1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
|
/*
* Copyright (C) 2002-2024 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
#if KEYS_REFERENCE
import java.util.function.Consumer;
#ifndef Custom
import java.util.stream.Collector;
#endif
#endif
#ifdef Linked
#if KEYS_REFERENCE
import java.util.Comparator;
#endif
/** A type-specific linked hash set with with a fast, small-footprint implementation.
*
* <p>Instances of this class use a hash table to represent a set. The table is
* filled up to a specified <em>load factor</em>, and then doubled in size to
* accommodate new entries. If the table is emptied below <em>one fourth</em>
* of the load factor, it is halved in size; however, the table is never reduced to a
* size smaller than that at creation time: this approach makes it
* possible to create sets with a large capacity in which insertions and
* deletions do not cause immediately rehashing. Moreover, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
* <p>Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* <p>Iterators generated by this set will enumerate elements in the same order in which they
* have been added to the set (addition of elements already present
* in the set does not change the iteration order). Note that this order has nothing in common with the natural
* order of the keys. The order is kept by means of a doubly linked list, represented
* <i>via</i> an array of longs parallel to the table.
*
* <p>This class implements the interface of a sorted set, so to allow easy
* access of the iteration order: for instance, you can get the first element
* in iteration order with {@code first()} without having to create an
* iterator; however, this class partially violates the {@link java.util.SortedSet}
* contract because all subset methods throw an exception and {@link
* #comparator()} returns always {@code null}.
*
* <p>Additional methods, such as {@code addAndMoveToFirst()}, make it easy
* to use instances of this class as a cache (e.g., with LRU policy).
*
* <p>The iterators provided by this class are type-specific {@linkplain
* java.util.ListIterator list iterators}, and can be started at any
* element <em>which is in the set</em> (if the provided element
* is not in the set, a {@link NoSuchElementException} exception will be thrown).
* If, however, the provided element is not the first or last element in the
* set, the first access to the list index will require linear time, as in the worst case
* the entire set must be scanned in iteration order to retrieve the positional
* index of the starting element. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator},
* however, all operations will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SORTED_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
#ifdef Custom
/** A type-specific hash set with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy}
* is specified at creation time.
*
* <p>Instances of this class use a hash table to represent a set. The table is
* filled up to a specified <em>load factor</em>, and then doubled in size to
* accommodate new entries. If the table is emptied below <em>one fourth</em>
* of the load factor, it is halved in size; however, the table is never reduced to a
* size smaller than that at creation time: this approach makes it
* possible to create sets with a large capacity in which insertions and
* deletions do not cause immediately rehashing. Moreover, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
* <p>Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
/** A type-specific hash set with with a fast, small-footprint implementation.
*
* <p>Instances of this class use a hash table to represent a set. The table is
* filled up to a specified <em>load factor</em>, and then doubled in size to
* accommodate new entries. If the table is emptied below <em>one fourth</em>
* of the load factor, it is halved in size; however, the table is never reduced to a
* size smaller than that at creation time: this approach makes it
* possible to create sets with a large capacity in which insertions and
* deletions do not cause immediately rehashing. Moreover, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
* <p>Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash {
#endif
#endif
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = ASSERTS_VALUE;
/** The array of keys. */
protected transient KEY_GENERIC_TYPE[] key;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this set contains the null key. */
protected transient boolean containsNull;
#ifdef Custom
/** The hash strategy of this custom set. */
protected STRATEGY KEY_SUPER_GENERIC strategy;
#endif
#ifdef Linked
/** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int first = -1;
/** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int last = -1;
/** For each entry, the next and the previous entry in iteration order,
* stored as {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}.
* The first entry contains predecessor -1, and the last entry
* contains successor -1. */
protected transient long[] link;
#endif
/** The current table size. Note that an additional element is allocated for storing the null key. */
protected transient int n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** We never resize below this threshold, which is the construction-time {#n}. */
protected final transient int minN;
/** Number of entries in the set (including the null key, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
#ifdef Custom
/** Creates a new hash set.
*
* <p>The actual table size will be the least power of two greater than {@code expected}/{@code f}.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_SET(final int expected, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this.strategy = strategy;
#else
/** Creates a new hash set.
*
* <p>The actual table size will be the least power of two greater than {@code expected}/{@code f}.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_SET(final int expected, final float f) {
#endif
if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1");
if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative");
this.f = f;
minN = n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1];
#ifdef Linked
link = new long[n + 1];
#endif
}
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final int expected, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(expected, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash set.
*/
public OPEN_HASH_SET(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final STRATEGY KEY_SUPER_GENERIC strategy) {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public OPEN_HASH_SET() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final Collection<? extends KEY_GENERIC_CLASS> c, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(c.size(), f, strategy);
addAll(c);
}
#else
/** Creates a new hash set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final Collection<? extends KEY_GENERIC_CLASS> c, final float f) {
this(c.size(), f);
addAll(c);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final Collection<? extends KEY_GENERIC_CLASS> c, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(c, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
*/
public OPEN_HASH_SET(final Collection<? extends KEY_GENERIC_CLASS> c) {
this(c, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final float f, STRATEGY KEY_SUPER_GENERIC strategy) {
this(c.size(), f, strategy);
addAll(c);
}
#else
/** Creates a new hash set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final float f) {
this(c.size(), f);
addAll(c);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(c, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
*/
public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c) {
this(c, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(DEFAULT_INITIAL_SIZE, f, strategy);
while(i.hasNext()) add(i.NEXT_KEY());
}
#else
/** Creates a new hash set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f) {
this(DEFAULT_INITIAL_SIZE, f);
while(i.hasNext()) add(i.NEXT_KEY());
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(i, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
*/
public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
this(i, DEFAULT_LOAD_FACTOR);
}
#endif
#if KEYS_PRIMITIVE
#ifdef Custom
/** Creates a new hash set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final Iterator<?> i, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(ITERATORS.AS_KEY_ITERATOR(i), f, strategy);
}
#else
/** Creates a new hash set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final Iterator<?> i, final float f) {
this(ITERATORS.AS_KEY_ITERATOR(i), f);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final Iterator<?> i, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(ITERATORS.AS_KEY_ITERATOR(i), strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
*/
public OPEN_HASH_SET(final Iterator<?> i) {
this(ITERATORS.AS_KEY_ITERATOR(i));
}
#endif
#endif
#ifdef Custom
/** Creates a new hash set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(length < 0 ? 0 : length, f, strategy);
ARRAYS.ensureOffsetLength(a, offset, length);
for(int i = 0; i < length; i++) add(a[offset + i]);
}
#else
/** Creates a new hash set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f) {
this(length < 0 ? 0 : length, f);
ARRAYS.ensureOffsetLength(a, offset, length);
for(int i = 0; i < length; i++) add(a[offset + i]);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(a, offset, length, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length) {
this(a, offset, length, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(a, 0, a.length, f, strategy);
}
#else
/** Creates a new hash set copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final float f) {
this(a, 0, a.length, f);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(a, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a) {
this(a, DEFAULT_LOAD_FACTOR);
}
/** Creates a new empty hash set.
*
* @return a new empty hash set.
*/
public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of() {
return new OPEN_HASH_SET KEY_GENERIC_DIAMOND();
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* using the given element.
*
* @param e the element that the returned set will contain.
* @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e}.
*/
public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of(final KEY_GENERIC_TYPE e) {
OPEN_HASH_SET KEY_GENERIC result = new OPEN_HASH_SET KEY_GENERIC_DIAMOND(1, DEFAULT_LOAD_FACTOR);
result.add(e);
return result;
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* using the elements given.
*
* @param e0 the first element.
* @param e1 the second element.
* @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e0} and {@code e1}.
* @throws IllegalArgumentException if there were duplicate entries.
*/
public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of(final KEY_GENERIC_TYPE e0, final KEY_GENERIC_TYPE e1) {
OPEN_HASH_SET KEY_GENERIC result = new OPEN_HASH_SET KEY_GENERIC_DIAMOND(2, DEFAULT_LOAD_FACTOR);
result.add(e0);
if (!result.add(e1)) {
throw new IllegalArgumentException("Duplicate element: " + e1);
}
return result;
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* using the elements given.
*
* @param e0 the first element.
* @param e1 the second element.
* @param e2 the third element.
* @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e0}, {@code e1}, and {@code e2}.
* @throws IllegalArgumentException if there were duplicate entries.
*/
public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of(final KEY_GENERIC_TYPE e0, final KEY_GENERIC_TYPE e1, final KEY_GENERIC_TYPE e2) {
OPEN_HASH_SET KEY_GENERIC result = new OPEN_HASH_SET KEY_GENERIC_DIAMOND(3, DEFAULT_LOAD_FACTOR);
result.add(e0);
if (!result.add(e1)) {
throw new IllegalArgumentException("Duplicate element: " + e1);
}
if (!result.add(e2)) {
throw new IllegalArgumentException("Duplicate element: " + e2);
}
return result;
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* using a list of elements.
*
* @param a a list of elements that will be used to initialize the new hash set.
* @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing the elements of {@code a}.
* @throws IllegalArgumentException if a duplicate entry was encountered.
*/
SAFE_VARARGS
public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of(final KEY_GENERIC_TYPE... a) {
OPEN_HASH_SET KEY_GENERIC result = new OPEN_HASH_SET KEY_GENERIC_DIAMOND(a.length, DEFAULT_LOAD_FACTOR);
for (KEY_GENERIC_TYPE element : a) {
if (!result.add(element)) {
throw new IllegalArgumentException("Duplicate element " + element);
}
}
return result;
}
#endif
#ifndef Custom
#if KEYS_INT_LONG_DOUBLE
/** Collects the result of a primitive {@code Stream} into a new hash set.
*
* <p>This method performs a terminal operation on the given {@code Stream}
*
* @apiNote Taking a primitive stream instead of returning something like a
* {@link java.util.stream.Collector Collector} is necessary because there is no
* primitive {@code Collector} equivalent in the Java API.
*/
public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC toSet(JDK_PRIMITIVE_STREAM stream) {
return stream.collect(
OPEN_HASH_SET::new,
OPEN_HASH_SET::add,
OPEN_HASH_SET::addAll);
}
/** Collects the result of a primitive {@code Stream} into a new hash set, potentially pre-allocated to handle the given size.
*
* <p>This method performs a terminal operation on the given {@code Stream}
*
* @apiNote Taking a primitive stream instead returning something like a
* {@link java.util.stream.Collector Collector} is necessary because there is no
* primitive {@code Collector} equivalent in the Java API.
*/
public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC toSetWithExpectedSize(JDK_PRIMITIVE_STREAM stream, int expectedSize) {
if (expectedSize <= Hash.DEFAULT_INITIAL_SIZE) {
// Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier
return toSet(stream);
}
return stream.collect(
new COLLECTIONS.SizeDecreasingSupplier<
#if KEYS_REFERENCE
K,
#endif
OPEN_HASH_SET KEY_GENERIC>(
expectedSize, (int size) ->
size <= Hash.DEFAULT_INITIAL_SIZE ? new OPEN_HASH_SET KEY_GENERIC() : new OPEN_HASH_SET KEY_GENERIC(size)),
OPEN_HASH_SET::add,
OPEN_HASH_SET::addAll);
}
#elif KEYS_REFERENCE
// Collector wants a function that returns the collection being added to.
private OPEN_HASH_SET KEY_GENERIC combine(OPEN_HASH_SET KEY_EXTENDS_GENERIC toAddFrom) {
addAll(toAddFrom);
return this;
}
private static final Collector<KEY_TYPE, ?, OPEN_HASH_SET<KEY_TYPE>> TO_SET_COLLECTOR =
Collector.of(
OPEN_HASH_SET::new,
OPEN_HASH_SET::add,
OPEN_HASH_SET::combine
#ifndef Linked
, Collector.Characteristics.UNORDERED
#endif
);
/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new hash set. */
SUPPRESS_WARNINGS_KEY_UNCHECKED_RAWTYPES
public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, OPEN_HASH_SET KEY_GENERIC> toSet() {
return (Collector) TO_SET_COLLECTOR;
}
/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new hash set, potentially pre-allocated to handle the given size. */
public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, OPEN_HASH_SET KEY_GENERIC> toSetWithExpectedSize(int expectedSize) {
if (expectedSize <= Hash.DEFAULT_INITIAL_SIZE) {
// Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier
return toSet();
}
return Collector.of(
new COLLECTIONS.SizeDecreasingSupplier<
#if KEYS_REFERENCE
K,
#endif
OPEN_HASH_SET KEY_GENERIC>(
expectedSize, (int size) ->
size <= Hash.DEFAULT_INITIAL_SIZE ? new OPEN_HASH_SET KEY_GENERIC() : new OPEN_HASH_SET KEY_GENERIC(size)),
OPEN_HASH_SET::add,
OPEN_HASH_SET::combine
#ifndef Linked
, Collector.Characteristics.UNORDERED
#endif
);
}
#endif
#endif
#ifdef Custom
/** Returns the hashing strategy.
*
* @return the hashing strategy of this custom hash set.
*/
public STRATEGY KEY_SUPER_GENERIC strategy() {
return strategy;
}
#endif
private int realSize() {
return containsNull ? size - 1 : size;
}
/** Ensures that this set can hold a certain number of elements without rehashing.
*
* @param capacity a number of elements; there will be no rehashing unless
* the set {@linkplain #size() size} exceeds this number.
*/
public void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n) rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f))));
if (needed > n) rehash(needed);
}
#if KEYS_PRIMITIVE
@Override
public boolean addAll(COLLECTION c) {
if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements
else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements
return super.addAll(c);
}
#endif
@Override
public boolean addAll(Collection<? extends KEY_GENERIC_CLASS> c) {
// The resulting collection will be at least c.size() big
if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements
else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements
return super.addAll(c);
}
@Override
public boolean add(final KEY_GENERIC_TYPE k) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNull) return false;
#ifdef Linked
pos = n;
#endif
containsNull = true;
#ifdef Custom
key[n] = k;
#endif
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) {
if (KEY_EQUALS_NOT_NULL(curr, k)) return false;
while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask]))
if (KEY_EQUALS_NOT_NULL(curr, k)) return false;
}
key[pos] = k;
}
#ifdef Linked
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_NEXT(link[last], pos);
SET_UPPER_LOWER(link[pos], last, -1);
last = pos;
}
#endif
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
return true;
}
#if KEY_CLASS_Object
/** Add a random element if not present, get the existing value if already present.
*
* This is equivalent to (but faster than) doing a:
* <pre>
* K exist = set.get(k);
* if (exist == null) {
* set.add(k);
* exist = k;
* }
* </pre>
*/
public KEY_GENERIC_TYPE addOrGet(final KEY_GENERIC_TYPE k) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNull) return key [n];
#ifdef Linked
pos = n;
#endif
containsNull = true;
#ifdef Custom
key [n] = k;
#endif
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) {
if (KEY_EQUALS_NOT_NULL(curr, k)) return curr;
while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask]))
if (KEY_EQUALS_NOT_NULL(curr, k)) return curr;
}
key[pos] = k;
}
#ifdef Linked
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_NEXT(link[last], pos);
SET_UPPER_LOWER(link[pos], last, -1);
last = pos;
}
#endif
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
return k;
}
#endif
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
for(;;) {
pos = ((last = pos) + 1) & mask;
for(;;) {
if (KEY_IS_NULL(curr = key[pos])) {
key[last] = KEY_NULL;
return;
}
slot = KEY2INTHASH(curr) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
#ifdef Linked
fixPointers(pos, last);
#endif
}
}
private boolean removeEntry(final int pos) {
size--;
#ifdef Linked
fixPointers(pos);
#endif
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return true;
}
private boolean removeNullEntry() {
containsNull = false;
key[n] = KEY_NULL;
size--;
#ifdef Linked
fixPointers(n);
#endif
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return true;
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public boolean remove(final KEY_TYPE k) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) {
if (containsNull) return removeNullEntry();
return false;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos);
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos);
}
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public boolean contains(final KEY_TYPE k) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return containsNull;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true;
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true;
}
}
#if KEY_CLASS_Object
/** Returns the element of this set that is equal to the given key, or {@code null}.
* @return the element of this set that is equal to the given key, or {@code null}.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public K get(final Object k) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return key[n]; // This is correct independently of the value of containsNull and of the set being custom
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return null;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return curr;
// There's always an unused entry.
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return null;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return curr;
}
}
#endif
#ifdef Linked
/** Removes the first key in iteration order.
* @return the first key.
* @throws NoSuchElementException is this set is empty.
*/
public KEY_GENERIC_TYPE REMOVE_FIRST_KEY() {
if (size == 0) throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
if (size == 1) first = last = -1;
else {
first = GET_NEXT(link[pos]);
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
}
final KEY_GENERIC_TYPE k = key[pos];
size--;
if (KEY_EQUALS_NULL(k)) {
containsNull = false;
key[n] = KEY_NULL;
}
else shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return k;
}
/** Removes the the last key in iteration order.
* @return the last key.
* @throws NoSuchElementException is this set is empty.
*/
public KEY_GENERIC_TYPE REMOVE_LAST_KEY() {
if (size == 0) throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
if (size == 1) first = last = -1;
else {
last = GET_PREV(link[pos]);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
}
final KEY_GENERIC_TYPE k = key[pos];
size--;
if (KEY_EQUALS_NULL(k)) {
containsNull = false;
key[n] = KEY_NULL;
}
else shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return k;
}
private void moveIndexToFirst(final int i) {
if (size == 1 || first == i) return;
if (last == i) {
last = GET_PREV(link[i]);
// Special case of SET_NEXT(link[last], -1);
link[last] |= -1 & 0xFFFFFFFFL;
}
else {
final long linki = link[i];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[prev], linki);
COPY_PREV(link[next], linki);
}
SET_PREV(link[first], i);
SET_UPPER_LOWER(link[i], -1, first);
first = i;
}
private void moveIndexToLast(final int i) {
if (size == 1 || last == i) return;
if (first == i) {
first = GET_NEXT(link[i]);
// Special case of SET_PREV(link[first], -1);
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
else {
final long linki = link[i];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[prev], linki);
COPY_PREV(link[next], linki);
}
SET_NEXT(link[last], i);
SET_UPPER_LOWER(link[i], last, -1);
last = i;
}
/** Adds a key to the set; if the key is already present, it is moved to the first position of the iteration order.
*
* @param k the key.
* @return true if the key was not present.
*/
public boolean addAndMoveToFirst(final KEY_GENERIC_TYPE k) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNull) {
moveIndexToFirst(n);
return false;
}
containsNull = true;
pos = n;
}
else {
// The starting point.
final KEY_GENERIC_TYPE key[] = this.key;
pos = KEY2INTHASH(k) & mask;
// There's always an unused entry. TODO
while(! KEY_IS_NULL(key[pos])) {
if (KEY_EQUALS_NOT_NULL(k, key[pos])) {
moveIndexToFirst(pos);
return false;
}
pos = (pos + 1) & mask;
}
}
key[pos] = k;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_PREV(link[first], pos);
SET_UPPER_LOWER(link[pos], -1, first);
first = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return true;
}
/** Adds a key to the set; if the key is already present, it is moved to the last position of the iteration order.
*
* @param k the key.
* @return true if the key was not present.
*/
public boolean addAndMoveToLast(final KEY_GENERIC_TYPE k) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNull) {
moveIndexToLast(n);
return false;
}
containsNull = true;
pos = n;
}
else {
// The starting point.
final KEY_GENERIC_TYPE key[] = this.key;
pos = KEY2INTHASH(k) & mask;
// There's always an unused entry.
while(! KEY_IS_NULL(key[pos])) {
if (KEY_EQUALS_NOT_NULL(k, key[pos])) {
moveIndexToLast(pos);
return false;
}
pos = (pos + 1) & mask;
}
}
key[pos] = k;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_NEXT(link[last], pos);
SET_UPPER_LOWER(link[pos], last, -1);
last = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return true;
}
#endif
/* Removes all elements from this set.
*
* <p>To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*
*/
@Override
public void clear() {
if (size == 0) return;
size = 0;
containsNull = false;
Arrays.fill(key, KEY_NULL);
#ifdef Linked
first = last = -1;
#endif
}
@Override
public int size() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
#ifdef Linked
/** Modifies the {@link #link} vector so that the given entry is removed.
* This method will complete in constant time.
*
* @param i the index of an entry.
*/
protected void fixPointers(final int i) {
if (size == 0) {
first = last = -1;
return;
}
if (first == i) {
first = GET_NEXT(link[i]);
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if (last == i) {
last = GET_PREV(link[i]);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[i];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[prev], linki);
COPY_PREV(link[next], linki);
}
/** Modifies the {@link #link} vector for a shift from s to d.
* This method will complete in constant time.
*
* @param s the source position.
* @param d the destination position.
*/
protected void fixPointers(int s, int d) {
if (size == 1) {
first = last = d;
// Special case of SET(link[d], -1, -1)
link[d] = -1L;
return;
}
if (first == s) {
first = d;
SET_PREV(link[GET_NEXT(link[s])], d);
link[d] = link[s];
return;
}
if (last == s) {
last = d;
SET_NEXT(link[GET_PREV(link[s])], d);
link[d] = link[s];
return;
}
final long links = link[s];
final int prev = GET_PREV(links);
final int next = GET_NEXT(links);
SET_NEXT(link[prev], d);
SET_PREV(link[next], d);
link[d] = links;
}
/** Returns the first element of this set in iteration order.
*
* @return the first element in iteration order.
*/
@Override
public KEY_GENERIC_TYPE FIRST() {
if (size == 0) throw new NoSuchElementException();
return key[first];
}
/** Returns the last element of this set in iteration order.
*
* @return the last element in iteration order.
*/
@Override
public KEY_GENERIC_TYPE LAST() {
if (size == 0) throw new NoSuchElementException();
return key[last];
}
/** {@inheritDoc}
* @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/
@Override
public SORTED_SET KEY_GENERIC tailSet(KEY_GENERIC_TYPE from) { throw new UnsupportedOperationException(); }
/** {@inheritDoc}
* @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/
@Override
public SORTED_SET KEY_GENERIC headSet(KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); }
/** {@inheritDoc}
* @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/
@Override
public SORTED_SET KEY_GENERIC subSet(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); }
/** {@inheritDoc}
* @implSpec This implementation just returns {@code null}.*/
@Override
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; }
/** A list iterator over a linked set.
*
* <p>This class provides a list iterator over a linked hash set. The constructor runs in constant time.
*/
private final class SetIterator implements KEY_LIST_ITERATOR KEY_GENERIC {
/** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */
int prev = -1;
/** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */
int next = -1;
/** The last entry that was returned (or -1 if we did not iterate or used {@link #remove()}). */
int curr = -1;
/** The current index (in the sense of a {@link java.util.ListIterator}). When -1, we do not know the current index.*/
int index = -1;
SetIterator() {
next = first;
index = 0;
}
SetIterator(KEY_GENERIC_TYPE from) {
if (KEY_EQUALS_NULL(from)) {
if (OPEN_HASH_SET.this.containsNull) {
next = GET_NEXT(link[n]);
prev = n;
return;
}
else throw new NoSuchElementException("The key " + from + " does not belong to this set.");
}
if (KEY_EQUALS(key[last], from)) {
prev = last;
index = size;
return;
}
// The starting point.
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
int pos = KEY2INTHASH(from) & mask;
// There's always an unused entry.
while(! KEY_IS_NULL(key[pos])) {
if (KEY_EQUALS_NOT_NULL(key[pos], from)) {
// Note: no valid index known.
next = GET_NEXT(link[pos]);
prev = pos;
return;
}
pos = (pos + 1) & mask;
}
throw new NoSuchElementException("The key " + from + " does not belong to this set.");
}
@Override
public boolean hasNext() { return next != -1; }
@Override
public boolean hasPrevious() { return prev != -1; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() {
if (! hasNext()) throw new NoSuchElementException();
curr = next;
next = GET_NEXT(link[curr]);
prev = curr;
if (index >= 0) index++;
if (ASSERTS) assert curr == n || ! KEY_IS_NULL(key[curr]) : "Position " + curr + " is not used";
return key[curr];
}
@Override
public KEY_GENERIC_TYPE PREV_KEY() {
if (! hasPrevious()) throw new NoSuchElementException();
curr = prev;
prev = GET_PREV(link[curr]);
next = curr;
if (index >= 0) index--;
return key[curr];
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
final long link[] = OPEN_HASH_SET.this.link;
while (next != -1) {
curr = next;
next = GET_NEXT(link[curr]);
prev = curr;
if (index >= 0) index++;
if (ASSERTS) assert curr == n || ! KEY_IS_NULL(key[curr]) : "Position " + curr + " is not used";
action.accept(key[curr]);
}
}
private final void ensureIndexKnown() {
if (index >= 0) return;
if (prev == -1) {
index = 0;
return;
}
if (next == -1) {
index = size;
return;
}
int pos = first;
index = 1;
while(pos != prev) {
pos = GET_NEXT(link[pos]);
index++;
}
}
@Override
public int nextIndex() {
ensureIndexKnown();
return index;
}
@Override
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
@Override
public void remove() {
ensureIndexKnown();
if (curr == -1) throw new IllegalStateException();
if (curr == prev) {
/* If the last operation was a next(), we are removing an entry that preceeds
* the current index, and thus we must decrement it. */
index--;
prev = GET_PREV(link[curr]);
}
else
next = GET_NEXT(link[curr]);
size--;
/* Now we manually fix the pointers. Because of our knowledge of next
* and prev, this is going to be faster than calling fixPointers(). */
if (prev == -1) first = next;
else
SET_NEXT(link[prev], next);
if (next == -1) last = prev;
else
SET_PREV(link[next], prev);
int last, slot, pos = curr;
curr = -1;
if (pos == n) {
OPEN_HASH_SET.this.containsNull = false;
OPEN_HASH_SET.this.key[n] = KEY_NULL;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key;
// We have to horribly duplicate the shiftKeys() code because we need to update next/prev.
for(;;) {
pos = ((last = pos) + 1) & mask;
for(;;) {
if (KEY_IS_NULL(curr = key[pos])) {
key[last] = KEY_NULL;
return;
}
slot = KEY2INTHASH(curr) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
if (next == pos) next = last;
if (prev == pos) prev = last;
fixPointers(pos, last);
}
}
}
}
/** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set.
* Please see the class documentation for implementation details.
*
* @param from an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException if {@code from} does not belong to the set.
*/
@Override
public KEY_LIST_ITERATOR KEY_GENERIC iterator(KEY_GENERIC_TYPE from) {
return new SetIterator(from);
}
/** Returns a type-specific list iterator on the elements in this set, starting from the first element.
* Please see the class documentation for implementation details.
*
* @return a type-specific list iterator starting at the first element.
*/
@Override
public KEY_LIST_ITERATOR KEY_GENERIC iterator() {
return new SetIterator();
}
private static final int SPLITERATOR_CHARACTERISTICS = SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED;
/** {@inheritDoc}
*
* <p>There isn't a way to split efficiently while still preserving order for a linked data structure,
* so this implementation is just backed by the iterator. Thus, this spliterator is not well optimized
* for parallel streams.
*
* <p>Note, contrary to the specification of {@link java.util.SortedSet}, this spliterator does not,
* report {@link java.util.Spliterator#SORTED}. This is because iteration order is based on insertion
* order, not natural ordering.
*/
@Override
public KEY_SPLITERATOR KEY_GENERIC spliterator() {
return SPLITERATORS.asSpliterator(
iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(this), SPLITERATOR_CHARACTERISTICS);
}
@Override
public void forEach(final METHOD_ARG_KEY_CONSUMER action) {
int curr;
int next = first;
while (next != -1) {
curr = next;
next = GET_NEXT(link[curr]);
if (ASSERTS) assert curr == n || ! KEY_IS_NULL(key[curr]) : "Position " + curr + " is not used";
action.accept(key[curr]);
}
}
#else
/** An iterator over a hash set. */
private final class SetIterator implements KEY_ITERATOR KEY_GENERIC {
/** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last
element returned was that of index {@code - pos - 1} from the {@link #wrapped} list. */
int pos = n;
/** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive,
or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either
we did not return an entry yet, or the last returned entry has been removed. */
int last = -1;
/** A downward counter measuring how many entries must still be returned. */
int c = size;
/** A boolean telling us whether we should return the null key. */
boolean mustReturnNull = OPEN_HASH_SET.this.containsNull;
/** A lazily allocated list containing elements that have wrapped around the table because of removals. */
ARRAY_LIST KEY_GENERIC wrapped;
@Override
public boolean hasNext() {
return c != 0;
}
@Override
public KEY_GENERIC_TYPE NEXT_KEY() {
if (! hasNext()) throw new NoSuchElementException();
c--;
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
if (mustReturnNull) {
mustReturnNull = false;
last = n;
return key[n];
}
for(;;) {
if (--pos < 0) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
return wrapped.GET_KEY(- pos - 1);
}
if (! KEY_IS_NULL(key[pos])) return key[last = pos];
}
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
private final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key;
for(;;) {
pos = ((last = pos) + 1) & mask;
for(;;) {
if (KEY_IS_NULL(curr = key[pos])) {
key[last] = KEY_NULL;
return;
}
slot = KEY2INTHASH(curr) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
if (pos < last) { // Wrapped entry.
if (wrapped == null) wrapped = new ARRAY_LIST KEY_GENERIC_DIAMOND(2);
wrapped.add(key[pos]);
}
key[last] = curr;
}
}
@Override
public void remove() {
if (last == -1) throw new IllegalStateException();
if (last == n) {
OPEN_HASH_SET.this.containsNull = false;
OPEN_HASH_SET.this.key[n] = KEY_NULL;
}
else if (pos >= 0) shiftKeys(last);
else {
// We're removing wrapped entries.
#if KEYS_REFERENCE
OPEN_HASH_SET.this.remove(wrapped.set(- pos - 1, null));
#else
OPEN_HASH_SET.this.remove(wrapped.GET_KEY(- pos - 1));
#endif
last = -1; // Note that we must not decrement size
return;
}
size--;
last = -1; // You can no longer remove this entry.
if (ASSERTS) checkTable();
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
if (mustReturnNull) {
mustReturnNull = false;
last = n;
action.accept(key[n]);
c--;
}
while(c != 0) {
if (--pos < 0) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
action.accept(wrapped.GET_KEY(- pos - 1));
c--;
} else if (! KEY_IS_NULL(key[pos])) {
action.accept(key[last = pos]);
c--;
}
}
}
}
@Override
public KEY_ITERATOR KEY_GENERIC iterator() {
return new SetIterator();
}
private final class SetSpliterator implements KEY_SPLITERATOR KEY_GENERIC {
private static final int POST_SPLIT_CHARACTERISTICS = SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED;
/** The index (which bucket) of the next item to give to the action.
* Unlike {@link SetIterator}, this counts up instead of down.
*/
int pos = 0;
/** The maximum bucket (exclusive) to iterate to */
int max = n;
/** An upwards counter counting how many we have given */
int c = 0;
/** A boolean telling us whether we should return the null key. */
boolean mustReturnNull = OPEN_HASH_SET.this.containsNull;
boolean hasSplit = false;
SetSpliterator() {}
SetSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) {
this.pos = pos;
this.max = max;
this.mustReturnNull = mustReturnNull;
this.hasSplit = hasSplit;
}
@Override
public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
if (mustReturnNull) {
mustReturnNull = false;
++c;
action.accept(key[n]);
return true;
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
while (pos < max) {
if (! KEY_IS_NULL(key[pos])) {
++c;
action.accept(key[pos++]);
return true;
} else {
++pos;
}
}
return false;
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
if (mustReturnNull) {
mustReturnNull = false;
action.accept(key[n]);
++c;
}
while (pos < max) {
if (! KEY_IS_NULL(key[pos])) {
action.accept(key[pos]);
++c;
}
++pos;
}
}
@Override
public int characteristics() {
return hasSplit ? POST_SPLIT_CHARACTERISTICS : SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS;
}
@Override
public long estimateSize() {
if (!hasSplit) {
// Root spliterator; we know how many are remaining.
return size - c;
} else {
// After we split, we can no longer know exactly how many we have (or at least not efficiently).
// (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good estimate.
return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0));
}
}
@Override
public SetSpliterator trySplit() {
if (pos >= max - 1) return null;
int retLen = (max - pos) >> 1;
if (retLen <= 1) return null;
int myNewPos = pos + retLen;
int retPos = pos;
int retMax = myNewPos;
// Since null is returned first, and the convention is that the returned split is the prefix of elements,
// the split will take care of returning null (if needed), and we won't return it anymore.
SetSpliterator split = new SetSpliterator(retPos, retMax, mustReturnNull, true);
this.pos = myNewPos;
this.mustReturnNull = false;
this.hasSplit = true;
return split;
}
@Override
public long skip(long n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
if (n == 0) return 0;
long skipped = 0;
if (mustReturnNull) {
mustReturnNull = false;
++skipped;
--n;
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
while (pos < max && n > 0) {
if (! KEY_IS_NULL(key[pos++])) {
++skipped;
--n;
}
}
return skipped;
}
}
@Override
public KEY_SPLITERATOR KEY_GENERIC spliterator() {
return new SetSpliterator();
}
@Override
public void forEach(final METHOD_ARG_KEY_CONSUMER action) {
final KEY_GENERIC_TYPE key[] = this.key;
if (containsNull) action.accept(key[n]);
for(int pos = n; pos-- != 0; ) if (! KEY_IS_NULL(key[pos])) action.accept(key[pos]);
}
#endif
/** Rehashes this set, making the table as small as possible.
*
* <p>This method rehashes the table to the smallest size satisfying the
* load factor. It can be used when the set will not be changed anymore, so
* to optimize access speed and size.
*
* <p>If the table size is already the minimum possible, this method
* does nothing.
*
* @return true if there was enough memory to trim the set.
* @see #trim(int)
*/
public boolean trim() {
return trim(size);
}
/** Rehashes this set if the table is too large.
*
* <p>Let <var>N</var> be the smallest table size that can hold
* <code>max(n,{@link #size()})</code> entries, still satisfying the load factor. If the current
* table size is smaller than or equal to <var>N</var>, this method does
* nothing. Otherwise, it rehashes this set in a table of size
* <var>N</var>.
*
* <p>This method is useful when reusing sets. {@linkplain #clear() Clearing a
* set} leaves the table size untouched. If you are reusing a set
* many times, you can call this method with a typical
* size to avoid keeping around a very large table just
* because of a few large transient sets.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the set.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f));
if (l >= this.n || size > maxFill(l, f)) return true;
try {
rehash(l);
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes the set.
*
* <p>This method implements the basic rehashing strategy, and may be
* overriden by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newN the new size
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
protected void rehash(final int newN) {
final KEY_GENERIC_TYPE key[] = this.key;
final int mask = newN - 1; // Note that this is used by the hashing macro
final KEY_GENERIC_TYPE newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[newN + 1];
#ifdef Linked
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[newN + 1];
first = -1;
for(int j = size; j-- != 0;) {
if (KEY_EQUALS_NULL(key[i])) pos = newN;
else {
pos = KEY2INTHASH(key[i]) & mask;
while (! KEY_IS_NULL(newKey[pos])) pos = (pos + 1) & mask;
}
newKey[pos] = key[i];
if (prev != -1) {
SET_NEXT(newLink[newPrev], pos);
SET_PREV(newLink[pos], newPrev);
newPrev = pos;
}
else {
newPrev = first = pos;
// Special case of SET(newLink[pos], -1, -1);
newLink[pos] = -1L;
}
t = i;
i = GET_NEXT(link[i]);
prev = t;
}
this.link = newLink;
this.last = newPrev;
if (newPrev != -1)
// Special case of SET_NEXT(newLink[newPrev], -1);
newLink[newPrev] |= -1 & 0xFFFFFFFFL;
#else
int i = n, pos;
for(int j = realSize(); j-- != 0;) {
while(KEY_IS_NULL(key[--i]));
if (! KEY_IS_NULL(newKey[pos = KEY2INTHASH(key[i]) & mask]))
while (! KEY_IS_NULL(newKey[pos = (pos + 1) & mask]));
newKey[pos] = key[i];
}
#endif
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
}
/** Returns a deep copy of this set.
*
* <p>This method performs a deep copy of this hash set; the data stored in the
* set, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this set.
*/
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_SET KEY_GENERIC clone() {
OPEN_HASH_SET KEY_GENERIC c;
try {
c = (OPEN_HASH_SET KEY_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.key = key.clone();
c.containsNull = containsNull;
#ifdef Linked
c.link = link.clone();
#endif
#ifdef Custom
c.strategy = strategy;
#endif
return c;
}
/** Returns a hash code for this set.
*
* This method overrides the generic method provided by the superclass.
* Since {@code equals()} is not overriden, it is important
* that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this set.
*/
@Override
public int hashCode() {
int h = 0;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key;
for(int j = realSize(), i = 0; j-- != 0;) {
while(KEY_IS_NULL(key[i])) i++;
#if KEYS_REFERENCE
if (this != key[i])
#endif
h += KEY2JAVAHASH_NOT_NULL(key[i]);
i++;
}
// Zero / null have hash zero.
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final KEY_ITERATOR KEY_GENERIC i = iterator();
s.defaultWriteObject();
for(int j = size; j-- != 0;) s.WRITE_KEY(i.NEXT_KEY());
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize(size, f);
maxFill = maxFill(n, f);
mask = n - 1;
final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1];
#ifdef Linked
final long link[] = this.link = new long[n + 1];
int prev = -1;
first = last = -1;
#endif
KEY_GENERIC_TYPE k;
for(int i = size, pos; i-- != 0;) {
k = KEY_GENERIC_CAST s.READ_KEY();
if (KEY_EQUALS_NULL(k)) {
pos = n;
containsNull = true;
}
else {
if (! KEY_IS_NULL(key[pos = KEY2INTHASH(k) & mask]))
while (! KEY_IS_NULL(key[pos = (pos + 1) & mask]));
}
key[pos] = k;
#ifdef Linked
if (first != -1) {
SET_NEXT(link[prev], pos);
SET_PREV(link[pos], prev);
prev = pos;
}
else {
prev = first = pos;
// Special case of SET_PREV(newLink[pos], -1);
link[pos] |= (-1L & 0xFFFFFFFFL) << 32;
}
#endif
}
#ifdef Linked
last = prev;
if (prev != -1)
// Special case of SET_NEXT(link[prev], -1);
link[prev] |= -1 & 0xFFFFFFFFL;
#endif
if (ASSERTS) checkTable();
}
#ifdef ASSERTS_CODE
private void checkTable() {
assert (n & -n) == n : "Table length is not a power of two: " + n;
assert n == key.length - 1;
int n = key.length - 1;
while(n-- != 0)
if (! KEY_IS_NULL(key[n]) && ! contains(key[n]))
throw new AssertionError("Hash table has key " + key[n] + " marked as occupied, but the key does not belong to the table");
#if KEYS_PRIMITIVE
java.util.HashSet<KEY_GENERIC_CLASS> s = new java.util.HashSet<KEY_GENERIC_CLASS> ();
#else
java.util.HashSet<Object> s = new java.util.HashSet<Object>();
#endif
for(int i = key.length - 1; i-- != 0;)
if (! KEY_IS_NULL(key[i]) && ! s.add(key[i])) throw new AssertionError("Key " + key[i] + " appears twice at position " + i);
#ifdef Linked
KEY_LIST_ITERATOR KEY_GENERIC i = iterator();
KEY_GENERIC_TYPE k;
n = size();
while(n-- != 0)
if (! contains(k = i.NEXT_KEY()))
throw new AssertionError("Linked hash table forward enumerates key " + k + ", but the key does not belong to the table");
if (i.hasNext()) throw new AssertionError("Forward iterator not exhausted");
n = size();
if (n > 0) {
i = iterator(LAST());
while(n-- != 0)
if (! contains(k = i.PREV_KEY()))
throw new AssertionError("Linked hash table backward enumerates key " + k + ", but the key does not belong to the table");
if (i.hasPrevious()) throw new AssertionError("Previous iterator not exhausted");
}
#endif
}
#else
private void checkTable() {}
#endif
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
#ifdef Custom
int i = r.nextInt(3);
byte a[] = new byte[i];
while(i-- != 0) a[i] = (byte)r.nextInt();
return a;
#else
return Integer.toBinaryString(r.nextInt());
#endif
#else
return new java.io.Serializable() {};
#endif
}
private static final class ArrayComparator implements java.util.Comparator {
public int compare(Object a, Object b) {
byte[] aa = (byte[])a;
byte[] bb = (byte[])b;
int length = Math.min(aa.length, bb.length);
for(int i = 0; i < length; i++) {
if (aa[i] < bb[i]) return -1;
if (aa[i] > bb[i]) return 1;
}
return aa.length == bb.length ? 0 : (aa.length < bb.length ? -1 : 1);
}
}
private static final class MockSet extends java.util.TreeSet {
private java.util.List list = new java.util.ArrayList();
public MockSet(java.util.Comparator c) { super(c); }
public boolean add(Object k) {
if (! contains(k)) list.add(k);
return super.add(k);
}
public boolean addAll(Collection c) {
java.util.Iterator i = c.iterator();
boolean result = false;
while(i.hasNext()) result |= add(i.next());
return result;
}
public boolean removeAll(Collection c) {
java.util.Iterator i = c.iterator();
boolean result = false;
while(i.hasNext()) result |= remove(i.next());
return result;
}
public boolean remove(Object k) {
if (contains(k)) {
int i = list.size();
while(i-- != 0) if (comparator().compare(list.get(i), k) == 0) {
list.remove(i);
break;
}
}
return super.remove(k);
}
private void justRemove(Object k) { super.remove(k); }
public java.util.Iterator iterator() {
return new java.util.Iterator() {
final java.util.Iterator iterator = list.iterator();
Object curr;
public Object next() { return curr = iterator.next(); }
public boolean hasNext() { return iterator.hasNext(); }
public void remove() {
justRemove(curr);
iterator.remove();
}
};
}
}
private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
private static java.text.FieldPosition fp = new java.text.FieldPosition(0);
private static String format(double d) {
StringBuffer s = new StringBuffer();
return format.format(d, s, fp).toString();
}
private static final int WARMUP_CYCLES = 12;
private static final int NUM_RUNS = 50;
private static final int GC_EVERY = 5;
private static void speedTest(int n, float f, boolean comp) {
#ifndef Custom
int i, j;
OPEN_HASH_SET m;
#ifdef Linked
java.util.LinkedHashSet t;
#else
java.util.HashSet t;
#endif
KEY_TYPE k[] = new KEY_TYPE[n];
KEY_TYPE nk[] = new KEY_TYPE[n];
long ns;
for(i = 0; i < n; i++) {
k[i] = genKey();
nk[i] = genKey();
}
double totAdd = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, toStreamSum = 0, d;
if (comp) { for(j = 0; j < NUM_RUNS; j++) {
if ((j + 1) % GC_EVERY == 0) System.gc();
#ifdef Linked
t = new java.util.LinkedHashSet(16);
#else
t = new java.util.HashSet(16);
#endif
/* We add pairs to t. */
ns = System.nanoTime();
for(i = 0; i < n; i++) t.add(KEY2OBJ(k[i]));
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totAdd += d;
System.out.print("Add: " + format(d) + "ns ");
/* We check for pairs in t. */
ns = System.nanoTime();
for(i = 0; i < n; i++) t.contains(KEY2OBJ(k[i]));
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totYes += d;
System.out.print("Yes: " + format(d) + "ns ");
/* We check for pairs not in t. */
ns = System.nanoTime();
for(i = 0; i < n; i++) t.contains(KEY2OBJ(nk[i]));
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totNo += d;
System.out.print("No: " + format(d) + "ns ");
/* We iterate on t. */
ns = System.nanoTime();
for(java.util.Iterator it = t.iterator(); it.hasNext(); it.next());
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totIter += d;
System.out.print("Iter: " + format(d) + "ns ");
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
/* We sum on t. */
ns = System.nanoTime();
#if KEYS_BYTE_CHAR_SHORT_FLOAT
// Since the primitive stream has to upcast to a widened primitive, for fairness we will upcast here too
#endif
#if KEY_CLASS_Character
((java.util.Set<KEY_CLASS>)t).stream().MAP_TO_KEY_WIDENED(Character::charValue).sum();
#else
((java.util.Set<KEY_CLASS>)t).stream().MAP_TO_KEY_WIDENED(KEY_CLASS::KEY_WIDENED_VALUE).sum();
#endif
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) toStreamSum += d;
System.out.print("Stream sum: " + format(d) + "ns ");
#endif
// Too expensive in the linked case
#ifndef Linked
/* We delete pairs not in t. */
ns = System.nanoTime();
for(i = 0; i < n; i++) t.remove(KEY2OBJ(nk[i]));
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totRemNo += d;
System.out.print("RemNo: " + format(d) + "ns ");
/* We delete pairs in t. */
ns = System.nanoTime();
for(i = 0; i < n; i++) t.remove(KEY2OBJ(k[i]));
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totRemYes += d;
System.out.print("RemYes: " + format(d) + "ns ");
#endif
System.out.println();
}
System.out.println();
System.out.println("java.util Add: " + format(totAdd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemNo: " + format(totRemNo/(j-WARMUP_CYCLES)) + "ns RemYes: " + format(totRemYes/(j-WARMUP_CYCLES)) + "ns");
System.out.println();
totAdd = totYes = totNo = totIter = totRemYes = totRemNo = toStreamSum = 0;
}
for(j = 0; j < NUM_RUNS; j++) {
if ((j + 1) % GC_EVERY == 0) System.gc();
m = new OPEN_HASH_SET(16, f);
/* We add pairs to m. */
ns = System.nanoTime();
for(i = 0; i < n; i++) m.add(k[i]);
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totAdd += d;
System.out.print("Add: " + format(d) + "ns ");
/* We check for pairs in m. */
ns = System.nanoTime();
for(i = 0; i < n; i++) m.contains(k[i]);
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totYes += d;
System.out.print("Yes: " + format(d) + "ns ");
/* We check for pairs not in m. */
ns = System.nanoTime();
for(i = 0; i < n; i++) m.contains(nk[i]);
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totNo += d;
System.out.print("No: " + format(d) + "ns ");
/* We iterate on m. */
ns = System.nanoTime();
for(KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY());
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totIter += d;
System.out.print("Iter: " + format(d) + "ns ");
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
/* We sum on t. */
ns = System.nanoTime();
m.KEY_WIDENED_STREAM_METHOD().sum();
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) toStreamSum += d;
System.out.print("Stream sum: " + format(d) + "ns ");
#endif
// Too expensive in the linked case
#ifndef Linked
/* We delete pairs not in m. */
ns = System.nanoTime();
for(i = 0; i < n; i++) m.remove(nk[i]);
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totRemNo += d;
System.out.print("RemNo: " + format(d) + "ns ");
/* We delete pairs in m. */
ns = System.nanoTime();
for(i = 0; i < n; i++) m.remove(k[i]);
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totRemYes += d;
System.out.print("RemYes: " + format(d) + "ns ");
#endif
System.out.println();
}
System.out.println();
System.out.println("fastutil Add: " + format(totAdd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemNo: " + format(totRemNo/(j-WARMUP_CYCLES)) + "ns RemYes: " + format(totRemYes/(j-WARMUP_CYCLES)) + "ns");
System.out.println();
#endif
}
private static void fatal(String msg) {
throw new AssertionError(msg);
}
private static void ensure(boolean cond, String msg) {
if (cond) return;
fatal(msg);
}
private static void printProbes(OPEN_HASH_SET m) {
long totProbes = 0;
double totSquareProbes = 0;
int maxProbes = 0;
final double f = (double)m.size / m.n;
for(int i = 0, c = 0; i < m.n; i++) {
if (! KEY_IS_NULL(m.key[i])) c++;
else {
if (c != 0) {
final long p = (c + 1) * (c + 2) / 2;
totProbes += p;
totSquareProbes += (double)p * p;
}
maxProbes = Math.max(c, maxProbes);
c = 0;
totProbes++;
totSquareProbes++;
}
}
final double expected = (double)totProbes / m.n;
System.err.println("Expected probes: " + (
3 * Math.sqrt(3) * (f / ((1 - f) * (1 - f))) + 4 / (9 * f) - 1
) + "; actual: " + expected + "; stddev: " + Math.sqrt(totSquareProbes / m.n - expected * expected) + "; max probes: " + maxProbes);
}
private static void runTest(int n, float f) throws Exception {
#if !defined(Custom) || KEYS_REFERENCE
int c;
#ifdef Custom
OPEN_HASH_SET m = new OPEN_HASH_SET(Hash.DEFAULT_INITIAL_SIZE, f, it.unimi.dsi.fastutil.bytes.ByteArrays.HASH_STRATEGY);
#else
OPEN_HASH_SET m = new OPEN_HASH_SET(Hash.DEFAULT_INITIAL_SIZE, f);
#endif
#ifdef Linked
#ifdef Custom
java.util.Set t = new MockSet(new ArrayComparator());
#else
java.util.Set t = new java.util.LinkedHashSet();
#endif
#else
#ifdef Custom
java.util.Set t = new java.util.TreeSet(new ArrayComparator());
#else
java.util.Set t = new java.util.HashSet();
#endif
#endif
/* First of all, we fill t with random data. */
for(int i=0; i<f * n; i++) t.add(KEY2OBJ(genKey()));
/* Now we add to m the same data */
m.addAll(t);
ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after insertion");;
ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after insertion");;
printProbes(m);
/* Now we check that m actually holds that data. */
for(java.util.Iterator i=t.iterator(); i.hasNext();) {
Object e = i.next();
ensure(m.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on t)");
}
/* Now we check that m actually holds that data, but iterating on m. */
c = 0;
for(java.util.Iterator i=m.iterator(); i.hasNext();) {
Object e = i.next();
c++;
ensure(t.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on m)");
}
ensure(c == t.size(), "Error (" + seed + "): m has only " + c + " keys instead of " + t.size() + " after insertion (iterating on m)");
/* Now we check that inquiries about random data give the same answer in m and t. For
* m we use the polymorphic method. */
for(int i=0; i<n; i++) {
KEY_TYPE T = genKey();
ensure(m.contains(T) == t.contains(KEY2OBJ(T)), "Error (" + seed + "): divergence in keys between t and m (polymorphic method)");
}
/* Again, we check that inquiries about random data give the same answer in m and t, but
* for m we use the standard method. */
for(int i=0; i<n; i++) {
KEY_TYPE T = genKey();
ensure(m.contains(KEY2OBJ(T)) == t.contains(KEY2OBJ(T)), "Error (" + seed + "): divergence between t and m (standard method)");
}
/* Now we put and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<20*n; i++) {
KEY_TYPE T = genKey();
ensure(m.add(KEY2OBJ(T)) == t.add(KEY2OBJ(T)), "Error (" + seed + "): divergence in add() between t and m");
T = genKey();
ensure(m.remove(KEY2OBJ(T)) == t.remove(KEY2OBJ(T)), "Error (" + seed + "): divergence in remove() between t and m");
}
ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after removal");;
ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after removal");;
/* Now we check that m actually holds that data. */
for(java.util.Iterator i=t.iterator(); i.hasNext();) {
Object e = i.next();
ensure(m.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on t)");
}
/* Now we check that m actually holds that data, but iterating on m. */
for(java.util.Iterator i=m.iterator(); i.hasNext();) {
Object e = i.next();
ensure(t.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on m)");
}
printProbes(m);
/* Now we make m into an array, make it again a set and check it is OK. */
KEY_TYPE a[] = m.TO_KEY_ARRAY();
#ifdef Custom
ensure(new OPEN_HASH_SET(a, m.strategy()).equals(m), "Error (" + seed + "): toArray() output (or array-based constructor) is not OK");
#else
ensure(new OPEN_HASH_SET(a).equals(m), "Error (" + seed + "): toArray() output (or array-based constructor) is not OK");
#endif
/* Now we check cloning. */
ensure(m.equals(((OPEN_HASH_SET)m).clone()), "Error (" + seed + "): m does not equal m.clone()");
ensure(((OPEN_HASH_SET)m).clone().equals(m), "Error (" + seed + "): m.clone() does not equal m");
/* Now test that the sets hold the same data using streams */
{
#if KEYS_REFERENCE
java.util.stream.Stream<KEY_TYPE> i = m.stream();
java.util.stream.Stream<KEY_TYPE> j = t.stream();
#elif KEY_CLASS_Boolean
java.util.stream.Stream<KEY_CLASS> i = m.stream();
java.util.stream.Stream<KEY_CLASS> j = t.stream();
#else
JDK_PRIMITIVE_STREAM i = m.KEY_WIDENED_STREAM_METHOD();
java.util.stream.Stream<KEY_CLASS> j = t.stream();
#endif
#if (!defined Linked || defined Custom) && KEYS_REFERENCE
// There is no good way to order arbitrary, non-Comparable objects in a consistent way.
// Ordering by Object.hashCode is tempting, but can conflict (two difference objects can have the same hashCode)
// Thus, we will dump into a JDK set, whose equals method will make sure they have the same in any order.
java.util.Set iSet = i.collect(java.util.stream.Collectors.toSet());
java.util.Set jSet = j.collect(java.util.stream.Collectors.toSet());
ensure(iSet.equals(jSet), "! same contents in stream");
#else
#if !defined Linked && !KEYS_REFERENCE
// Impose ordering to make arrays consistent even though backing data is not ordered.
i = i.sorted();
j = j.sorted();
#endif
#if KEYS_REFERENCE || KEY_CLASS_Boolean
Object[] iArray = i.toArray();
Object[] jArray = j.toArray();
#elif KEY_CLASS_Character
int[] iArray = i.toArray();
int[] jArray = j.mapToInt(Character::charValue).toArray();
#else
KEY_TYPE_WIDENED[] iArray = i.toArray();
KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(Number::KEY_WIDENED_VALUE).toArray();
#endif
ensure(java.util.Arrays.equals(iArray, jArray), "! sorted arrays equal");
#endif
}
int h = m.hashCode();
/* Now we save and read m. */
{
java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test." + m.getClass().getSimpleName() + "." + n);
java.io.OutputStream os = new java.io.FileOutputStream(ff);
java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
oos.writeObject(m);
oos.close();
java.io.InputStream is = new java.io.FileInputStream(ff);
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
m = (OPEN_HASH_SET)ois.readObject();
ois.close();
ff.delete();
}
#if !KEYS_USE_REFERENCE_EQUALITY
ensure(m.hashCode() == h, "Error (" + seed + "): hashCode() changed after save/read");;
printProbes(m);
/* Now we check that m actually holds that data, but iterating on m. */
for(java.util.Iterator i=m.iterator(); i.hasNext();) {
Object e = i.next();
ensure(t.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after save/read");
}
#else
m.clear();
m.addAll(t);
#endif
/* Now we put and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<20*n; i++) {
KEY_TYPE T = genKey();
ensure(m.add(KEY2OBJ(T)) == t.add(KEY2OBJ(T)), "Error (" + seed + "): divergence in add() between t and m after save/read");
T = genKey();
ensure(m.remove(KEY2OBJ(T)) == t.remove(KEY2OBJ(T)), "Error (" + seed + "): divergence in remove() between t and m after save/read");
}
ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after post-save/read removal");;
ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after post-save/read removal");;
#ifdef Linked
/* Now we play with iterators, but only in the linked case. */
{
java.util.ListIterator i, j;
Object I, J;
i = (java.util.ListIterator)m.iterator();
j = new java.util.LinkedList(t).listIterator();
for(int k = 0; k < 2*n; k++) {
ensure(i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext()");
ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious()");
if (r.nextFloat() < .8 && i.hasNext()) {
#ifdef Custom
ensure(m.strategy().equals(i.next(), J = j.next()), "Error (" + seed + "): divergence in next()");
#else
ensure(i.next().equals(J = j.next()), "Error (" + seed + "): divergence in next()");
#endif
if (r.nextFloat() < 0.5) {
i.remove();
j.remove();
t.remove(J);
}
}
else if (r.nextFloat() < .2 && i.hasPrevious()) {
#ifdef Custom
ensure(m.strategy().equals(i.previous(), J = j.previous()), "Error (" + seed + "): divergence in previous()");
#else
ensure(i.previous().equals(J = j.previous()), "Error (" + seed + "): divergence in previous()");
#endif
if (r.nextFloat() < 0.5) {
i.remove();
j.remove();
t.remove(J);
}
}
ensure(i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex()");
ensure(i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex()");
}
}
if (t.size() > 0) {
java.util.ListIterator i, j;
Object J;
j = new java.util.LinkedList(t).listIterator();
int e = r.nextInt(t.size());
Object from;
do from = j.next(); while(e-- != 0);
i = (java.util.ListIterator)m.iterator(KEY_OBJ2TYPE(from));
for(int k = 0; k < 2*n; k++) {
ensure(i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext() (iterator with starting point " + from + ")");
ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")");
if (r.nextFloat() < .8 && i.hasNext()) {
#ifdef Custom
ensure(m.strategy().equals(i.next(), J = j.next()), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")");
#else
ensure(i.next().equals(J = j.next()), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")");
#endif
if (r.nextFloat() < 0.5) {
i.remove();
j.remove();
t.remove(J);
}
}
else if (r.nextFloat() < .2 && i.hasPrevious()) {
#ifdef Custom
ensure(m.strategy().equals(i.previous(), J = j.previous()), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")");
#else
ensure(i.previous().equals(J = j.previous()), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")");
#endif
if (r.nextFloat() < 0.5) {
i.remove();
j.remove();
t.remove(J);
}
}
ensure(i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex() (iterator with starting point " + from + ")");
ensure(i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex() (iterator with starting point " + from + ")");
}
}
/* Now we check that m actually holds that data. */
ensure(m.equals(t), "Error (" + seed + "): ! m.equals(t) after iteration");
ensure(t.equals(m), "Error (" + seed + "): ! t.equals(m) after iteration");
#endif
/* Now we take out of m everything, and check that it is empty. */
for(java.util.Iterator i=m.iterator(); i.hasNext();) { i.next(); i.remove();}
ensure(m.isEmpty(), "Error (" + seed + "): m is not empty (as it should be)");
#if KEY_CLASS_Integer || KEY_CLASS_Long
m = new OPEN_HASH_SET(n, f);
t.clear();
int x;
/* Now we torture-test the hash table. This part is implemented only for integers and longs. */
int p = m.key.length - 1;
for(int i=0; i<p; i++) {
for (int j=0; j<20; j++) {
m.add(i+(r.nextInt() % 10)*p);
m.remove(i+(r.nextInt() % 10)*p);
}
for (int j=-10; j<10; j++) m.remove(i+j*p);
}
t.addAll(m);
/* Now all table entries are REMOVED. */
int k = 0;
for(int i=0; i<(p*f)/10; i++) {
for (int j=0; j<10; j++) {
k++;
x = i+(r.nextInt() % 10)*p;
ensure(m.add(x) == t.add(KEY2OBJ(x)), "Error (" + seed + "): m and t differ on a key during torture-test insertion.");
}
}
ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after torture-test insertion");;
ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after torture-test insertion");;
for(int i=0; i<(p*f)/10; i++) {
for (int j=0; j<10; j++) {
x = i+(r.nextInt() % 10)*p;
ensure(m.remove(x) == t.remove(KEY2OBJ(x)), "Error (" + seed + "): m and t differ on a key during torture-test removal.");
}
}
ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after torture-test removal");;
ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after torture-test removal");;
ensure(m.equals(m.clone()), "Error (" + seed + "): !m.equals(m.clone()) after torture-test removal");;
ensure(((OPEN_HASH_SET)m.clone()).equals(m), "Error (" + seed + "): !m.clone().equals(m) after torture-test removal");;
m.trim();
ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after trim()");;
ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after trim()");;
#endif
System.out.println("Test OK");
return;
#endif
}
public static void main(String args[]) throws Exception {
float f = Hash.DEFAULT_LOAD_FACTOR;
int n = Integer.parseInt(args[1]);
if (args.length>2) f = Float.parseFloat(args[2]);
if (args.length > 3) r = new java.util.Random(seed = Long.parseLong(args[3]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, f, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) runTest(n, f);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
throw e;
}
}
#endif
}
|