[0];
		heap[0] = heap[--size];
#if KEY_CLASS_Object
		heap[size] = null;
#endif
		if (size != 0) HEAPS.downHeap(heap, size, 0, c);
		return result;
	}

	@Override
	public KEY_GENERIC_TYPE FIRST() {
		if (size == 0) throw new NoSuchElementException();
		return heap[0];
	}

	@Override
	public void changed() {
		HEAPS.downHeap(heap, size, 0, c);
	}

	@Override
	public int size() { return size; }

	@Override
	public void clear() {
#if KEY_CLASS_Object
		Arrays.fill(heap, 0, size, null);
#endif
		size = 0;
	}

	/** Trims the underlying heap array so that it has exactly {@link #size()} elements. */

	public void trim() {
		heap = ARRAYS.trim(heap, size);
	}

	@Override
	public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return c; }

	private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
		s.defaultWriteObject();
		s.writeInt(heap.length);
		final KEY_GENERIC_TYPE[] heap = this.heap;
		for(int i = 0; i < size; i++) s.WRITE_KEY(heap[i]);
	}

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
		s.defaultReadObject();
		final KEY_GENERIC_TYPE[] heap = this.heap = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[s.readInt()];
		for(int i = 0; i < size; i++) heap[i] = KEY_GENERIC_CAST s.READ_KEY();
	}


#ifdef TEST

	private static long seed = System.currentTimeMillis();
	private static java.util.Random r = new java.util.Random(seed);

	private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
		return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
		return r.NEXT_KEY();
#elif KEY_CLASS_Object
		return Integer.toBinaryString(r.nextInt());
#else
		return new java.io.Serializable() {};
#endif
	}

	private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
	private static java.text.FieldPosition p = new java.text.FieldPosition(0);

	private static String format(double d) {
		StringBuffer s = new StringBuffer();
		return format.format(d, s, p).toString();
	}

	private static void speedTest(int n, boolean comp) {
		System.out.println("There are presently no speed tests for this class.");
	}


	private static void fatal(String msg) {
		throw new AssertionError(msg);
	}

	private static void ensure(boolean cond, String msg) {
		if (cond) return;
		fatal(msg);
	}

	private static boolean heapEqual(KEY_TYPE[] a, KEY_TYPE[] b, int sizea, int sizeb) {
		if (sizea != sizeb) return false;
		KEY_TYPE[] aa = (KEY_TYPE[])a.clone();
		KEY_TYPE[] bb = (KEY_TYPE[])b.clone();
		java.util.Arrays.sort(aa, 0, sizea);
		java.util.Arrays.sort(bb, 0, sizeb);
		while(sizea-- != 0) if (! KEY_EQUALS(aa[sizea], bb[sizea])) return false;
		return true;
	}

	private static KEY_TYPE k[];

	protected static void runTest(int n) throws Exception {
		long ms;
		Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement;
		KEY_TYPE rm = KEY_NULL, rt = KEY_NULL;
		k = new KEY_TYPE[n];

		for(int i = 0; i < n; i++) k[i] = genKey();

		HEAP_PRIORITY_QUEUE m = new HEAP_PRIORITY_QUEUE(COMPARATORS.NATURAL_COMPARATOR);
		ARRAY_PRIORITY_QUEUE t = new ARRAY_PRIORITY_QUEUE(COMPARATORS.NATURAL_COMPARATOR);

		/* We add pairs to t. */
		for(int i = 0; i < n / 2;  i++) {
			t.enqueue(k[i]);
			m.enqueue(k[i]);
		}

		ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")");

		if (m.size() != 0) {
			ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after creation (" + m.FIRST() + ", " + t.FIRST() + ")");
		}

		/* Now we add and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<2*n;  i++) {

			if (r.nextDouble() < 0.01) {
				t.clear();
				m.clear();
				for(int j = 0; j < n / 2;  j++) {
					t.enqueue(k[j]);
					m.enqueue(k[j]);
				}
			}

			KEY_TYPE T = genKey();

			mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;

			try {
				m.enqueue(T);
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			catch (IllegalArgumentException e) { mThrowsIllegal = e; }

			try {
				t.enqueue(T);
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
			catch (IllegalArgumentException e) { tThrowsIllegal = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");

			ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")");

			if (m.size() != 0) {
				ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.FIRST() + ", " + t.FIRST() + ")");
			}

			mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;

			try {
				rm = m.DEQUEUE();
			}
			catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
			catch (IllegalArgumentException e) { mThrowsIllegal = e; }
			catch (NoSuchElementException e) { mThrowsNoElement = e; }

			try {
				rt = t.DEQUEUE();
			}
			catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
			catch (IllegalArgumentException e) { tThrowsIllegal = e; }
			catch (NoSuchElementException e) { tThrowsNoElement = e; }

			ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
			ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException  (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");
			ensure((mThrowsNoElement == null) == (tThrowsNoElement == null), "Error (" + seed + "): dequeue() divergence in NoSuchElementException  (" + mThrowsNoElement + ", " + tThrowsNoElement + ")");
			if (mThrowsOutOfBounds == null) ensure(KEY_EQUALS(rt, rm) , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")");


			ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")");

			if (m.size() != 0) {
				ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.FIRST() + ", " + t.FIRST() + ")");
			}

			/* Now we save and read m. */

			{
				java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test");
				java.io.OutputStream os = new java.io.FileOutputStream(ff);
				java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);

				oos.writeObject(m);
				oos.close();

				java.io.InputStream is = new java.io.FileInputStream(ff);
				java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);

				m = (HEAP_PRIORITY_QUEUE)ois.readObject();
				ois.close();
				ff.delete();
			}

			ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after save/read");

			HEAP_PRIORITY_QUEUE m2 = new HEAP_PRIORITY_QUEUE(t.array, t.size());
			ARRAY_PRIORITY_QUEUE t2 = new ARRAY_PRIORITY_QUEUE(m.heap, m.size());
			m = m2;
			t = t2;

			ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after wrap (" + m + ", " + t + ")");

			if (m.size() != 0) {
				ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after wrap (" + m.FIRST() + ", " + t.FIRST() + ")");
			}

			if (m.size() != 0 && ((new OPEN_HASH_SET(m.heap, 0, m.size)).size() == m.size())) {

				int j = t.size(), M = --j;
#if KEYS_PRIMITIVE
				while(j-- != 0) if (KEY_LESS(t.array[j], t.array[M])) M = j;
#else
				while(j-- != 0) if (((Comparable)t.array[j]).compareTo(t.array[M])< 0) M = j;
#endif

				m.heap[0] = t.array[M] = genKey();

				m.changed();
				t.changed();

				ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")");

				if (m.size() != 0) {
					ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after change (" + m.FIRST() + ", " + t.FIRST() + ")");
				}
			}
		}


		/* Now we check that m actually holds the same data. */

		m.clear();
		ensure(m.isEmpty(), "Error (" + seed + "): m is not empty after clear()");

		System.out.println("Test OK");
	}



	public static void main(String args[]) throws Exception {
		int n  = Integer.parseInt(args[1]);
		if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));


		try {
			if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
			else if ("test".equals(args[0])) runTest(n);
		} catch(Throwable e) {
			e.printStackTrace(System.err);
			System.err.println("seed: " + seed);
			throw e;
		}
	}

#endif

}