File: asincos.S

package info (click to toggle)
libffm 0.28-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 216 kB
  • ctags: 184
  • sloc: asm: 3,028; makefile: 94; ansic: 12; sh: 2
file content (298 lines) | stat: -rw-r--r-- 8,465 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*
   libffm	- Free, pretty fast replacement for some math (libm) routines 
			on Linux/AXP, optimized for the 21164

   Copyright (C) 1998  Joachim Wesner <joachim.wesner@frankfurt.netsurf.de>
                  and  Kazushige Goto <goto@statabo.rim.or.jp>

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public
   License as published by the Free Software Foundation; either
   version 2 of the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public
   License along with this library (see file COPYING.LIB); if not, write 
   to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, 
   MA 02139, USA.
*/
/*
   Fast combined asin/acos approximation including range reduction by 
   Joachim Wesner, <joachim.wesner@frankfurt.netsurf.de>, see also 
   mc 8/1991 p. 78-93. This version done in June/July 1998.
*/
/*
   improved and modified by Kazushige Goto <goto@statabo.rim.or.jp>
*/
/*
   Now including full illegal argument handling by Joachim Wesner,
   <joachim.wesner@frankfurt.netsurf.de>, November 1998
*/

        .set noreorder
        .set noat

#ifdef __ELF__
	.section .rodata
#else
	.rdata
#endif

	.align 5
K:
	.t_floating  1.00000000000000000000
        .t_floating  5.00000000000000000000e-1
	.quad 0x3ff7ffffffc00000         
	.t_floating  1.50000000000000000000

        .t_floating -2.38238591536702379869e1
        .t_floating  1.50952708410306058795e2
        .t_floating  4.17144302482604132365e2
        .t_floating -6.96745734473506517226e-1

        .t_floating -3.96888629975048772280e1
        .t_floating -3.81863033617501514527e2
        .t_floating -1.64210967144985602317e2
        .t_floating  1.01525222338064633476e1

        .t_floating  5.72082278778917299178e1
        .t_floating -2.73684945241642552105e1
        .t_floating  1.57079632679489655800e0
        .t_floating  3.14159265358979311600e0

.long   0x1500, 0x2ef8,   0x4d67,  0x6b02,  0x87be,  0xa395,  0xbe7a,  0xd866
.long   0xf14a, 0x1091b, 0x11fcd, 0x13552, 0x14999, 0x15c98, 0x16e34, 0x17e5f
.long  0x18d03, 0x19a01, 0x1a545, 0x1ae8a, 0x1b5c4, 0x1bb01, 0x1bfde, 0x1c28d
.long  0x1c2de, 0x1c0db, 0x1ba73, 0x1b11c, 0x1a4b5, 0x1953d, 0x18266, 0x16be0
.long  0x1683e, 0x179d8, 0x18a4d, 0x19992, 0x1a789, 0x1b445, 0x1bf61, 0x1c989
.long  0x1d16d, 0x1d77b, 0x1dddf, 0x1e2ad, 0x1e5bf, 0x1e6e8, 0x1e654, 0x1e3cd
.long  0x1df2a, 0x1d635, 0x1cb16, 0x1be2c, 0x1ae4e, 0x19bde, 0x1868e, 0x16e2e
.long  0x1527f, 0x1334a, 0x11051,  0xe951,  0xbe01,  0x8e0d,  0x5924,  0x1edd

.text

        .align  5
        .globl  asin
        .ent    asin
asin:
        lda     $30, -16($30)		###
        ldgp    $29,.-asin($27)
	stt	$f16,  0($30)		###

#ifdef PROF
	lda	$28, _mcount
	jsr	$28, ($28), _mcount
	unop
	unop
#endif
	.prologue 1

        lda     $28,  K
        fabs    $f16, $f0               # x1 = fabs(x)
        br      $17, $cont
        .end    asin

        .align  5
        .globl  acos
        .ent    acos
acos:
        lda     $30, -16($30)		###
        ldgp    $29,.-acos($27)
	stt	$f16,  0($30)		###

#ifdef PROF
	lda	$28, _mcount
	jsr	$28, ($28), _mcount
	unop
	unop
#endif
	.prologue 1

        lda     $28,  K
        fabs    $f16, $f0               # x1 = fabs(x)
	unop
        mov     1, $17

	.align 4
$cont:
	lda	$1,0x7ff
	lda	$4,0x3ff
	ldq	$0,     0($30)		#
	ldt	$f17,   0($28)		# 1.0

	sll	$1,52,$1
        ldt     $f10,   8($28)		# K[0]
	and	$0,$1,$2
	beq	$2,$Denormal

	sll	$4, 52, $4
	unop
	cmplt	$4,$2,$3
	bne	$3,$NaN

        ldt     $f23,  64($28)		# K[5]
	cmptle	$f0,$f17,$f17
        ldt     $f19,  32($28)		# K[1]
        mult    $f16, $f16, $f11	### y1 = x * x

        cmptlt  $f10, $f0,  $f15	# flag = ( K[0] < x1)
        ldt     $f27,  96($28)		# K[9]
        mult    $f0,  $f10, $f1		# r1 = x1 * K[0]
        ldt     $f20,  40($28)		# K[2]

        ldt     $f21,  48($28)		# K[3]
        ldt     $f22,  56($28)		# K[4]
        mult    $f11,  $f11,  $f12	# y2 = y1 * y1
	fbeq	$f17,  $NaN

        fbeq    $f15,  $L4
        subt    $f10, $f1, $f11         # y1 = K[0] - r1
        bsr     $27, inner_sqrt
        mult    $f11, $f11, $f12        # y2 = y1 * y1
        addt    $f0,  $f0,  $f0         # x1 = 2 * sqrt(y1)
	unop
	unop
	unop
        .align 4

$L4:
        mult    $f20, $f11,  $f20        # r2($f19) = K[2] * y1
        ldt     $f24,  72($28)		# K[6]
        addt    $f11,  $f19, $f19        # r1($f20) = y1 + K[1]
        ldt     $f25,  80($28)		# K[7]
        mult    $f21, $f11,  $f21        # r3($f21) = K[3] * y1
        ldt     $f26,  88($28)		# K[8]
        mult    $f22, $f11,  $f22        # t1($f22) = K[4] * y1
        ldt     $f28, 104($28)		# K[10]

        mult    $f23, $f11,  $f23        # t2($f23) = K[5] * y1
        addt    $f20, $f24, $f20        # r2 = r2 + K[6]

        mult    $f12, $f12, $f14        # y4($f13) = y2 * y2
        addt    $f21, $f25, $f21        # r3 = r3 + K[7]

        mult    $f12, $f11,  $f13        # y3($f14) = y2 * y1
        addt    $f22, $f26, $f22        # t1 = t1 + K[8]
        mult    $f0,  $f11,  $f18        # t3($f18) = x1 * y1
        addt    $f23, $f27, $f23        # t2 = t2 + K[9]

        mult    $f20, $f12, $f20        # r2 = r2 * y2
        mult    $f19, $f14, $f19        # r1 = r1 * y4
        mult    $f22, $f13, $f22        # t1 = t1 * y3
        mult    $f23, $f11, $f23        # t2 = t2 * y1

        addt    $f19, $f20, $f19        # r1 = r1 + r2
        addt    $f22, $f23, $f22        # t1 = t1 + t2

        addt    $f19, $f21, $f19        # r1 = r1 + r3
        addt    $f22, $f28, $f22        # t1 = t1 + K[10]

        mult    $f22, $f18, $f22        # t1 = t1 * t3
        divt    $f22, $f19, $f19        # t1/r1

# Very very long wait, wait, wait, ....

        ldt     $f29, 112($28)		# K[11]
        ldt     $f30, 120($28)		# K[12]
        addq    $30, 16,$30

        addt    $f0,  $f19, $f0         # y = x1 + t1/r1

        blbs    $17,  $L5               # if (mode) goto $L5

        fbeq    $f15, $L10              # if (!$flag) goto $L10
        fbge    $f16, $L13              # if (x>=0) goto $L8

        subt    $f0, $f29,  $f0         # y = K[11] - y
        ret

$L13:
        subt    $f29, $f0,  $f0         # y = K[11] - y
        ret

$L10:
        fbge    $f16, $L8
        fneg    $f0,  $f0               # y = -y
$L8:
        ret
        .align 4
$L5:
        fbeq    $f15,  $L9              # if (flag==0) goto $L9
        fbge    $f16,  $L11             # if (x>0) goto $L8
        subt    $f30,  $f0, $f0         # y = K[12] - y
$L11:
        ret
        .align 4
$L9:
        fble    $f16, $L12
        subt    $f29, $f0,  $f0         # r1 = K[11] - y
        ret
$L12:
        addt    $f29, $f0,  $f0         # r2 = K[11] + y
        ret
	.align 4

$Denormal:
	fmov	$f16,$f0
	blbc	$17,$L99
	ldt	$f0,112($28)
	br	$L99

$NaN:	lda	$0,-1
	stq	$0,0($30)
	ldt	$f0,0($30)
$L99:
	lda	$30,16($30)
	ret

        .end    acos

	.align 5

	.ent  inner_sqrt
inner_sqrt: 	
	stt	$f11, 0($30) 
	mult	$f11, $f10, $f24		# x*0.5
	ldah	$2 , 0x5fe8
	nop

	ldq	$3 ,  0($30)
	srl	$3 , 33, $1
	subl	$2 , $1 , $2
	srl	$2 , 12, $1
	and	$1 , 0xfc, $1

	addq	$1 , $28 , $1
	ldl	$1 , 128($1)
	subl	$2 , $1 , $2
	sll	$2 , 32, $2
	stq	$2 ,   8($30)
	ldt	$f25, 16($28)
	ldt	$f30,  0($28)
	ldt	$f29, 24($28)
	ldt	$f0,   8($30)

	mult	$f24, $f0,  $f1		# fm    : $f10 = (x * 0.5) * y
	mult	$f1,  $f0,  $f1		# fm    : $f10 = ((x * 0.5) * y) * y
	subt	$f29, $f1,  $f1		# fa    : $f1 = (1.5 - 0.5*x*y*y)
	mult	$f0,  $f1,  $f0		# fm    : yp = y*(1.5 - 0.5*x*y*y)

 	mult	$f24, $f0, $f1		# fm    : $f24 = x * 0.5 * yp
	mult	$f1,  $f0, $f24		# fm    : $f24 = (x * 0.5 * yp) * yp
	subt	$f25, $f24, $f1		# fa    : $f1= (1.5-2^-30) - 0.5*x*yp*yp
	mult	$f0,  $f1,  $f0		# fm    : ypp = $f13 = yp*$f1
	mult	$f11, $f0,  $f1 	# fm    : z = $f10 = x * ypp

	mult	$f1,  $f0,  $f0 	# fm    : $f24 = z*ypp
	mult	$f1,  $f10, $f24	# fm    : $f10 = z*0.5
	subt	$f30, $f0,  $f0		# .. fa : $f1 = 1 - z*ypp
	mult	$f24, $f0,  $f0		# fm    : $f0 = z*0.5*(1 - z*ypp)
	addt	$f1,  $f0,  $f0		# fa    : zp=res=$f0= z + z*0.5*(1 - z*ypp)

        ret     $31,($27),1

	.end  inner_sqrt