1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/*
libffm - Free, pretty fast replacement for some math (libm) routines
on Linux/AXP, optimized for the 21164
Copyright (C) 1998 Joachim Wesner <joachim.wesner@frankfurt.netsurf.de>
and Kazushige Goto <goto@statabo.rim.or.jp>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library (see file COPYING.LIB); if not, write
to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.
*/
/*
Simple, fast powr(x, y) helper function for the fast log2/exp2 routines,
by Joachim Wesner <joachim.wesner@frankfurt.netsurf.de>, July 1998.
This routine is "quick&dirty" as in the Cray powr function, i.e. NO
extended precision is used in calculating log(x)*y, so the relative
error in the final result will grow to ~ 0.4*|ld(x)|*|y| ulp.
However, for integral values of y, repeated multiplications will be used
to calculate the result. So, for "random" x, the rel. error seems to
be in the order of 0.4*|y| ulp and for (not too large) integral values of
x, the final result should be EXACT.
In contrast to the Cray powr function, a different multiplication scheme
is used, where the number of multiplications only increases with log2(|y|).
No special handling of illegal arguments or NANs, yet !!!
*/
/* modified and improved by Kazushige Goto <goto@statabo.rim.or.jp> */
.set noat
.set noreorder
.text
.align 5
.globl powr
.ent powr
powr:
fabs $f17, $f10 # $f10 = fabs($f17)
mov 1, $1
lda $30,-16($30)
fbeq $f16,$x_eq_0 # x == 0
stq $1, 0($30)
ldgp $29,.-powr($27)
.frame $30,16,$26,0
.prologue 1
nop
#ifdef PROF
lda $28, _mcount
jsr $28, ($28), _mcount
unop
unop
#endif
ldt $f0, 0($30)
cvttqc $f10, $f11 # double -> int (f)
fbeq $f17,$y_eq_0 # y == 0
cvtqt $f0, $f0 # $f0 = 1.0
cvtqt $f11, $f1 # int -> double
stt $f11,8($30)
cmpteq $f1,$f10,$f1 # if (n==f)
ldq $2, 8($30)
fmov $f0, $f10 # z = 1.0
fbeq $f1,$L8 # Skip
unop
beq $2,$L10 # while(n)
.align 4
$loop: # This loop is very tight.
blbc $2,$L12 # if (n&1)
mult $f10,$f16,$f10 # z = z * x
$L12:
sra $2,1,$2 # n >>= 1
mult $f16,$f16,$f16 # x = x * x
unop
unop
unop
bne $2,$loop
$L10:
fblt $f17, $L14
fmov $f10, $f0 # return z
addq $30,16,$30
ret $31,($26),1
.align 4
$L14:
divt $f0,$f10,$f0
addq $30,16,$30
ret $31,($26),1
.align 4
$L8:
lda $27, log2
stt $f2,8($30)
fmov $f17, $f2
stq $26,0($30)
jsr $26, ($27), log2
mult $f0,$f2,$f16
ldgp $29,4($26)
jsr $26,exp2
ldq $26,0($30)
ldt $f2,8($30)
$L17:
addq $30,16,$30
ret $31,($26),1
.align 4
$x_eq_0:
fclr $f0
addq $30,16,$30
ret $31,($26),1
.align 4
$y_eq_0:
cvtqt $f0, $f0 # $f0 = 1.0
addq $30,16,$30
ret $31,($26),1
.end powr
#ifdef POW
.globl pow
pow = powr
#endif
|