1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/*
libffm - Free, pretty fast replacement for some math (libm) routines
on Linux/AXP, optimized for the 21164
Copyright (C) 1998 Joachim Wesner <joachim.wesner@frankfurt.netsurf.de>
and Kazushige Goto <goto@statabo.rim.or.jp>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library (see file COPYING.LIB); if not, write
to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.
*/
/*
Fast 2^x, exp(x), 10^x approximations including range reduction
by Joachim Wesner, <joachim.wesner@frankfurt.netsurf.de>,
see also mc 8/1991 p. 78-93. Done in July 1998.
This version uses a "longer" 11th order polynomial approximation,
but requires a somewhat simpler range reduction.
No special handling of illegal arguments or NANs, yet !!!
*/
/* improved and rescheduled by Kazushige Goto<goto@statabo.rim.or.jp> */
.set noat
.set noreorder
#ifdef __ELF__
.section .rodata
#else
.rdata
#endif
.align 5
R:
.t_floating 1.00000000000000000000e0
.t_floating 1.442695040888963407e0 # LDE
.t_floating 6.93359375e-1 # K1
.t_floating -2.1219444005469060e-4 # K2
.t_floating 1.00000000000000000000e0
.t_floating 3.321928094887362347 # LD10
.t_floating 3.0103000998497010e-001 # J1
.t_floating -1.4320988897547790e-008 # J2
/*
2^x (0..1)
Derived from Chebyshev Approx.
rel. error 4e-18
*/
.t_floating 6.29768236459390291646e-10
.t_floating 1.02577755722569533985e-7
.t_floating 1.52532278639779265219e-5
.t_floating 1.33335587324213489593e-3
.t_floating 5.55041086659065138753e-2
.t_floating 6.93147180559946507472e-1
.t_floating 6.54053877719848751881e-9
.t_floating 1.32077456410841510838e-6
.t_floating 1.54035094120123436379e-4
.t_floating 9.61812909725173574571e-3
.t_floating 2.40226506959042129807e-1
.t_floating 9.99999999999999996e-01
.text
.align 5
.globl exp2
.ent exp2
exp2:
cvttqc $f16, $f10 # double -> int
ldgp $29,.-exp2($27)
lda $30, -16($30)
.frame $30,16,$26,0
#ifdef PROF
lda $28, _mcount
jsr $28, ($28), _mcount
unop
unop
#endif
.prologue 1
lda $1, R
ldt $f1, 32($1)
ldt $f19, 64($1)
cvtqt $f10, $f10 # int -> double
ldt $f23, 96($1)
ldt $f27,128($1)
ldt $f20, 72($1)
ldt $f21, 80($1)
ldt $f22, 88($1)
ldt $f24,104($1)
fbge $f16,$L2
subt $f10, $f1, $f10 # iexp -= R[0]
$L2:
ldt $f25,112($1)
ldt $f26,120($1)
subt $f16, $f10, $f16 # x -= iexp
ldt $f28,136($1)
ldt $f29,144($1)
ldt $f30,152($1)
cvttqc $f10,$f10 # double -> int
br $31, $exp_continue
.end exp2
.align 5
.globl exp10
.ent exp10
exp10:
lda $30, -16($30)
ldgp $29,.-exp10($27)
lda $1, R
.frame $30,16,$26,0
#ifdef PROF
lda $28, _mcount
jsr $28, ($28), _mcount
unop
unop
#endif
.prologue 1
ldt $f1, 32($1)
ldt $f0, 40($1) # LDE
ldt $f29, 48($1) # K1
ldt $f30, 56($1) # K2
br $31, $continue
.end exp10
.align 5
.globl exp
.ent exp
exp:
lda $30, -16($30)
ldgp $29,.-exp($27)
lda $1, R
.frame $30,16,$26,0
#ifdef PROF
lda $28, _mcount
jsr $28, ($28), _mcount
unop
unop
#endif
.prologue 1
ldt $f1, 0($1)
ldt $f0, 8($1) # LDE
ldt $f29, 16($1) # K1
ldt $f30, 24($1) # K2
$continue:
mult $f16, $f0, $f10 # iexp = x*LDE
ldt $f19, 64($1)
ldt $f20, 72($1)
ldt $f21, 80($1)
ldt $f22, 88($1)
ldt $f23, 96($1)
ldt $f24,104($1)
ldt $f25,112($1)
cvttqc $f10, $f10 # double -> int
ldt $f26,120($1)
ldt $f27,128($1)
ldt $f28,136($1)
cvtqt $f10, $f10 # int -> double
fbge $f16, $L4 # if x>=0 goto $L4
subt $f10, $f1, $f10 # iexp -= R[0]
$L4:
fbeq $f10, $L5
mult $f10, $f29, $f29 # iexp*K1
mult $f10, $f30, $f30 # iexp*K2
subt $f16, $f29, $f16 # x - iexp*K1
subt $f16, $f30, $f16 # x - iexp*K1
$L5:
mult $f16, $f0, $f16 # x *= LDE
ldt $f29,144($1)
ldt $f30,152($1)
cvttqc $f10,$f10 # double -> int
$exp_continue:
mult $f16, $f16, $f11 # x2 = x * x
mult $f19, $f16, $f19 # y1 = R[4] * x
mult $f20, $f16, $f20 # y2 = R[5] * x
mult $f21, $f16, $f21 # y3 = R[6] * x
mult $f11, $f11, $f12 # x4 = x2 * x2
stt $f10, 0($30)
mult $f22, $f16, $f22 # y4 = R[8] * x
addt $f19, $f25, $f19 # y1 += R[10]
mult $f23, $f16, $f23 # y5 = R[9] * x
addt $f20, $f26, $f20 # y2 += R[11]
mult $f24, $f16, $f24 # y6 = R[10] * x
addt $f21, $f27, $f21 # y3 += R[12]
mult $f12, $f11, $f13 # x6 = x4 * x2
mult $f12, $f12, $f14 # x8 = x4 * x4
addt $f22, $f28, $f22 # y4 += R[13]
addt $f23, $f29, $f23 # y5 += R[14]
ldq $1, 0($30)
addt $f24, $f30, $f24 # y6 += R[15]
mult $f13, $f12, $f15 # x10 = x6 * x4
mult $f20, $f14, $f20 # y2 *= x8
mult $f21, $f13, $f21 # y3 *= x6
lda $1,1023($1)
mult $f22, $f12, $f22 # y4 *= x4
sll $1, 52, $1
mult $f19, $f15, $f19 # y1 *= x10
stq $1, 8($30)
mult $f23, $f11, $f23 # y5 *= x2
addt $f19, $f20, $f19 # y1 += y2
addt $f19, $f21, $f19 # y1 += y3
addt $f19, $f22, $f19 # y1 += y4
ldt $f25, 8($30)
addt $f19, $f23, $f19 # y1 += y5
addq $30, 16, $30
addt $f19, $f24, $f19 # y1 += y6
mult $f19, $f25, $f0
ret $31,($26),1
.end exp
|