File: OpenHashBigSet.drv

package info (click to toggle)
libfastutil-java 8.5.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,076 kB
  • sloc: java: 19,670; sh: 1,188; makefile: 473; xml: 354
file content (1558 lines) | stat: -rw-r--r-- 49,666 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
/*
 * Copyright (C) 2002-2024 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import static it.unimi.dsi.fastutil.BigArrays.copy;
import static it.unimi.dsi.fastutil.BigArrays.fill;
import static it.unimi.dsi.fastutil.BigArrays.set;

import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.Size64;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
#if KEYS_REFERENCE
import java.util.function.Consumer;
import java.util.stream.Collector;
#endif

import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;


/**  A type-specific hash big set with with a fast, small-footprint implementation.
 *
 * <p>Instances of this class use a hash table to represent a big set: the number
 * of elements in the set is limited only by the amount of core memory. The table
 * (backed by a {@linkplain it.unimi.dsi.fastutil.BigArrays big array}) is
 * filled up to a specified <em>load factor</em>, and then doubled in size to
 * accommodate new entries. If the table is emptied below <em>one fourth</em>
 * of the load factor, it is halved in size; however, the table is never reduced to a
 * size smaller than that at creation time: this approach makes it
 * possible to create sets with a large capacity in which insertions and
 * deletions do not cause immediately rehashing. Moreover, halving is
 * not performed when deleting entries from an iterator, as it would interfere
 * with the iteration process.
 *
 * <p>Note that {@link #clear()} does not modify the hash table size.
 * Rather, a family of {@linkplain #trim() trimming
 * methods} lets you control the size of the table; this is particularly useful
 * if you reuse instances of this class.
 *
 * <p>The methods of this class are about 30% slower than those of the corresponding non-big set.
 *
 * @see Hash
 * @see HashCommon
 */

public class OPEN_HASH_BIG_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash, Size64 {

	private static final long serialVersionUID = 0L;
	private static final boolean ASSERTS = ASSERTS_VALUE;

	/** The big array of keys. */
	protected transient KEY_GENERIC_TYPE[][] key;

	/** The mask for wrapping a position counter. */
	protected transient long mask;

	/** The mask for wrapping a segment counter. */
	protected transient int segmentMask;

	/** The mask for wrapping a base counter. */
	protected transient int baseMask;

	/** Whether this set contains the null key. */
	protected transient boolean containsNull;

	/** The current table size (always a power of 2). */
	protected transient long n;

	/** Threshold after which we rehash. It must be the table size times {@link #f}. */
	protected transient long maxFill;

	/** We never resize below this threshold, which is the construction-time {#n}. */
	protected final transient long minN;

	/** The acceptable load factor. */
	protected final float f;

	/** Number of entries in the set. */
	protected long size;


	/** Initialises the mask values. */
	private void initMasks() {
		mask = n - 1;
		/* Note that either we have more than one segment, and in this case all segments
		 * are BigArrays.SEGMENT_SIZE long, or we have exactly one segment whose length
		 * is a power of two. */
		segmentMask = key[0].length - 1;
		baseMask = key.length - 1;
	}

	/** Creates a new hash big set.
	 *
	 * <p>The actual table size will be the least power of two greater than {@code expected}/{@code f}.
	 *
	 * @param expected the expected number of elements in the set.
	 * @param f the load factor.
	 */
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public OPEN_HASH_BIG_SET(final long expected, final float f) {
		if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1");
		if (n < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative");

		this.f = f;

		minN = n = bigArraySize(expected, f);
		maxFill = maxFill(n, f);
		key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(n);
		initMasks();
	}


	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
	 *
	 * @param expected the expected number of elements in the hash big set.
	 */

	public OPEN_HASH_BIG_SET(final long expected) {
		this(expected, DEFAULT_LOAD_FACTOR);
	}

	/** Creates a new hash big set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
	 * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
	 */

	public OPEN_HASH_BIG_SET() {
		this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
	}

	/** Creates a new hash big set copying a given collection.
	 *
	 * @param c a {@link Collection} to be copied into the new hash big set.
	 * @param f the load factor.
	 */

	public OPEN_HASH_BIG_SET(final Collection<? extends KEY_GENERIC_CLASS> c, final float f) {
		this(Size64.sizeOf(c), f);
		addAll(c);
	}

	/** Creates a new hash big set  with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
	 * copying a given collection.
	 *
	 * @param c a {@link Collection} to be copied into the new hash big set.
	 */

	public OPEN_HASH_BIG_SET(final Collection<? extends KEY_GENERIC_CLASS> c) {
		this(c, DEFAULT_LOAD_FACTOR);
	}

	/** Creates a new hash big set copying a given type-specific collection.
	 *
	 * @param c a type-specific collection to be copied into the new hash big set.
	 * @param f the load factor.
	 */

	public OPEN_HASH_BIG_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final float f) {
		this(Size64.sizeOf(c), f);
		addAll(c);
	}

	/** Creates a new hash big set  with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
	 * copying a given type-specific collection.
	 *
	 * @param c a type-specific collection to be copied into the new hash big set.
	 */

	public OPEN_HASH_BIG_SET(final COLLECTION KEY_EXTENDS_GENERIC c) {
		this(c, DEFAULT_LOAD_FACTOR);
	}

	/** Creates a new hash big set using elements provided by a type-specific iterator.
	 *
	 * @param i a type-specific iterator whose elements will fill the new hash big set.
	 * @param f the load factor.
	 */

	public OPEN_HASH_BIG_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f) {
		this(DEFAULT_INITIAL_SIZE, f);
		while(i.hasNext()) add(i.NEXT_KEY());
	}

	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
	 *
	 * @param i a type-specific iterator whose elements will fill the new hash big set.
	 */

	public OPEN_HASH_BIG_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
		this(i, DEFAULT_LOAD_FACTOR);
	}


#if KEYS_PRIMITIVE

	/** Creates a new hash big set using elements provided by an iterator.
	 *
	 * @param i an iterator whose elements will fill the new hash big set.
	 * @param f the load factor.
	 */

	public OPEN_HASH_BIG_SET(final Iterator<?> i, final float f) {
		this(ITERATORS.AS_KEY_ITERATOR(i), f);
	}
	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
	 *
	 * @param i an iterator whose elements will fill the new hash big set.
	 */

	public OPEN_HASH_BIG_SET(final Iterator<?> i) {
		this(ITERATORS.AS_KEY_ITERATOR(i));
	}

#endif


	/** Creates a new hash big set and fills it with the elements of a given array.
	 *
	 * @param a an array whose elements will be used to fill the new hash big set.
	 * @param offset the first element to use.
	 * @param length the number of elements to use.
	 * @param f the load factor.
	 */

	public OPEN_HASH_BIG_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f) {
		this(length < 0 ? 0 : length, f);
		ARRAYS.ensureOffsetLength(a, offset, length);
		for(int i = 0; i < length; i++) add(a[offset + i]);
	}

	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
	 *
	 * @param a an array whose elements will be used to fill the new hash big set.
	 * @param offset the first element to use.
	 * @param length the number of elements to use.
	 */

	public OPEN_HASH_BIG_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length) {
		this(a, offset, length, DEFAULT_LOAD_FACTOR);
	}

	/** Creates a new hash big set copying the elements of an array.
	 *
	 * @param a an array to be copied into the new hash big set.
	 * @param f the load factor.
	 */

	public OPEN_HASH_BIG_SET(final KEY_GENERIC_TYPE[] a, final float f) {
		this(a, 0, a.length, f);
	}

	/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
	 * copying the elements of an array.
	 *
	 * @param a an array to be copied into the new hash big set.
	 */

	public OPEN_HASH_BIG_SET(final KEY_GENERIC_TYPE[] a) {
		this(a, DEFAULT_LOAD_FACTOR);
	}

#ifndef Custom
#if KEYS_INT_LONG_DOUBLE
	/** Collects the result of a primitive {@code Stream} into a new big hash set.
	 *
	 * <p>This method performs a terminal operation on the given {@code Stream}
	 *
	 * @apiNote Taking a primitive stream instead of returning something like a
	 * {@link java.util.stream.Collector Collector} is necessary because there is no
	 * primitive {@code Collector} equivalent in the Java API.
	 */
	 public static KEY_GENERIC OPEN_HASH_BIG_SET KEY_GENERIC toBigSet(JDK_PRIMITIVE_STREAM stream) {
	 	return stream.collect(
	 		OPEN_HASH_BIG_SET::new,
	 		OPEN_HASH_BIG_SET::add,
	 		OPEN_HASH_BIG_SET::addAll);
	 }
	 
	/** Collects the result of a primitive {@code Stream} into a new big hash set.
	 *
	 * <p>This method performs a terminal operation on the given {@code Stream}
	 *
	 * @apiNote Taking a primitive stream instead returning something like a
	 * {@link java.util.stream.Collector Collector} is necessary because there is no
	 * primitive {@code Collector} equivalent in the Java API.
	 */
	public static KEY_GENERIC OPEN_HASH_BIG_SET KEY_GENERIC toBigSetWithExpectedSize(JDK_PRIMITIVE_STREAM stream, long expectedSize) {
		return stream.collect(
			() -> new OPEN_HASH_BIG_SET KEY_GENERIC(expectedSize),
			OPEN_HASH_BIG_SET::add,
			OPEN_HASH_BIG_SET::addAll);
	}
#elif KEYS_REFERENCE
	// Collector wants a function that returns the collection being added to.
	private OPEN_HASH_BIG_SET KEY_GENERIC combine(OPEN_HASH_BIG_SET KEY_EXTENDS_GENERIC toAddFrom) {
		addAll(toAddFrom);
		return this;
	}

	private static final Collector<KEY_TYPE, ?, OPEN_HASH_BIG_SET<KEY_TYPE>> TO_SET_COLLECTOR =
		Collector.of(
			OPEN_HASH_BIG_SET::new,
			OPEN_HASH_BIG_SET::add,
			OPEN_HASH_BIG_SET::combine); 

	/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new big hash set. */
	SUPPRESS_WARNINGS_KEY_UNCHECKED_RAWTYPES
	public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, OPEN_HASH_BIG_SET KEY_GENERIC> toBigSet() {
		return (Collector) TO_SET_COLLECTOR;
	}

 	/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new big hash set. */
 	public static KEY_GENERIC Collector<KEY_GENERIC_TYPE, ?, OPEN_HASH_BIG_SET KEY_GENERIC> toBigSetWithExpectedSize(long expectedSize) {
 		return Collector.of(
		() -> new OPEN_HASH_BIG_SET KEY_GENERIC(expectedSize),
		OPEN_HASH_BIG_SET::add,
		OPEN_HASH_BIG_SET::combine);
	}
#endif
#endif

	private long realSize() {
		return containsNull ? size - 1 : size;
	}

	/** Ensures that this big set can hold a certain number of elements without rehashing.
	 *
	 * @param capacity a number of elements; there will be no rehashing unless
	 * the set {@linkplain #size64() size} exceeds this number.
	 */
	public void ensureCapacity(final long capacity) {
		final long needed = bigArraySize(capacity, f);
		if (needed > n) rehash(needed);
	}

	@Override
	public boolean addAll(Collection<? extends KEY_GENERIC_CLASS> c) {
		final long size = Size64.sizeOf(c);
		// The resulting collection will be at least c.size() big
		if (f <= .5) ensureCapacity(size); // The resulting collection will be sized for c.size() elements
		else ensureCapacity(size64() + size); // The resulting collection will be sized for size() + c.size() elements
		return super.addAll(c);
	}

#if KEYS_PRIMITIVE
	@Override
	public boolean addAll(COLLECTION c) {
		final long size = Size64.sizeOf(c);
		if (f <= .5) ensureCapacity(size); // The resulting collection will be size for c.size() elements
		else ensureCapacity(size64() + size); // The resulting collection will be sized for size() + c.size() elements
		return super.addAll(c);
	}
#endif

	@Override
	public boolean add(final KEY_GENERIC_TYPE k) {
		int displ, base;

		if (KEY_IS_NULL(k)) {
			if (containsNull) return false;
			containsNull = true;
		}
		else {
			KEY_GENERIC_TYPE curr;
			final KEY_GENERIC_TYPE[][] key = this.key;
			final long h = KEY2LONGHASH(k);

			// The starting point.
			if (! KEY_IS_NULL(curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)])) {
				if (KEY_EQUALS_NOT_NULL(curr, k)) return false;
				while(! KEY_IS_NULL(curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]))
					if (KEY_EQUALS_NOT_NULL(curr, k)) return false;
			}

			key[base][displ] = k;
		}

		if (size++ >= maxFill) rehash(2 * n);
		if (ASSERTS) checkTable();
		return true;
	}

#if KEY_CLASS_Object
	/** Add a random element if not present, get the existing value if already present.
	 *
	 * This is equivalent to (but faster than) doing a:
	 * <pre>
	 * K exist = set.get(k);
	 * if (exist == null) {
	 *   set.add(k);
	 *   exist = k;
	 * }
	 * </pre>
	 */
	public KEY_GENERIC_TYPE addOrGet(final KEY_GENERIC_TYPE k) {
		int displ, base;

		if (KEY_IS_NULL(k)) {
			if (containsNull) return null;
			containsNull = true;
		}
		else {
			KEY_GENERIC_TYPE curr;
			final KEY_GENERIC_TYPE[][] key = this.key;
			final long h = KEY2LONGHASH(k);

			// The starting point.
			if (! KEY_IS_NULL(curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)])) {
				if (KEY_EQUALS_NOT_NULL(curr, k)) return curr;
				while(! KEY_IS_NULL(curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]))
					if (KEY_EQUALS_NOT_NULL(curr, k)) return curr;
			}

			key[base][displ] = k;
		}

		if (size++ >= maxFill) rehash(2 * n);
		if (ASSERTS) checkTable();
		return k;
	}
#endif

	/** Shifts left entries with the specified hash code, starting at the specified position,
	 * and empties the resulting free entry.
	 *
	 * @param pos a starting position.
	 */
	protected final void shiftKeys(long pos) {
		// Shift entries with the same hash.
		long last, slot;
		final KEY_GENERIC_TYPE[][] key = this.key;

		for(;;) {
			pos = ((last = pos) + 1) & mask;

			for(;;) {
				if (KEY_IS_NULL(BigArrays.get(key, pos))) {
					set(key, last, KEY_NULL);
					return;
				}
				slot = KEY2LONGHASH(BigArrays.get(key, pos)) & mask;
				if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
				pos = (pos + 1) & mask;
			}

			set(key, last, BigArrays.get(key, pos));
		}
	}

	private boolean removeEntry(final int base, final int displ) {
		size--;
		shiftKeys(base * (long)BigArrays.SEGMENT_SIZE + displ);
		if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
		return true;
	}

	private boolean removeNullEntry() {
		containsNull = false;
		size--;
		if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
		return true;
	}

	@Override
	public boolean remove(final KEY_TYPE k) {
		if (KEY_IS_NULL(k)) {
			if (containsNull) return removeNullEntry();
			return false;
		}

		KEY_GENERIC_TYPE curr;
		final KEY_GENERIC_TYPE[][] key = this.key;
		final long h = KEY2LONGHASH(k);
		int displ, base;

		// The starting point.
		if (KEY_IS_NULL(curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)])) return false;
		if (KEY_EQUALS_NOT_NULL(curr, k)) return removeEntry(base, displ);
		while(true) {
			if (KEY_IS_NULL(curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ])) return false;
			if (KEY_EQUALS_NOT_NULL(curr, k)) return removeEntry(base, displ);
		}
	}

	@Override
	public boolean contains(final KEY_TYPE k) {
		if (KEY_IS_NULL(k)) return containsNull;

		KEY_GENERIC_TYPE curr;
		final KEY_GENERIC_TYPE[][] key = this.key;
		final long h = KEY2LONGHASH(k);
		int displ, base;

		// The starting point.
		if (KEY_IS_NULL(curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)])) return false;
		if (KEY_EQUALS_NOT_NULL(curr, k)) return true;
		while(true) {
			if (KEY_IS_NULL(curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ])) return false;
			if (KEY_EQUALS_NOT_NULL(curr, k)) return true;
		}
	}

#if KEY_CLASS_Object
	/** Returns the element of this set that is equal to the given key, or {@code null}.
	 * @return the element of this set that is equal to the given key, or {@code null}.
	 */
	public K get(final KEY_TYPE k) {
		if (k == null) return null; // This is correct independently of the value of containsNull

		KEY_GENERIC_TYPE curr;
		final KEY_GENERIC_TYPE[][] key = this.key;
		final long h = KEY2LONGHASH(k);
		int displ, base;

		// The starting point.
		if (KEY_IS_NULL(curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)])) return null;
		if (KEY_EQUALS_NOT_NULL(curr, k)) return curr;
		while(true) {
			if (KEY_IS_NULL(curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ])) return null;
			if (KEY_EQUALS_NOT_NULL(curr, k)) return curr;
		}
	}
#endif

	/* Removes all elements from this set.
	 *
	 */

	/** {@inheritDoc}
	 *
	 * <p>To increase object reuse, this method does not change the table size.
	 * If you want to reduce the table size, you must use {@link #trim(long)}.
	 */
	@Override
	public void clear() {
		if (size == 0) return;
		size = 0;
		containsNull = false;
		fill(key, KEY_NULL);
	}



	/** An iterator over a hash big set. */

	private class SetIterator implements KEY_ITERATOR KEY_GENERIC {
		/** The base of the last entry returned, if positive or zero; initially, the number of components
			of the key array. If negative, the last element returned was
			that of index {@code - base - 1} from the {@link #wrapped} list. */
		int base = key.length;
		/** The displacement of the last entry returned; initially, zero. */
		int displ;
		/** The index of the last entry that has been returned (or {@link Long#MIN_VALUE} if {@link #base} is negative).
			It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */
		long last = -1;
		/** A downward counter measuring how many entries must still be returned. */
		long c = size;
		/** A boolean telling us whether we should return the null key. */
		boolean mustReturnNull = OPEN_HASH_BIG_SET.this.containsNull;
		/** A lazily allocated list containing elements that have wrapped around the table because of removals. */
		ARRAY_LIST KEY_GENERIC wrapped;

		@Override
		public boolean hasNext() { return c != 0; }

		@Override
		public KEY_GENERIC_TYPE NEXT_KEY() {
			if (! hasNext()) throw new NoSuchElementException();
			c--;

			if (mustReturnNull) {
				mustReturnNull = false;
				last = n;
				return KEY_NULL;
			}

			final KEY_GENERIC_TYPE[][] key = OPEN_HASH_BIG_SET.this.key;

			for(;;) {
				if (displ == 0 && base <= 0) {
					// We are just enumerating elements from the wrapped list.
					last = Long.MIN_VALUE;
					return wrapped.GET_KEY(- (--base) - 1);
				}

				if (displ-- == 0) displ = key[--base].length - 1;

				final KEY_GENERIC_TYPE k = key[base][displ];
				if (! KEY_IS_NULL(k)) {
					last = base * (long)BigArrays.SEGMENT_SIZE + displ;
					return k;
				}
			}
		}

		/** Shifts left entries with the specified hash code, starting at the specified position,
		 * and empties the resulting free entry.
		 *
		 * @param pos a starting position.
		 */
		private final void shiftKeys(long pos) {
			// Shift entries with the same hash.
			long last, slot;
			KEY_GENERIC_TYPE curr;
			final KEY_GENERIC_TYPE[][] key = OPEN_HASH_BIG_SET.this.key;

			for(;;) {
				pos = ((last = pos) + 1) & mask;

				for(;;) {
					if(KEY_IS_NULL(curr = BigArrays.get(key, pos))) {
						set(key, last, KEY_NULL);
						return;
					}
					slot = KEY2LONGHASH(curr) & mask;
					if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
					pos = (pos + 1) & mask;
				}

				if (pos < last) {	// Wrapped entry.
					if (wrapped == null) wrapped = new ARRAY_LIST KEY_GENERIC_DIAMOND();
					wrapped.add(BigArrays.get(key, pos));
				}

				set(key, last, curr);
			}
		}

		@Override
		public void remove() {
			if (last == -1) throw new IllegalStateException();
			if (last == n) OPEN_HASH_BIG_SET.this.containsNull = false;
			else if (base >= 0) shiftKeys(last);
			else {
				// We're removing wrapped entries.
#if KEYS_REFERENCE
				OPEN_HASH_BIG_SET.this.remove(wrapped.set(- base - 1, null));
#else
				OPEN_HASH_BIG_SET.this.remove(wrapped.GET_KEY(- base - 1));
#endif
				last = -1; // Note that we must not decrement size
				return;
			}

			size--;
			last = -1; // You can no longer remove this entry.
			if (ASSERTS) checkTable();
		}
	}

	@Override
	public KEY_ITERATOR KEY_GENERIC iterator() {
		return new SetIterator();
	}


	private class SetSpliterator implements KEY_SPLITERATOR KEY_GENERIC {
		/* For the sake of keeping things at least somewhat simple
		 * (aka. my sanity), the spliterator will NOT handle the indexing
		 * of the subarrays directly, like iterator does. Instead, it will
		 * delegate to BigArrays and have only a single, unified index it
		 * will fence on. This is probably less effecient, but it avoids having
		 * to track what it means to split on two sets of indexes.
		 * This may change in the future if the performance hit high.
		 */

		private static final int POST_SPLIT_CHARACTERISTICS = SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED;

		/** The index (which bucket) of the next item to give to the action. */
		long pos = 0;
		/** The maximum bucket (exclusive) to iterate to */
		long max = n;
		/** An upwards counter counting how many we have given */
		long c = 0;
		/** A boolean telling us whether we should return the null key. */
		boolean mustReturnNull = OPEN_HASH_BIG_SET.this.containsNull;
		boolean hasSplit = false;


		SetSpliterator() {}

		SetSpliterator(long pos, long max, boolean mustReturnNull, boolean hasSplit) {
			this.pos = pos;
			this.max = max;
			this.mustReturnNull = mustReturnNull;
			this.hasSplit = hasSplit;
		}

		@Override
		public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
			if (mustReturnNull) {
				mustReturnNull = false;
				++c;
				action.accept(KEY_NULL);
				return true;
			}
			final KEY_GENERIC_TYPE key[][] = OPEN_HASH_BIG_SET.this.key;
			while (pos < max) {
				KEY_GENERIC_TYPE gotten = BigArrays.get(key, pos);
				if (! KEY_IS_NULL(gotten)) {
					++c;
					++pos;
					action.accept(gotten);
					return true;
				} else {
					++pos;
				}
			}
			return false;
		}

		@Override
		public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
			if (mustReturnNull) {
				mustReturnNull = false;
				action.accept(KEY_NULL);
				++c;
			}
			final KEY_GENERIC_TYPE key[][] = OPEN_HASH_BIG_SET.this.key;
			while (pos < max) {
				KEY_GENERIC_TYPE gotten = BigArrays.get(key, pos);
				if (! KEY_IS_NULL(gotten)) {
					action.accept(gotten);
					++c;
				}
				++pos;
			}
		}

		@Override
		public int characteristics() {
			return hasSplit ? POST_SPLIT_CHARACTERISTICS : SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS;
		}

		@Override
		public long estimateSize() {
			if (!hasSplit) {
				// Root spliterator; we know how many are remaining.
				return size - c;
			} else {
				// After we split, we can no longer know exactly how many we have (or at least not efficiently).
				// (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good estimate.
				return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0));
			}
		}

		@Override
		public SetSpliterator trySplit() {
			if (pos >= max - 1) return null;
			long retLen = (max - pos) >> 1;
			if (retLen <= 1) return null;
			long myNewPos = pos + retLen;
			// Align to an outer array boundary if possible
			// We add/subtract one to the bounds to ensure the new pos will always shrink the range
			myNewPos = BigArrays.nearestSegmentStart(myNewPos, pos + 1, max - 1);
			long retPos = pos;
			long retMax = myNewPos;
			// Since null is returned first, and the convention is that the returned split is the prefix of elements,
			// the split will take care of returning null (if needed), and we won't return it anymore.
			SetSpliterator split = new SetSpliterator(retPos, retMax, mustReturnNull, true);
			this.pos = myNewPos;
			this.mustReturnNull = false;
			this.hasSplit = true;
			return split;
		}

		@Override
		public long skip(long n) {
			if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
			if (n == 0) return 0;
			long skipped = 0;
			if (mustReturnNull) {
				mustReturnNull = false;
				++skipped;
				--n;
			}
			final KEY_GENERIC_TYPE key[][] = OPEN_HASH_BIG_SET.this.key;
			while (pos < max && n > 0) {
				if (! KEY_IS_NULL(BigArrays.get(key, pos++))) {
					++skipped;
					--n;
				}
			}
			return skipped;
		}
	}

	@Override
	public KEY_SPLITERATOR KEY_GENERIC spliterator() {
		return new SetSpliterator();
	}

	@Override
	public void forEach(final METHOD_ARG_KEY_CONSUMER action) {
		if (containsNull) {
			action.accept(KEY_NULL);
		}
		long pos = 0;
		final long max = n;
		final KEY_GENERIC_TYPE key[][] = this.key;
		while (pos < max) {
			KEY_GENERIC_TYPE gotten = BigArrays.get(key, pos++);
			if (! KEY_IS_NULL(gotten)) {
				action.accept(gotten);
			}
		}
	}

	/** Rehashes this set, making the table as small as possible.
	 *
	 * <p>This method rehashes the table to the smallest size satisfying the
	 * load factor. It can be used when the set will not be changed anymore, so
	 * to optimize access speed and size.
	 *
	 * <p>If the table size is already the minimum possible, this method
	 * does nothing.
	 *
	 * @return true if there was enough memory to trim the set.
	 * @see #trim(long)
	 */

	public boolean trim() {
		return trim(size);
	}

	/** Rehashes this set if the table is too large.
	 *
	 * <p>Let <var>N</var> be the smallest table size that can hold
	 * <code>max(n,{@link #size64()})</code> entries, still satisfying the load factor. If the current
	 * table size is smaller than or equal to <var>N</var>, this method does
	 * nothing. Otherwise, it rehashes this set in a table of size
	 * <var>N</var>.
	 *
	 * <p>This method is useful when reusing sets.  {@linkplain #clear() Clearing a
	 * set} leaves the table size untouched. If you are reusing a set
	 * many times, you can call this method with a typical
	 * size to avoid keeping around a very large table just
	 * because of a few large transient sets.
	 *
	 * @param n the threshold for the trimming.
	 * @return true if there was enough memory to trim the set.
	 * @see #trim()
	 */

	public boolean trim(final long n) {
		final long l = bigArraySize(n, f);
		if (l >= this.n || size > maxFill(l, f)) return true;
		try {
			rehash(l);
		}
		catch(OutOfMemoryError cantDoIt) { return false; }
		return true;
	}

	/** Resizes the set.
	 *
	 * <p>This method implements the basic rehashing strategy, and may be
	 * overriden by subclasses implementing different rehashing strategies (e.g.,
	 * disk-based rehashing). However, you should not override this method
	 * unless you understand the internal workings of this class.
	 *
	 * @param newN the new size
	 */

	SUPPRESS_WARNINGS_KEY_UNCHECKED
	protected void rehash(final long newN) {
		final KEY_GENERIC_TYPE key[][] = this.key;
		final KEY_GENERIC_TYPE newKey[][] = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(newN);
		final long mask = newN - 1; // Note that this is used by the hashing macro
		final int newSegmentMask = newKey[0].length - 1;
		final int newBaseMask = newKey.length - 1;

		int base = 0, displ = 0, b, d;
		long h;
		KEY_GENERIC_TYPE k;

		for(long i = realSize(); i-- != 0;) {

			while(KEY_IS_NULL(key[base][displ])) base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0));

			k = key[base][displ];
			h = KEY2LONGHASH(k);

			// The starting point.
			if (! KEY_IS_NULL(newKey[b = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][d = (int)(h & newSegmentMask)]))
				while(! KEY_IS_NULL(newKey[b = (b + ((d = (d + 1) & newSegmentMask) == 0 ? 1 : 0)) & newBaseMask][d]));

			newKey[b][d] = k;

			base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0));
		}

		this.n = newN;
		this.key = newKey;
		initMasks();
		maxFill = maxFill(n, f);
	}

	@Deprecated
	@Override
	public int size() {
		return (int)Math.min(Integer.MAX_VALUE, size);
	}

	@Override
	public long size64() {
		return size;
	}

	@Override
	public boolean isEmpty() {
		return size == 0;
	}



	/** Returns a deep copy of this big set.
	 *
	 * <p>This method performs a deep copy of this big hash set; the data stored in the
	 * set, however, is not cloned. Note that this makes a difference only for object keys.
	 *
	 *  @return a deep copy of this big set.
	 */
	@Override
	SUPPRESS_WARNINGS_KEY_UNCHECKED
	public OPEN_HASH_BIG_SET KEY_GENERIC clone() {
		OPEN_HASH_BIG_SET KEY_GENERIC c;
		try {
			c = (OPEN_HASH_BIG_SET KEY_GENERIC)super.clone();
		}
		catch(CloneNotSupportedException cantHappen) {
			throw new InternalError();
		}
		c.key = copy(key);
		c.containsNull = containsNull;
		return c;
	}

	/** Returns a hash code for this set.
	 *
	 * This method overrides the generic method provided by the superclass.
	 * Since {@code equals()} is not overriden, it is important
	 * that the value returned by this method is the same value as
	 * the one returned by the overriden method.
	 *
	 * @return a hash code for this set.
	 */

	@Override
	public int hashCode() {
		final KEY_GENERIC_TYPE key[][] = this.key;
		int h = 0, base = 0, displ = 0;

		for(long j = realSize(); j-- != 0;) {
			while(KEY_IS_NULL(key[base][displ])) base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0));
#if KEYS_REFERENCE
			if (this != key[base][displ])
#endif
				h += KEY2JAVAHASH_NOT_NULL(key[base][displ]);
			base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0));
		}
		return h;
	}


	private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
		final KEY_ITERATOR KEY_GENERIC i = iterator();
		s.defaultWriteObject();
		for(long j = size; j-- != 0;) s.WRITE_KEY(i.NEXT_KEY());
	}


	SUPPRESS_WARNINGS_KEY_UNCHECKED
	private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
		s.defaultReadObject();

		n = bigArraySize(size, f);
		maxFill = maxFill(n, f);

		final KEY_GENERIC_TYPE[][] key = this.key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(n);

		initMasks();

		long h;
		KEY_GENERIC_TYPE k;
		int base, displ;

		for(long i = size; i-- != 0;) {
			k = KEY_GENERIC_CAST s.READ_KEY();

			if (KEY_IS_NULL(k)) containsNull = true;
			else {
				h = KEY2LONGHASH(k);
				if (! KEY_IS_NULL(key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)]))
					while(! KEY_IS_NULL(key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]));
				key[base][displ] = k;
			}
		}

		if (ASSERTS) checkTable();
	}


#ifdef ASSERTS_CODE
	private void checkTable() {
		assert (n & -n) == n : "Table length is not a power of two: " + n;
		assert n == BigArrays.length(key);
		long n = this.n;
		while(n-- != 0)
			if (! KEY_IS_NULL(BigArrays.get(key, n)) && ! contains(BigArrays.get(key, n)))
				throw new AssertionError("Hash table has key " + BigArrays.get(key, n) + " marked as occupied, but the key does not belong to the table");

#if KEYS_PRIMITIVE
		java.util.HashSet<KEY_GENERIC_CLASS> s = new java.util.HashSet<KEY_GENERIC_CLASS> ();
#else
		java.util.HashSet<Object> s = new java.util.HashSet<Object>();
#endif

		for(long i = size(); i-- != 0;)
			if (! KEY_IS_NULL(BigArrays.get(key, i)) && ! s.add(BigArrays.get(key, i))) throw new AssertionError("Key " + BigArrays.get(key, i) + " appears twice");

	}
#else
	private void checkTable() {}
#endif

#ifdef TEST

	private static long seed = System.currentTimeMillis();
	private static java.util.Random r = new java.util.Random(seed);

	private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
		return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
		return r.NEXT_KEY();
#elif KEY_CLASS_Object
		return Integer.toBinaryString(r.nextInt());
#else
		return new java.io.Serializable() {};
#endif
	}


	private static final class ArrayComparator implements java.util.Comparator {
		public int compare(Object a, Object b) {
			byte[] aa = (byte[])a;
			byte[] bb = (byte[])b;
			int length = Math.min(aa.length, bb.length);
			for(int i = 0; i < length; i++) {
				if (aa[i] < bb[i]) return -1;
				if (aa[i] > bb[i]) return 1;
			}
			return aa.length == bb.length ? 0 : (aa.length < bb.length ? -1 : 1);
		}
	}

	private static final class MockSet extends java.util.TreeSet {
		private java.util.List list = new java.util.ArrayList();

		public MockSet(java.util.Comparator c) { super(c); }

		public boolean add(Object k) {
			if (! contains(k)) list.add(k);
			return super.add(k);
		}

		public boolean addAll(Collection c) {
			java.util.Iterator i = c.iterator();
			boolean result = false;
			while(i.hasNext()) result |= add(i.next());
			return result;
		}

		public boolean removeAll(Collection c) {
			java.util.Iterator i = c.iterator();
			boolean result = false;
			while(i.hasNext()) result |= remove(i.next());
			return result;
		}

		public boolean remove(Object k) {
			if (contains(k)) {
				int i = list.size();
				while(i-- != 0) if (comparator().compare(list.get(i), k) == 0) {
					list.remove(i);
					break;
				}
			}
			return super.remove(k);
		}

		private void justRemove(Object k) { super.remove(k); }

		public java.util.Iterator iterator() {
			return new java.util.Iterator() {
					final java.util.Iterator iterator = list.iterator();
					Object curr;
					public Object next() { return curr = iterator.next(); }
					public boolean hasNext() { return iterator.hasNext(); }
					public void remove() {
						justRemove(curr);
						iterator.remove();
					}
				};
		}
	}

	private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
	private static java.text.FieldPosition fp = new java.text.FieldPosition(0);

	private static String format(double d) {
		StringBuffer s = new StringBuffer();
		return format.format(d, s, fp).toString();
	}

	// TODO Use a ASSERTS like preprocessor variable?
	private static final boolean PARALLEL_STREAMS = Boolean.getBoolean("useParallelStreams");

	private static void speedTest(int n, float f, boolean comp) {
		int i, j;
		OPEN_HASH_BIG_SET m;
		java.util.HashSet t;

		KEY_TYPE k[] = new KEY_TYPE[n];
		KEY_TYPE nk[] = new KEY_TYPE[n];
		long ms;

		for(i = 0; i < n; i++) {
			k[i] = genKey();
			nk[i] = genKey();
		}

		double totAdd = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, d;

		if (comp) { for(j = 0; j < 20; j++) {

			t = new java.util.HashSet(16);

			/* We add pairs to t. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) t.add(KEY2OBJ(k[i]));
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totAdd += d;
			System.out.print("Add: " + format(d) +" K/s ");

			/* We check for pairs in t. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) t.contains(KEY2OBJ(k[i]));
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totYes += d;
			System.out.print("Yes: " + format(d) +" K/s ");

			/* We check for pairs not in t. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) t.contains(KEY2OBJ(nk[i]));
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totNo += d;
			System.out.print("No: " + format(d) +" K/s ");

			/* We iterate on t. */
			ms = System.currentTimeMillis();
			for(java.util.Iterator it = t.iterator(); it.hasNext(); it.next());
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totIter += d;
			System.out.print("Iter: " + format(d) +" K/s ");

			/* We delete pairs not in t. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) t.remove(KEY2OBJ(nk[i]));
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totRemNo += d;
			System.out.print("RemNo: " + format(d) +" K/s ");

			/* We delete pairs in t. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) t.remove(KEY2OBJ(k[i]));
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totRemYes += d;
			System.out.print("RemYes: " + format(d) +" K/s ");

			System.out.println();
		}

		System.out.println();
		System.out.println("java.util Add: " + format(totAdd/(j-3)) + " K/s Yes: " + format(totYes/(j-3)) + " K/s No: " + format(totNo/(j-3)) + " K/s Iter: " + format(totIter/(j-3)) + " K/s RemNo: " + format(totRemNo/(j-3)) + " K/s RemYes: " + format(totRemYes/(j-3)) + "K/s");

		System.out.println();

		totAdd = totYes = totNo = totIter = totRemYes = totRemNo = 0;
		}

		for(j = 0; j < 20; j++) {

			m = new OPEN_HASH_BIG_SET(16, f);

			/* We add pairs to m. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) m.add(k[i]);
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totAdd += d;
			System.out.print("Add: " + format(d) +" K/s ");

			/* We check for pairs in m. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) m.contains(k[i]);
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totYes += d;
			System.out.print("Yes: " + format(d) +" K/s ");

			/* We check for pairs not in m. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) m.contains(nk[i]);
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totNo += d;
			System.out.print("No: " + format(d) +" K/s ");

			/* We iterate on m. */
			ms = System.currentTimeMillis();
			for(KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY());
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totIter += d;
			System.out.print("Iter: " + format(d) +" K/s ");

			/* We delete pairs not in m. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) m.remove(nk[i]);
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totRemNo += d;
			System.out.print("RemNo: " + format(d) +" K/s ");

			/* We delete pairs in m. */
			ms = System.currentTimeMillis();
			for(i = 0; i < n;  i++) m.remove(k[i]);
			d = 1.0 * n / (System.currentTimeMillis() - ms);
			if (j > 2) totRemYes += d;
			System.out.print("RemYes: " + format(d) +" K/s ");

			System.out.println();
		}


		System.out.println();
		System.out.println("fastutil  Add: " + format(totAdd/(j-3)) + " K/s Yes: " + format(totYes/(j-3)) + " K/s No: " + format(totNo/(j-3)) + " K/s Iter: " + format(totIter/(j-3)) + " K/s RemNo: " + format(totRemNo/(j-3)) + " K/s RemYes: " + format(totRemYes/(j-3)) + " K/s");

		System.out.println();
	}


	private static void fatal(String msg) {
		throw new AssertionError(msg);
	}

	private static void ensure(boolean cond, String msg) {
		if (cond) return;
		fatal(msg);
	}


	private static void printProbes(OPEN_HASH_BIG_SET m) {
		long totProbes = 0;
		double totSquareProbes = 0;
		int maxProbes = 0;
		final double f = (double)m.size / m.n;
		for(int i = 0, c = 0; i < m.n; i++) {
			if (! KEY_IS_NULL(BigArrays.get(m.key, i))) c++;
			else {
				if (c != 0) {
					final long p = (c + 1) * (c + 2) / 2;
					totProbes += p;
					totSquareProbes += (double)p * p;
				}
				maxProbes = Math.max(c, maxProbes);
				c = 0;
				totProbes++;
				totSquareProbes++;
			}
		}

		final double expected = (double)totProbes / m.n;
		System.err.println("Expected probes: " + (
			3 * Math.sqrt(3) * (f / ((1 - f) * (1 - f))) + 4 / (9 * f) - 1
		) + "; actual: " + expected + "; stddev: " + Math.sqrt(totSquareProbes / m.n - expected * expected)  + "; max probes: " + maxProbes);
	}
	private static void runTest(int n, float f) throws Exception {
		int c;
		OPEN_HASH_BIG_SET m = new OPEN_HASH_BIG_SET(Hash.DEFAULT_INITIAL_SIZE, f);
		java.util.Set t = new java.util.HashSet();

		/* First of all, we fill t with random data. */

		for(int i=0; i<f * n;  i++) t.add(KEY2OBJ(genKey()));

		/* Now we add to m the same data */

		m.addAll(t);

		ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after insertion");;
		ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after insertion");;
		printProbes(m);

		/* Now we check that m actually holds that data. */

		for(java.util.Iterator i=t.iterator(); i.hasNext();) {
			Object e = i.next();
			ensure(m.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on t)");
		}

		/* Now we check that m actually holds that data, but iterating on m. */

		c = 0;
		for(java.util.Iterator i=m.iterator(); i.hasNext();) {
			Object e = i.next();
			c++;
			ensure(t.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after insertion (iterating on m)");
		}

		ensure(c == t.size(), "Error (" + seed + "): m has only " + c + " keys instead of " + t.size() + " after insertion (iterating on m)");
		/* Now we check that inquiries about random data give the same answer in m and t. For
		   m we use the polymorphic method. */

		for(int i=0; i<n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.contains(T) == t.contains(KEY2OBJ(T)), "Error (" + seed + "): divergence in keys between t and m (polymorphic method)");
		}

		/* Again, we check that inquiries about random data give the same answer in m and t, but
		   for m we use the standard method. */

		for(int i=0; i<n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.contains(KEY2OBJ(T)) == t.contains(KEY2OBJ(T)), "Error (" + seed + "): divergence between t and m (standard method)");
		}


		/* Now we put and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<20*n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.add(KEY2OBJ(T)) == t.add(KEY2OBJ(T)), "Error (" + seed + "): divergence in add() between t and m");
			T = genKey();
			ensure(m.remove(KEY2OBJ(T)) == t.remove(KEY2OBJ(T)), "Error (" + seed + "): divergence in remove() between t and m");
		}

		ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after removal");;
		ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after removal");;

		/* Now we check that m actually holds that data. */

		for(java.util.Iterator i=t.iterator(); i.hasNext();) {
			Object e = i.next();
			ensure(m.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on t)");
		}

		/* Now we check that m actually holds that data, but iterating on m. */

		for(java.util.Iterator i=m.iterator(); i.hasNext();) {
			Object e = i.next();
			ensure(t.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after removal (iterating on m)");
		}

		printProbes(m);

		/* Now we make m into an array, make it again a set and check it is OK. */
		KEY_TYPE a[] = m.TO_KEY_ARRAY();

		ensure(new OPEN_HASH_BIG_SET(a).equals(m), "Error (" + seed + "): toArray() output (or array-based constructor) is not OK");

		/* Now we check cloning. */

		ensure(m.equals(((OPEN_HASH_BIG_SET)m).clone()), "Error (" + seed + "): m does not equal m.clone()");
		ensure(((OPEN_HASH_BIG_SET)m).clone().equals(m), "Error (" + seed + "): m.clone() does not equal m");

		int h = m.hashCode();

		/* Now we save and read m. */

		{
			java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test." + m.getClass().getSimpleName() + "." + n);
			java.io.OutputStream os = new java.io.FileOutputStream(ff);
			java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);

			oos.writeObject(m);
			oos.close();

			java.io.InputStream is = new java.io.FileInputStream(ff);
			java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);

			m = (OPEN_HASH_BIG_SET)ois.readObject();
			ois.close();
			ff.delete();
		}

#if !KEYS_USE_REFERENCE_EQUALITY
		ensure(m.hashCode() == h, "Error (" + seed + "): hashCode() changed after save/read");;

		printProbes(m);

		/* Now we check that m actually holds that data, but iterating on m. */

		for(java.util.Iterator i=m.iterator(); i.hasNext();) {
			Object e = i.next();
			ensure(t.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after save/read");
		}
#else
		m.clear();
		m.addAll(t);
#endif

		/* Now we put and remove random data in m and t, checking that the result is the same. */

		for(int i=0; i<20*n;  i++) {
			KEY_TYPE T = genKey();
			ensure(m.add(KEY2OBJ(T)) == t.add(KEY2OBJ(T)), "Error (" + seed + "): divergence in add() between t and m after save/read");
			T = genKey();
			ensure(m.remove(KEY2OBJ(T)) == t.remove(KEY2OBJ(T)), "Error (" + seed + "): divergence in remove() between t and m after save/read");
		}

		ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after post-save/read removal");;
		ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after post-save/read removal");;

/* Now test that the sets hold the same data using streams */
		{
#if KEYS_REFERENCE
			java.util.stream.Stream<KEY_TYPE> i = m.stream();
			java.util.stream.Stream<KEY_TYPE> j = t.stream();
#elif KEY_CLASS_Boolean
			java.util.stream.Stream<KEY_CLASS> i = m.stream();
			java.util.stream.Stream<KEY_CLASS> j = t.stream();
#else
			JDK_PRIMITIVE_STREAM i = m.KEY_WIDENED_STREAM_METHOD();
			java.util.stream.Stream<KEY_CLASS> j = t.stream();
#endif

			if (PARALLEL_STREAMS) {
				i = i.parallel();
				j = j.parallel();
			}

			i = i.sorted();
			j = j.sorted();

#if KEYS_REFERENCE || KEY_CLASS_Boolean
			Object[] iArray = i.toArray();
			Object[] jArray = j.toArray();
#elif KEY_CLASS_Character
			int[] iArray = i.toArray();
			int[] jArray = j.mapToInt(c -> (int)c.charValue()).toArray();
#else
			KEY_TYPE_WIDENED[] iArray = i.toArray();
			KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(Number::KEY_WIDENED_VALUE).toArray();
#endif
			ensure(java.util.Arrays.equals(iArray, jArray), "! sorted arrays equal");
		}


		/* Now we take out of m everything, and check that it is empty. */

		for(java.util.Iterator i=m.iterator(); i.hasNext();) { i.next(); i.remove();}

		ensure(m.isEmpty(), "Error (" + seed + "): m is not empty (as it should be)");

#if KEY_CLASS_Integer || KEY_CLASS_Long
		m = new OPEN_HASH_BIG_SET(n, f);
		t.clear();
		int x;

		/* Now we torture-test the hash table. This part is implemented only for integers and longs. */

		int p = m.key.length - 1;

		for(int i=0; i<p; i++) {
			for (int j=0; j<20; j++) {
				m.add(i+(r.nextInt() % 10)*p);
				m.remove(i+(r.nextInt() % 10)*p);
			}

			for (int j=-10; j<10; j++) m.remove(i+j*p);
		}

		t.addAll(m);

		/* Now all table entries are REMOVED. */

		int k = 0;
		for(int i=0; i<(p*f)/10; i++) {
			for (int j=0; j<10; j++) {
				k++;
				x = i+(r.nextInt() % 10)*p;
				ensure(m.add(x) == t.add(KEY2OBJ(x)), "Error (" + seed + "): m and t differ on a key during torture-test insertion.");
			}
		}

		ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after torture-test insertion");;
		ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after torture-test insertion");;

		for(int i=0; i<(p*f)/10; i++) {
			for (int j=0; j<10; j++) {
				x = i+(r.nextInt() % 10)*p;
				ensure(m.remove(x) == t.remove(KEY2OBJ(x)), "Error (" + seed + "): m and t differ on a key during torture-test removal.");
			}
		}

		ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after torture-test removal");;
		ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after torture-test removal");;

		ensure(m.equals(m.clone()), "Error (" + seed + "): !m.equals(m.clone()) after torture-test removal");;
		ensure(((OPEN_HASH_BIG_SET)m.clone()).equals(m), "Error (" + seed + "): !m.clone().equals(m) after torture-test removal");;

		m.trim();

		ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after trim()");;
		ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after trim()");;

#endif

		System.out.println("Test OK");
		return;
	}


	public static void main(String args[]) throws Exception {
		float f = Hash.DEFAULT_LOAD_FACTOR;
		int n  = Integer.parseInt(args[1]);
		if (args.length>2) f = Float.parseFloat(args[2]);
		if (args.length > 3) r = new java.util.Random(seed = Long.parseLong(args[3]));

		try {
			if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, f, "speedComp".equals(args[0]));
			else if ("test".equals(args[0])) runTest(n, f);
		} catch(Throwable e) {
			e.printStackTrace(System.err);
			System.err.println("seed: " + seed);
			throw e;
		}
	}

#endif

}