File: Call.c

package info (click to toggle)
libffi-ruby 0.6.3debian-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 1,072 kB
  • ctags: 1,458
  • sloc: ansic: 5,824; ruby: 5,402; xml: 144; sh: 73; makefile: 7
file content (881 lines) | stat: -rw-r--r-- 26,512 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/*
 * Copyright (c) 2009, Wayne Meissner
 * Copyright (c) 2009, Luc Heinrich <luc@honk-honk.com>
 * Copyright (c) 2009, Mike Dalessio <mike.dalessio@gmail.com>
 * Copyright (c) 2009, Aman Gupta.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * * Redistributions of source code must retain the above copyright notice, this
 *   list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright notice
 *   this list of conditions and the following disclaimer in the documentation
 *   and/or other materials provided with the distribution.
 * * The name of the author or authors may not be used to endorse or promote
 *   products derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/param.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <errno.h>
#include <ruby.h>
#if defined(HAVE_NATIVETHREAD) && defined(HAVE_RB_THREAD_BLOCKING_REGION) && !defined(_WIN32)
#  include <signal.h>
#  include <pthread.h>
#endif
#include <ffi.h>
#include "extconf.h"
#include "rbffi.h"
#include "compat.h"
#include "AbstractMemory.h"
#include "Pointer.h"
#include "Struct.h"
#include "Function.h"
#include "Type.h"
#include "LastError.h"
#include "Call.h"

#ifdef USE_RAW
#  ifndef __i386__
#    error "RAW argument packing only supported on i386"
#  endif

#define INT8_ADJ (4)
#define INT16_ADJ (4)
#define INT32_ADJ (4)
#define INT64_ADJ (8)
#define LONG_ADJ (sizeof(long))
#define FLOAT32_ADJ (4)
#define FLOAT64_ADJ (8)
#define ADDRESS_ADJ (sizeof(void *))

#endif /* USE_RAW */

#ifdef USE_RAW
#  define ADJ(p, a) ((p) = (FFIStorage*) (((char *) p) + a##_ADJ))
#else
#  define ADJ(p, a) (++(p))
#endif

static void* callback_param(VALUE proc, VALUE cbinfo);
static inline int getSignedInt(VALUE value, int type, int minValue, int maxValue, const char* typeName, VALUE enums);
static inline int getUnsignedInt(VALUE value, int type, int maxValue, const char* typeName);
static inline unsigned int getUnsignedInt32(VALUE value, int type);
static inline void* getPointer(VALUE value, int type);
static inline char* getString(VALUE value, int type);


#ifdef BYPASS_FFI
static long rbffi_GetLongValue(int idx, VALUE* argv, FunctionType* fnInfo);
static VALUE rbffi_InvokeVrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo);
static VALUE rbffi_InvokeLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo);
static VALUE rbffi_InvokeLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo);
static VALUE rbffi_InvokeLLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo);
static VALUE rbffi_InvokeLLLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo);
static VALUE rbffi_InvokeLLLLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo);
static VALUE rbffi_InvokeLLLLLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo);
static VALUE rbffi_InvokeLongParams(int argc, VALUE* argv, void* function, FunctionType* fnInfo);
#endif


static ID id_to_ptr, id_map_symbol;

void
rbffi_SetupCallParams(int argc, VALUE* argv, int paramCount, NativeType* paramTypes,
        FFIStorage* paramStorage, void** ffiValues,
        VALUE* callbackParameters, int callbackCount, VALUE enums)
{
    VALUE callbackProc = Qnil;
    FFIStorage* param = &paramStorage[0];
    int i, argidx, cbidx, argCount;

    if (paramCount != -1 && paramCount != argc) {
        if (argc == (paramCount - 1) && callbackCount == 1 && rb_block_given_p()) {
            callbackProc = rb_block_proc();
        } else {
            rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", argc, paramCount);
        }
    }

    argCount = paramCount != -1 ? paramCount : argc;

    for (i = 0, argidx = 0, cbidx = 0; i < argCount; ++i) {
        int type = argidx < argc ? TYPE(argv[argidx]) : T_NONE;
        ffiValues[i] = param;

        switch (paramTypes[i]) {

            case NATIVE_INT8:
                param->s8 = getSignedInt(argv[argidx++], type, -128, 127, "char", Qnil);
                ADJ(param, INT8);
                break;


            case NATIVE_INT16:
                param->s16 = getSignedInt(argv[argidx++], type, -0x8000, 0x7fff, "short", Qnil);
                ADJ(param, INT16);
                break;


            case NATIVE_INT32:
            case NATIVE_ENUM:
                param->s32 = getSignedInt(argv[argidx++], type, -0x80000000, 0x7fffffff, "int", enums);
                ADJ(param, INT32);
                break;


            case NATIVE_BOOL:
                if (type != T_TRUE && type != T_FALSE) {
                    rb_raise(rb_eTypeError, "wrong argument type  (expected a boolean parameter)");
                }
                param->s8 = argv[argidx++] == Qtrue;
                ADJ(param, INT8);
                break;


            case NATIVE_UINT8:
                param->u8 = getUnsignedInt(argv[argidx++], type, 0xff, "unsigned char");
                ADJ(param, INT8);
                break;


            case NATIVE_UINT16:
                param->u16 = getUnsignedInt(argv[argidx++], type, 0xffff, "unsigned short");
                ADJ(param, INT16);
                break;


            case NATIVE_UINT32:
                /* Special handling/checking for unsigned 32 bit integers */
                param->u32 = getUnsignedInt32(argv[argidx++], type);
                ADJ(param, INT32);
                break;


            case NATIVE_INT64:
                if (type != T_FIXNUM && type != T_BIGNUM) {
                    rb_raise(rb_eTypeError, "Expected an Integer parameter");
                }
                param->i64 = NUM2LL(argv[argidx]);
                ADJ(param, INT64);
                ++argidx;
                break;


            case NATIVE_UINT64:
                if (type != T_FIXNUM && type != T_BIGNUM) {
                    rb_raise(rb_eTypeError, "Expected an Integer parameter");
                }
                param->u64 = NUM2ULL(argv[argidx]);
                ADJ(param, INT64);
                ++argidx;
                break;

            case NATIVE_LONG:
                *(ffi_sarg *) param = NUM2LONG(argv[argidx]);
                ADJ(param, LONG);
                ++argidx;
                break;

            case NATIVE_ULONG:
                *(ffi_arg *) param = NUM2ULONG(argv[argidx]);
                ADJ(param, LONG);
                ++argidx;
                break;

            case NATIVE_FLOAT32:
                if (type != T_FLOAT && type != T_FIXNUM) {
                    rb_raise(rb_eTypeError, "Expected a Float parameter");
                }
                param->f32 = (float) NUM2DBL(argv[argidx]);
                ADJ(param, FLOAT32);
                ++argidx;
                break;

            case NATIVE_FLOAT64:
                if (type != T_FLOAT && type != T_FIXNUM) {
                    rb_raise(rb_eTypeError, "Expected a Float parameter");
                }
                param->f64 = NUM2DBL(argv[argidx]);
                ADJ(param, FLOAT64);
                ++argidx;
                break;


            case NATIVE_STRING:
                param->ptr = getString(argv[argidx++], type);
                ADJ(param, ADDRESS);
                break;

            case NATIVE_POINTER:
            case NATIVE_BUFFER_IN:
            case NATIVE_BUFFER_OUT:
            case NATIVE_BUFFER_INOUT:
                param->ptr = getPointer(argv[argidx++], type);
                ADJ(param, ADDRESS);
                break;


            case NATIVE_FUNCTION:
            case NATIVE_CALLBACK:
                if (callbackProc != Qnil) {
                    param->ptr = callback_param(callbackProc, callbackParameters[cbidx++]);
                } else {
                    param->ptr = callback_param(argv[argidx], callbackParameters[cbidx++]);
                    ++argidx;
                }
                ADJ(param, ADDRESS);
                break;

            case NATIVE_STRUCT:
                ffiValues[i] = getPointer(argv[argidx++], type);
                break;

            default:
                rb_raise(rb_eArgError, "Invalid parameter type: %d", paramTypes[i]);
        }
    }
}


#if defined(HAVE_NATIVETHREAD) && defined(HAVE_RB_THREAD_BLOCKING_REGION)

typedef struct BlockingCall_ {
    void* function;
    FunctionType* info;
    void **ffiValues;
    FFIStorage* retval;
} BlockingCall;

static VALUE
call_blocking_function(void* data)
{
    BlockingCall* b = (BlockingCall *) data;

    ffi_call(&b->info->ffi_cif, FFI_FN(b->function), b->retval, b->ffiValues);

    return Qnil;
}
#endif

VALUE
rbffi_CallFunction(int argc, VALUE* argv, void* function, FunctionType* fnInfo)
{
    void* retval;
    void** ffiValues;
    FFIStorage* params;

    ffiValues = ALLOCA_N(void *, fnInfo->parameterCount);
    params = ALLOCA_N(FFIStorage, fnInfo->parameterCount);
    retval = alloca(MAX(fnInfo->ffi_cif.rtype->size, FFI_SIZEOF_ARG));

    rbffi_SetupCallParams(argc, argv,
        fnInfo->parameterCount, fnInfo->nativeParameterTypes, params, ffiValues,
        fnInfo->callbackParameters, fnInfo->callbackCount, fnInfo->rbEnums);

#if defined(HAVE_NATIVETHREAD) && defined(HAVE_RB_THREAD_BLOCKING_REGION)
    if (unlikely(fnInfo->blocking)) {
        BlockingCall bc;

        bc.info = fnInfo;
        bc.function = function;
        bc.ffiValues = ffiValues;
        bc.retval = retval;

        rb_thread_blocking_region(call_blocking_function, &bc, (void *) -1, NULL);
    } else {
        ffi_call(&fnInfo->ffi_cif, FFI_FN(function), retval, ffiValues);
    }
#else
    ffi_call(&fnInfo->ffi_cif, FFI_FN(function), retval, ffiValues);
#endif

    if (!fnInfo->ignoreErrno) {
        rbffi_save_errno();
    }

    return rbffi_NativeValue_ToRuby(fnInfo->returnType, fnInfo->rbReturnType, retval,
        fnInfo->rbEnums);
}

static inline int
getSignedInt(VALUE value, int type, int minValue, int maxValue, const char* typeName, VALUE enums)
{
    int i;

    if (type == T_SYMBOL && enums != Qnil) {
        value = rb_funcall2(enums, id_map_symbol, 1, &value);
        if (value == Qnil) {
            rb_raise(rb_eTypeError, "Expected a valid enum constant");
        }

    } else if (type != T_FIXNUM && type != T_BIGNUM) {
        rb_raise(rb_eTypeError, "Expected an Integer parameter");
    }

    i = NUM2INT(value);
    if (i < minValue || i > maxValue) {
        rb_raise(rb_eRangeError, "Value %d outside %s range", i, typeName);
    }

    return i;
}

static inline int
getUnsignedInt(VALUE value, int type, int maxValue, const char* typeName)
{
    int i;

    if (type != T_FIXNUM && type != T_BIGNUM) {
        rb_raise(rb_eTypeError, "Expected an Integer parameter");
    }

    i = NUM2INT(value);
    if (i < 0 || i > maxValue) {
        rb_raise(rb_eRangeError, "Value %d outside %s range", i, typeName);
    }

    return i;
}

/* Special handling/checking for unsigned 32 bit integers */
static inline unsigned int
getUnsignedInt32(VALUE value, int type)
{
    long long i;

    if (type != T_FIXNUM && type != T_BIGNUM) {
        rb_raise(rb_eTypeError, "Expected an Integer parameter");
    }

    i = NUM2LL(value);
    if (i < 0L || i > 0xffffffffL) {
        rb_raise(rb_eRangeError, "Value %lld outside unsigned int range", i);
    }

    return (unsigned int) i;
}

static inline void*
getPointer(VALUE value, int type)
{
    if (type == T_DATA && rb_obj_is_kind_of(value, rbffi_AbstractMemoryClass)) {

        return ((AbstractMemory *) DATA_PTR(value))->address;

    } else if (type == T_DATA && rb_obj_is_kind_of(value, rbffi_StructClass)) {

        AbstractMemory* memory = ((Struct *) DATA_PTR(value))->pointer;
        return memory != NULL ? memory->address : NULL;

    } else if (type == T_STRING) {

        if (rb_safe_level() >= 1 && OBJ_TAINTED(value)) {
            rb_raise(rb_eSecurityError, "Unsafe string parameter");
        }
        return StringValuePtr(value);

    } else if (type == T_NIL) {

        return NULL;

    } else if (rb_respond_to(value, id_to_ptr)) {

        VALUE ptr = rb_funcall2(value, id_to_ptr, 0, NULL);
        if (rb_obj_is_kind_of(ptr, rbffi_AbstractMemoryClass) && TYPE(ptr) == T_DATA) {
            return ((AbstractMemory *) DATA_PTR(ptr))->address;
        }
        rb_raise(rb_eArgError, "to_ptr returned an invalid pointer");
    }

    rb_raise(rb_eArgError, ":pointer argument is not a valid pointer");
    return NULL;
}

static inline char*
getString(VALUE value, int type)
{
    if (type == T_STRING) {

        if (rb_safe_level() >= 1 && OBJ_TAINTED(value)) {
            rb_raise(rb_eSecurityError, "Unsafe string parameter");
        }

        return StringValueCStr(value);

    } else if (type == T_NIL) {
        return NULL;
    }

    rb_raise(rb_eArgError, "Invalid String value");
}


Invoker
rbffi_GetInvoker(FunctionType *fnInfo)
{
#if defined(BYPASS_FFI) && (defined(__i386__) || defined(__x86_64__))
    int i;
    bool fastLong = fnInfo->abi == FFI_DEFAULT_ABI && !fnInfo->blocking && !fnInfo->hasStruct;

    switch (fnInfo->returnType->nativeType) {
        case NATIVE_VOID:
        case NATIVE_BOOL:
        case NATIVE_INT8:
        case NATIVE_UINT8:
        case NATIVE_INT16:
        case NATIVE_UINT16:
        case NATIVE_INT32:
        case NATIVE_UINT32:
        case NATIVE_LONG:
        case NATIVE_ULONG:
#ifdef __x86_64__
        case NATIVE_INT64:
        case NATIVE_UINT64:
#endif
        case NATIVE_STRING:
        case NATIVE_POINTER:
            break;
        default:
            fastLong = false;
            break;
    }

    for (i = 0; fastLong && i < fnInfo->parameterCount; ++i) {
        switch (fnInfo->nativeParameterTypes[i]) {
            case NATIVE_BOOL:
            case NATIVE_INT8:
            case NATIVE_UINT8:
            case NATIVE_INT16:
            case NATIVE_UINT16:
            case NATIVE_INT32:
            case NATIVE_UINT32:
            case NATIVE_LONG:
            case NATIVE_ULONG:
#ifdef __x86_64__
            case NATIVE_INT64:
            case NATIVE_UINT64:
#endif
            case NATIVE_STRING:
            case NATIVE_POINTER:
            case NATIVE_BUFFER_IN:
            case NATIVE_BUFFER_OUT:
            case NATIVE_BUFFER_INOUT:
            case NATIVE_FUNCTION:
            case NATIVE_CALLBACK:
                break;
            default:
                fastLong = false;
                break;
        }
    }

    if (fastLong && fnInfo->callbackCount < 1) {
        switch (fnInfo->parameterCount) {
            case 0:
                return rbffi_InvokeVrL;
            case 1:
                return rbffi_InvokeLrL;
            case 2:
                return rbffi_InvokeLLrL;
            case 3:
                return rbffi_InvokeLLLrL;
            case 4:
                return rbffi_InvokeLLLLrL;
            case 5:
                return rbffi_InvokeLLLLLrL;
            case 6:
                return rbffi_InvokeLLLLLLrL;

            default:
                break;
        }

    } else if (fastLong && fnInfo->parameterCount <= 6) {
        return rbffi_InvokeLongParams;
    }
#endif

    return rbffi_CallFunction;
}

#if defined(BYPASS_FFI) && (defined(__i386__) || defined(__x86_64__))
typedef long L;

static long
rbffi_GetLongValue(int idx, VALUE* argv, FunctionType* fnInfo)
{
    VALUE value = argv[idx];
    NativeType nativeType = fnInfo->nativeParameterTypes[idx];
    int type = TYPE(value);

    switch (nativeType) {
        case NATIVE_INT8:
            return getSignedInt(value, type, -128, 127, "char", fnInfo->rbEnums);

        case NATIVE_INT16:
            return getSignedInt(value, type, -0x8000, 0x7fff, "short", fnInfo->rbEnums);

        case NATIVE_INT32:
        case NATIVE_ENUM:
            return getSignedInt(value, type, -0x80000000, 0x7fffffff, "int", fnInfo->rbEnums);

        case NATIVE_BOOL:
            if (type != T_TRUE && type != T_FALSE) {
                rb_raise(rb_eTypeError, "Expected a Boolean parameter");
            }
            return RTEST(value) ? 1 : 0;

        case NATIVE_UINT8:
            return getUnsignedInt(value, type, 0xff, "unsigned char");

        case NATIVE_UINT16:
            return getUnsignedInt(value, type, 0xffff, "unsigned short");

        case NATIVE_UINT32:
            /* Special handling/checking for unsigned 32 bit integers */
            return getUnsignedInt32(value, type);

        case NATIVE_LONG:
            return NUM2LONG(value);

        case NATIVE_ULONG:
            return NUM2ULONG(value);

#ifdef __x86_64__
        case NATIVE_INT64:
            if (type != T_FIXNUM && type != T_BIGNUM) {
                rb_raise(rb_eTypeError, "Expected an Integer parameter");
            }
            return NUM2LL(value);

        case NATIVE_UINT64:
            if (type != T_FIXNUM && type != T_BIGNUM) {
                rb_raise(rb_eTypeError, "Expected an Integer parameter");
            }
            return NUM2ULL(value);
#endif
        case NATIVE_STRING:
            return (intptr_t) getString(value, type);

        case NATIVE_POINTER:
        case NATIVE_BUFFER_IN:
        case NATIVE_BUFFER_OUT:
        case NATIVE_BUFFER_INOUT:
            return (intptr_t) getPointer(value, type);

        default:
            rb_raise(rb_eTypeError, "unsupported integer type %d", nativeType);
            return 0;
    }
}

static inline void
checkArity(int argc, int arity) {
    if (unlikely(argc != arity)) {
        rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", argc, arity);
    }
}

static inline bool
isLongValue(VALUE value)
{
    int type = TYPE(value);

    return type == T_FIXNUM || type == T_BIGNUM
            || type == T_STRING || type == T_NIL
            || (type == T_DATA && rb_obj_is_kind_of(value, rbffi_AbstractMemoryClass))
            || (type == T_DATA && rb_obj_is_kind_of(value, rbffi_StructClass))
            || rb_respond_to(value, id_to_ptr);
}

static VALUE
returnL(FunctionType* fnInfo, L* result)
{
    if (unlikely(!fnInfo->ignoreErrno)) {
        rbffi_save_errno();
    }

    /*
     * This needs to do custom boxing of the return value, since a function
     * may only fill out the lower 8, 16 or 32 bits of %al, %ah, %eax, %rax, and
     * the upper part will be garbage.  This will truncate the value again, then
     * sign extend it.
     */
    switch (fnInfo->returnType->nativeType) {
        case NATIVE_VOID:
            return Qnil;

        case NATIVE_INT8:
          return INT2NUM(*(signed char *) result);

        case NATIVE_INT16:
          return INT2NUM(*(signed short *) result);

        case NATIVE_INT32:
          return INT2NUM(*(signed int *) result);

        case NATIVE_LONG:
          return LONG2NUM(*(signed long *) result);

        case NATIVE_UINT8:
          return UINT2NUM(*(unsigned char *) result);

        case NATIVE_UINT16:
          return UINT2NUM(*(unsigned short *) result);

        case NATIVE_UINT32:
          return UINT2NUM(*(unsigned int *) result);

        case NATIVE_ULONG:
          return ULONG2NUM(*(unsigned long *) result);

#ifdef __x86_64__
        case NATIVE_INT64:
            return LL2NUM(*(signed long long *) result);

        case NATIVE_UINT64:
            return ULL2NUM(*(unsigned long long *) result);
#endif /* __x86_64__ */

        case NATIVE_STRING:
            return *(void **) result != 0 ? rb_tainted_str_new2(*(char **) result) : Qnil;

        case NATIVE_POINTER:
            return rbffi_Pointer_NewInstance(*(void **) result);

        case NATIVE_BOOL:
            return *(char *) result != 0 ? Qtrue : Qfalse;

        default:
            rb_raise(rb_eRuntimeError, "invalid return type: %d", fnInfo->returnType->nativeType);
            return Qnil;
    }
}

static VALUE
rbffi_InvokeVrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo)
{
    L (*fn)(void) = (L (*)(void)) function;
    L result;

    checkArity(argc, 0);

    result = (*fn)();

    return returnL(fnInfo, &result);
}

static bool
checkArgs(int argc, VALUE* argv, FunctionType* fnInfo)
{
    int i;

    checkArity(argc, fnInfo->parameterCount);
    for (i = 0; i < fnInfo->parameterCount; ++i) {
        if (unlikely(!isLongValue(argv[i]))) {
            return false;
        }
    }

    return true;
}

#define LARG(fnInfo, argv, i) \
    rbffi_GetLongValue(i, argv, fnInfo)

#define LCALL(fnInfo, argc, argv, fn, a...) ({ \
    L result; \
    \
    if (unlikely(!checkArgs(argc, argv, fnInfo))) { \
        return rbffi_CallFunction(argc, argv, function, fnInfo); \
    } \
    \
    result = (*(fn))(a); \
    \
    returnL(fnInfo, &result); \
})

static VALUE
rbffi_InvokeLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo)
{
    L (*fn)(L) = (L (*)(L)) function;
    L result;

    checkArity(argc, 1);

    if (unlikely(!isLongValue(argv[0]))) {
        return rbffi_CallFunction(argc, argv, function, fnInfo);
    }

    result = (*fn)(LARG(fnInfo, argv, 0));

    return returnL(fnInfo, &result);
}

static VALUE
rbffi_InvokeLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo)
{
    L (*fn)(L, L) = (L (*)(L, L)) function;
    L result;

    checkArity(argc, 2);

    if (unlikely(!isLongValue(argv[0])) || unlikely(!isLongValue(argv[1]))) {
        return rbffi_CallFunction(argc, argv, function, fnInfo);
    }

    result = (*fn)(LARG(fnInfo, argv, 0), LARG(fnInfo, argv, 1));

    return returnL(fnInfo, &result);
}

static VALUE
rbffi_InvokeLLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo)
{
    L (*fn)(L, L, L) = (L (*)(L, L, L)) function;
    L result;

    checkArity(argc, 3);

    if (unlikely(!isLongValue(argv[0])) || unlikely(!isLongValue(argv[1])) || unlikely(!isLongValue(argv[2]))) {
        return rbffi_CallFunction(argc, argv, function, fnInfo);
    }
    
    result = (*fn)(LARG(fnInfo, argv, 0), LARG(fnInfo, argv, 1), LARG(fnInfo, argv, 2));

    return returnL(fnInfo, &result);
}


static VALUE
rbffi_InvokeLLLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo)
{
    return LCALL(fnInfo, argc, argv, (L (*)(L, L, L, L)) function,
        LARG(fnInfo, argv, 0), LARG(fnInfo, argv, 1),
        LARG(fnInfo, argv, 2), LARG(fnInfo, argv, 3));
}

static VALUE
rbffi_InvokeLLLLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo)
{
    return LCALL(fnInfo, argc, argv, (L (*)(L, L, L, L, L)) function,
        LARG(fnInfo, argv, 0), LARG(fnInfo, argv, 1), LARG(fnInfo, argv, 2),
        LARG(fnInfo, argv, 3), LARG(fnInfo, argv, 4));
}

static VALUE
rbffi_InvokeLLLLLLrL(int argc, VALUE* argv, void* function, FunctionType* fnInfo)
{
    return LCALL(fnInfo, argc, argv, (L (*)(L, L, L, L, L, L)) function,
        LARG(fnInfo, argv, 0), LARG(fnInfo, argv, 1), LARG(fnInfo, argv, 2),
        LARG(fnInfo, argv, 3), LARG(fnInfo, argv, 4), LARG(fnInfo, argv, 5));
}

static VALUE
rbffi_InvokeLongParams(int argc, VALUE* argv, void* function, FunctionType* fnInfo)
{
    void **ffiValues = NULL;
    FFIStorage* params = NULL;
    L result;

    if (fnInfo->parameterCount > 0) {
        ffiValues = ALLOCA_N(void *, fnInfo->parameterCount);
        params = ALLOCA_N(FFIStorage, fnInfo->parameterCount);

        rbffi_SetupCallParams(argc, argv,
            fnInfo->parameterCount, fnInfo->nativeParameterTypes, params, ffiValues,
            fnInfo->callbackParameters, fnInfo->callbackCount, fnInfo->rbEnums);

        switch (fnInfo->parameterCount) {
            case 0:
                result = ((L(*)(void)) function)();
                break;

            case 1:
                result = ((L(*)(L)) function)(*(L *) ffiValues[0]);
                break;

            case 2:
                result = ((L(*)(L, L)) function)(*(L *) ffiValues[0],
                        *(L *) ffiValues[1]);
                break;

            case 3:
                result = ((L(*)(L, L, L)) function)(*(L *) ffiValues[0],
                        *(L *) ffiValues[1], *(L *) ffiValues[2]);
                break;

            case 4:
                result = ((L(*)(L, L, L, L)) function)(*(L *) ffiValues[0],
                        *(L *) ffiValues[1], *(L *) ffiValues[2], *(L *) ffiValues[3]);
                break;

            case 5:
                result = ((L(*)(L, L, L, L, L)) function)(*(L *) ffiValues[0],
                        *(L *) ffiValues[1], *(L *) ffiValues[2], *(L *) ffiValues[3],
                        *(L *) ffiValues[4]);
                break;

            case 6:
                result = ((L(*)(L, L, L, L, L, L)) function)(*(L *) ffiValues[0],
                        *(L *) ffiValues[1], *(L *) ffiValues[2], *(L *) ffiValues[3],
                        *(L *) ffiValues[4], *(L *) ffiValues[5]);
                break;

            default:
                rb_raise(rb_eRuntimeError, "BUG: should not reach this point");
                return Qnil;
        }
    }

    return returnL(fnInfo, &result);
}

#endif /* BYPASS_FFI */

static void*
callback_param(VALUE proc, VALUE cbInfo)
{
    VALUE callback ;
    if (proc == Qnil) {
        return NULL ;
    }

    // Handle Function pointers here
    if (rb_obj_is_kind_of(proc, rbffi_FunctionClass)) {
        AbstractMemory* ptr;
        Data_Get_Struct(proc, AbstractMemory, ptr);
        return ptr->address;
    }

    //callback = rbffi_NativeCallback_ForProc(proc, cbInfo);
    callback = rbffi_Function_ForProc(cbInfo, proc);

    return ((AbstractMemory *) DATA_PTR(callback))->address;
}


void
rbffi_Call_Init(VALUE moduleFFI)
{
    id_to_ptr = rb_intern("to_ptr");
    id_map_symbol = rb_intern("__map_symbol");
}