1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
/*
* Copyright (C) 2005-2008 by Pieter Palmers
*
* This file is part of FFADO
* FFADO = Free FireWire (pro-)audio drivers for Linux
*
* FFADO is based upon FreeBoB.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <argp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <endian.h>
#include <signal.h>
#include "src/debugmodule/debugmodule.h"
#include "libutil/ByteSwap.h"
#include "src/libieee1394/cycletimer.h"
#include "src/libutil/TimestampedBuffer.h"
#include "libutil/Time.h"
#include <pthread.h>
using namespace Util;
class TimestampedBufferTestClient
: public TimestampedBufferClient {
public:
bool processReadBlock(char *data, unsigned int nevents, unsigned int offset) {return true;};
bool processWriteBlock(char *data, unsigned int nevents, unsigned int offset) {return true;};
void setVerboseLevel(int l) {setDebugLevel(l);};
private:
DECLARE_DEBUG_MODULE;
};
IMPL_DEBUG_MODULE( TimestampedBufferTestClient, TimestampedBufferTestClient, DEBUG_LEVEL_VERBOSE );
DECLARE_GLOBAL_DEBUG_MODULE;
int run;
// Program documentation.
static char doc[] = "FFADO -- Timestamped buffer test\n\n";
// A description of the arguments we accept.
static char args_doc[] = "";
struct arguments
{
short verbose;
uint64_t wrap_at;
uint64_t frames_per_packet;
uint64_t events_per_frame;
float rate;
uint64_t total_cycles;
uint64_t buffersize;
uint64_t start_at_cycle;
};
// The options we understand.
static struct argp_option options[] = {
{"verbose", 'v', "n", 0, "Verbose level" },
{"wrap", 'w', "n", 0, "Wrap at (ticks) (3072000)" },
{"fpp", 'f', "n", 0, "Frames per packet (8)" },
{"epf", 'e', "n", 0, "Events per frame (10)" },
{"rate", 'r', "n", 0, "Rate (ticks/frame) (512.0)" },
{"cycles", 'c', "n", 0, "Total cycles to run (2000)" },
{"buffersize", 'b', "n", 0, "Buffer size (in frames) (1024)" },
{"startcycle", 's', "n", 0, "Start at cycle (0)" },
{ 0 }
};
//-------------------------------------------------------------
// Parse a single option.
static error_t
parse_opt( int key, char* arg, struct argp_state* state )
{
// Get the input argument from `argp_parse', which we
// know is a pointer to our arguments structure.
struct arguments* arguments = ( struct arguments* ) state->input;
char* tail;
errno = 0;
switch (key) {
case 'v':
if (arg) {
arguments->verbose = strtoll( arg, &tail, 0 );
if ( errno ) {
fprintf( stderr, "Could not parse 'verbose' argument\n" );
return ARGP_ERR_UNKNOWN;
}
} else {
if ( errno ) {
fprintf( stderr, "Could not parse 'verbose' argument\n" );
return ARGP_ERR_UNKNOWN;
}
}
break;
case 'w':
if (arg) {
arguments->wrap_at = strtoll( arg, &tail, 0 );
if ( errno ) {
fprintf( stderr, "Could not parse 'wrap' argument\n" );
return ARGP_ERR_UNKNOWN;
}
} else {
if ( errno ) {
fprintf( stderr, "Could not parse 'wrap' argument\n" );
return ARGP_ERR_UNKNOWN;
}
}
break;
case 'f':
if (arg) {
arguments->frames_per_packet = strtoll( arg, &tail, 0 );
if ( errno ) {
fprintf( stderr, "Could not parse 'fpp' argument\n" );
return ARGP_ERR_UNKNOWN;
}
} else {
if ( errno ) {
fprintf( stderr, "Could not parse 'fpp' argument\n" );
return ARGP_ERR_UNKNOWN;
}
}
break;
case 'e':
if (arg) {
arguments->events_per_frame = strtoll( arg, &tail, 0 );
if ( errno ) {
fprintf( stderr, "Could not parse 'epf' argument\n" );
return ARGP_ERR_UNKNOWN;
}
} else {
if ( errno ) {
fprintf( stderr, "Could not parse 'epf' argument\n" );
return ARGP_ERR_UNKNOWN;
}
}
break;
case 'c':
if (arg) {
arguments->total_cycles = strtoll( arg, &tail, 0 );
if ( errno ) {
fprintf( stderr, "Could not parse 'cycles' argument\n" );
return ARGP_ERR_UNKNOWN;
}
} else {
if ( errno ) {
fprintf( stderr, "Could not parse 'cycles' argument\n" );
return ARGP_ERR_UNKNOWN;
}
}
break;
case 's':
if (arg) {
arguments->start_at_cycle = strtoll( arg, &tail, 0 );
if ( errno ) {
fprintf( stderr, "Could not parse 'startcycle' argument\n" );
return ARGP_ERR_UNKNOWN;
}
} else {
if ( errno ) {
fprintf( stderr, "Could not parse 'startcycle' argument\n" );
return ARGP_ERR_UNKNOWN;
}
}
break;
case 'b':
if (arg) {
arguments->buffersize = strtoll( arg, &tail, 0 );
if ( errno ) {
fprintf( stderr, "Could not parse 'buffersize' argument\n" );
return ARGP_ERR_UNKNOWN;
}
} else {
if ( errno ) {
fprintf( stderr, "Could not parse 'buffersize' argument\n" );
return ARGP_ERR_UNKNOWN;
}
}
break;
case 'r':
if (arg) {
arguments->rate = strtof( arg, &tail );
if ( errno ) {
fprintf( stderr, "Could not parse 'rate' argument\n" );
return ARGP_ERR_UNKNOWN;
}
} else {
if ( errno ) {
fprintf( stderr, "Could not parse 'rate' argument\n" );
return ARGP_ERR_UNKNOWN;
}
}
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
// Our argp parser.
static struct argp argp = { options, parse_opt, args_doc, doc };
static void sighandler (int sig)
{
run = 0;
}
int main(int argc, char *argv[])
{
TimestampedBuffer *t=NULL;
TimestampedBufferTestClient *c=NULL;
struct arguments arguments;
// Default values.
arguments.verbose = 0;
arguments.wrap_at = 3072000LLU; // 1000 cycles
arguments.frames_per_packet = 8;
arguments.events_per_frame = 10;
arguments.rate = 512.0;
arguments.total_cycles = 2000;
arguments.buffersize = 1024;
arguments.start_at_cycle = 0;
// Parse our arguments; every option seen by `parse_opt' will
// be reflected in `arguments'.
if ( argp_parse ( &argp, argc, argv, 0, 0, &arguments ) ) {
fprintf( stderr, "Could not parse command line\n" );
exit(1);
}
setDebugLevel(arguments.verbose);
run=1;
signal (SIGINT, sighandler);
signal (SIGPIPE, sighandler);
c=new TimestampedBufferTestClient();
if(!c) {
debugOutput(DEBUG_LEVEL_NORMAL, "Could not create TimestampedBufferTestClient\n");
exit(1);
}
c->setVerboseLevel(arguments.verbose);
t=new TimestampedBuffer(c);
if(!t) {
debugOutput(DEBUG_LEVEL_NORMAL, "Could not create TimestampedBuffer\n");
delete c;
exit(1);
}
t->setVerboseLevel(arguments.verbose);
// Setup the buffer
t->setBufferSize(arguments.buffersize);
t->setEventSize(sizeof(int));
t->setEventsPerFrame(arguments.events_per_frame);
t->setUpdatePeriod(arguments.frames_per_packet);
t->setNominalRate(arguments.rate);
t->setWrapValue(arguments.wrap_at);
t->prepare();
SleepRelativeUsec(1000);
debugOutput(DEBUG_LEVEL_NORMAL, "Start setBufferHeadTimestamp test...\n");
{
bool pass=true;
uint64_t time=arguments.start_at_cycle*3072;
int dummyframe_in[arguments.events_per_frame*arguments.frames_per_packet];
// initialize the timestamp
uint64_t timestamp=time;
if (timestamp >= arguments.wrap_at) {
// here we need a modulo because start_at_cycle can be large
timestamp %= arguments.wrap_at;
}
// account for the fact that there is offset,
// and that setBufferHeadTimestamp doesn't take offset
// into account
uint64_t timestamp2=timestamp;
if (timestamp2>=arguments.wrap_at) {
timestamp2-=arguments.wrap_at;
}
t->setBufferHeadTimestamp(timestamp2);
timestamp += (uint64_t)(arguments.rate * arguments.frames_per_packet);
if (timestamp >= arguments.wrap_at) {
timestamp -= arguments.wrap_at;
}
// write some packets
for (unsigned int i=0;i<20;i++) {
t->writeFrames(arguments.frames_per_packet, (char *)&dummyframe_in, timestamp);
timestamp += (uint64_t)(arguments.rate * arguments.frames_per_packet);
if (timestamp >= arguments.wrap_at) {
timestamp -= arguments.wrap_at;
}
}
for(unsigned int cycle=arguments.start_at_cycle;
cycle < arguments.start_at_cycle+arguments.total_cycles;
cycle++) {
ffado_timestamp_t ts_head_tmp;
uint64_t ts_head;
signed int fc_head;
t->setBufferHeadTimestamp(timestamp);
t->getBufferHeadTimestamp(&ts_head_tmp, &fc_head);
ts_head=(uint64_t)ts_head_tmp;
if (timestamp != ts_head) {
debugError(" cycle %4u error: %011" PRIu64 " != %011" PRIu64 "\n",
cycle, timestamp, ts_head);
pass=false;
}
timestamp += (uint64_t)(arguments.rate * arguments.frames_per_packet);
if (timestamp >= arguments.wrap_at) {
timestamp -= arguments.wrap_at;
}
// simulate the cycle timer clock in ticks
time += 3072;
if (time >= arguments.wrap_at) {
time -= arguments.wrap_at;
}
// allow for the messagebuffer thread to catch up
SleepRelativeUsec(200);
if(!run) break;
}
if(!pass) {
debugError("Test failed, exiting...\n");
delete t;
delete c;
return -1;
}
}
debugOutput(DEBUG_LEVEL_NORMAL, "Start read/write test...\n");
{
int dummyframe_in[arguments.events_per_frame*arguments.frames_per_packet];
int dummyframe_out[arguments.events_per_frame*arguments.frames_per_packet];
for (unsigned int i=0;i<arguments.events_per_frame*arguments.frames_per_packet;i++) {
dummyframe_in[i]=i;
}
uint64_t time=arguments.start_at_cycle*3072;
// initialize the timestamp
uint64_t timestamp=time;
if (timestamp >= arguments.wrap_at) {
// here we need a modulo because start_at_cycle can be large
timestamp %= arguments.wrap_at;
}
t->setBufferTailTimestamp(timestamp);
timestamp += (uint64_t)(arguments.rate * arguments.frames_per_packet);
if (timestamp >= arguments.wrap_at) {
timestamp -= arguments.wrap_at;
}
for(unsigned int cycle=arguments.start_at_cycle;
cycle < arguments.start_at_cycle+arguments.total_cycles;
cycle++) {
// simulate the rate adaptation
int64_t diff=(time%arguments.wrap_at)-timestamp;
if (diff>(int64_t)arguments.wrap_at/2) {
diff -= arguments.wrap_at;
} else if (diff<(-(int64_t)arguments.wrap_at)/2){
diff += arguments.wrap_at;
}
debugOutput(DEBUG_LEVEL_NORMAL,
"Simulating cycle %d @ time=%011" PRIu64 ", diff=%" PRId64 "\n",
cycle, time, diff);
if(diff > 0) {
ffado_timestamp_t ts_head_tmp, ts_tail_tmp;
uint64_t ts_head, ts_tail;
signed int fc_head, fc_tail;
// write one packet
t->writeFrames(arguments.frames_per_packet, (char *)&dummyframe_in, timestamp);
// read the buffer head timestamp
t->getBufferHeadTimestamp(&ts_head_tmp, &fc_head);
t->getBufferTailTimestamp(&ts_tail_tmp, &fc_tail);
ts_head=(uint64_t)ts_head_tmp;
ts_tail=(uint64_t)ts_tail_tmp;
debugOutput(DEBUG_LEVEL_NORMAL,
" TS after write: HEAD: %011" PRIu64 ", FC=%04u\n",
ts_head,fc_head);
debugOutput(DEBUG_LEVEL_NORMAL,
" TAIL: %011" PRIu64 ", FC=%04u\n",
ts_tail,fc_tail);
// read one packet
t->readFrames(arguments.frames_per_packet, (char *)&dummyframe_out);
// read the buffer head timestamp
t->getBufferHeadTimestamp(&ts_head_tmp, &fc_head);
t->getBufferTailTimestamp(&ts_tail_tmp, &fc_tail);
ts_head=(uint64_t)ts_head_tmp;
ts_tail=(uint64_t)ts_tail_tmp;
debugOutput(DEBUG_LEVEL_NORMAL,
" TS after write: HEAD: %011" PRIu64 ", FC=%04u\n",
ts_head,fc_head);
debugOutput(DEBUG_LEVEL_NORMAL,
" TAIL: %011" PRIu64 ", FC=%04u\n",
ts_tail,fc_tail);
// check
bool pass=true;
for (unsigned int i=0;i<arguments.events_per_frame*arguments.frames_per_packet;i++) {
pass = pass && (dummyframe_in[i]==dummyframe_out[i]);
}
if (!pass) {
debugOutput(DEBUG_LEVEL_NORMAL, "write/read check for cycle %d failed\n",cycle);
}
// update the timestamp
timestamp += (uint64_t)(arguments.rate * arguments.frames_per_packet);
if (timestamp >= arguments.wrap_at) {
timestamp -= arguments.wrap_at;
}
}
// simulate the cycle timer clock in ticks
time += 3072;
if (time >= arguments.wrap_at) {
time -= arguments.wrap_at;
}
// allow for the messagebuffer thread to catch up
SleepRelativeUsec(200);
if(!run) break;
}
}
// second run, now do block processing
debugOutput(DEBUG_LEVEL_NORMAL, "Start block read test...\n");
{
unsigned int blocksize=32;
int dummyframe_out_block[arguments.events_per_frame*arguments.frames_per_packet*blocksize];
int dummyframe_in[arguments.events_per_frame*arguments.frames_per_packet];
for (unsigned int i=0;i<arguments.events_per_frame*arguments.frames_per_packet;i++) {
dummyframe_in[i]=i;
}
uint64_t time=arguments.start_at_cycle*3072;
// initialize the timestamp
uint64_t timestamp=time;
if (timestamp >= arguments.wrap_at) {
// here we need a modulo because start_at_cycle can be large
timestamp %= arguments.wrap_at;
}
t->setBufferTailTimestamp(timestamp);
timestamp += (uint64_t)(arguments.rate * arguments.frames_per_packet);
if (timestamp >= arguments.wrap_at) {
timestamp -= arguments.wrap_at;
}
for(unsigned int cycle=arguments.start_at_cycle;
cycle < arguments.start_at_cycle+arguments.total_cycles;
cycle++) {
// simulate the rate adaptation
int64_t diff=(time%arguments.wrap_at)-timestamp;
if (diff>(int64_t)arguments.wrap_at/2) {
diff -= arguments.wrap_at;
} else if (diff<(-(int64_t)arguments.wrap_at)/2){
diff += arguments.wrap_at;
}
debugOutput(DEBUG_LEVEL_NORMAL,
"Simulating cycle %d @ time=%011" PRIu64 ", diff=%" PRId64 "\n",
cycle, time, diff);
if(diff>0) {
ffado_timestamp_t ts_head_tmp, ts_tail_tmp;
uint64_t ts_head, ts_tail;
signed int fc_head, fc_tail;
// write one packet
t->writeFrames(arguments.frames_per_packet, (char *)&dummyframe_in, timestamp);
// read the buffer head timestamp
t->getBufferHeadTimestamp(&ts_head_tmp, &fc_head);
t->getBufferTailTimestamp(&ts_tail_tmp, &fc_tail);
ts_head=(uint64_t)ts_head_tmp;
ts_tail=(uint64_t)ts_tail_tmp;
debugOutput(DEBUG_LEVEL_NORMAL,
" TS after write: HEAD: %011" PRIu64 ", FC=%04u\n",
ts_head,fc_head);
debugOutput(DEBUG_LEVEL_NORMAL,
" TAIL: %011" PRIu64 ", FC=%04u\n",
ts_tail,fc_tail);
if (fc_head > (signed int)blocksize) {
debugOutput(DEBUG_LEVEL_NORMAL,"Reading one block (%u frames)\n",blocksize);
// read one block
t->readFrames(blocksize, (char *)&dummyframe_out_block);
// read the buffer head timestamp
t->getBufferHeadTimestamp(&ts_head_tmp, &fc_head);
t->getBufferTailTimestamp(&ts_tail_tmp, &fc_tail);
ts_head=(uint64_t)ts_head_tmp;
ts_tail=(uint64_t)ts_tail_tmp;
debugOutput(DEBUG_LEVEL_NORMAL,
" TS after read: HEAD: %011" PRIu64 ", FC=%04u\n",
ts_head,fc_head);
debugOutput(DEBUG_LEVEL_NORMAL,
" TAIL: %011" PRIu64 ", FC=%04u\n",
ts_tail,fc_tail);
}
// update the timestamp
timestamp += (uint64_t)(arguments.rate * arguments.frames_per_packet);
if (timestamp >= arguments.wrap_at) {
timestamp -= arguments.wrap_at;
}
}
// simulate the cycle timer clock in ticks
time += 3072;
if (time >= arguments.wrap_at) {
time -= arguments.wrap_at;
}
// allow for the messagebuffer thread to catch up
SleepRelativeUsec(200);
if(!run) break;
}
}
delete t;
delete c;
return EXIT_SUCCESS;
}
|