| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 
 | *> \brief \b CLATSY
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLATSY( UPLO, N, X, LDX, ISEED )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDX, N
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( * )
*       COMPLEX            X( LDX, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLATSY generates a special test matrix for the complex symmetric
*> (indefinite) factorization.  The pivot blocks of the generated matrix
*> will be in the following order:
*>    2x2 pivot block, non diagonalizable
*>    1x1 pivot block
*>    2x2 pivot block, diagonalizable
*>    (cycle repeats)
*> A row interchange is required for each non-diagonalizable 2x2 block.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER
*>          Specifies whether the generated matrix is to be upper or
*>          lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The dimension of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX array, dimension (LDX,N)
*>          The generated matrix, consisting of 3x3 and 2x2 diagonal
*>          blocks which result in the pivot sequence given above.
*>          The matrix outside of these diagonal blocks is zero.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry, the seed for the random number generator.  The last
*>          of the four integers must be odd.  (modified on exit)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CLATSY( UPLO, N, X, LDX, ISEED )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDX, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( * )
      COMPLEX            X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            EYE
      PARAMETER          ( EYE = ( 0.0, 1.0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, N5
      REAL               ALPHA, ALPHA3, BETA
      COMPLEX            A, B, C, R
*     ..
*     .. External Functions ..
      COMPLEX            CLARND
      EXTERNAL           CLARND
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Initialize constants
*
      ALPHA = ( 1.+SQRT( 17. ) ) / 8.
      BETA = ALPHA - 1. / 1000.
      ALPHA3 = ALPHA*ALPHA*ALPHA
*
*     UPLO = 'U':  Upper triangular storage
*
      IF( UPLO.EQ.'U' ) THEN
*
*        Fill the upper triangle of the matrix with zeros.
*
         DO 20 J = 1, N
            DO 10 I = 1, J
               X( I, J ) = 0.0
   10       CONTINUE
   20    CONTINUE
         N5 = N / 5
         N5 = N - 5*N5 + 1
*
         DO 30 I = N, N5, -5
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( I, I ) = A
            X( I-2, I ) = B
            X( I-2, I-1 ) = R
            X( I-2, I-2 ) = C
            X( I-1, I-1 ) = CLARND( 2, ISEED )
            X( I-3, I-3 ) = CLARND( 2, ISEED )
            X( I-4, I-4 ) = CLARND( 2, ISEED )
            IF( ABS( X( I-3, I-3 ) ).GT.ABS( X( I-4, I-4 ) ) ) THEN
               X( I-4, I-3 ) = 2.0*X( I-3, I-3 )
            ELSE
               X( I-4, I-3 ) = 2.0*X( I-4, I-4 )
            END IF
   30    CONTINUE
*
*        Clean-up for N not a multiple of 5.
*
         I = N5 - 1
         IF( I.GT.2 ) THEN
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( I, I ) = A
            X( I-2, I ) = B
            X( I-2, I-1 ) = R
            X( I-2, I-2 ) = C
            X( I-1, I-1 ) = CLARND( 2, ISEED )
            I = I - 3
         END IF
         IF( I.GT.1 ) THEN
            X( I, I ) = CLARND( 2, ISEED )
            X( I-1, I-1 ) = CLARND( 2, ISEED )
            IF( ABS( X( I, I ) ).GT.ABS( X( I-1, I-1 ) ) ) THEN
               X( I-1, I ) = 2.0*X( I, I )
            ELSE
               X( I-1, I ) = 2.0*X( I-1, I-1 )
            END IF
            I = I - 2
         ELSE IF( I.EQ.1 ) THEN
            X( I, I ) = CLARND( 2, ISEED )
            I = I - 1
         END IF
*
*     UPLO = 'L':  Lower triangular storage
*
      ELSE
*
*        Fill the lower triangle of the matrix with zeros.
*
         DO 50 J = 1, N
            DO 40 I = J, N
               X( I, J ) = 0.0
   40       CONTINUE
   50    CONTINUE
         N5 = N / 5
         N5 = N5*5
*
         DO 60 I = 1, N5, 5
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( I, I ) = A
            X( I+2, I ) = B
            X( I+2, I+1 ) = R
            X( I+2, I+2 ) = C
            X( I+1, I+1 ) = CLARND( 2, ISEED )
            X( I+3, I+3 ) = CLARND( 2, ISEED )
            X( I+4, I+4 ) = CLARND( 2, ISEED )
            IF( ABS( X( I+3, I+3 ) ).GT.ABS( X( I+4, I+4 ) ) ) THEN
               X( I+4, I+3 ) = 2.0*X( I+3, I+3 )
            ELSE
               X( I+4, I+3 ) = 2.0*X( I+4, I+4 )
            END IF
   60    CONTINUE
*
*        Clean-up for N not a multiple of 5.
*
         I = N5 + 1
         IF( I.LT.N-1 ) THEN
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( I, I ) = A
            X( I+2, I ) = B
            X( I+2, I+1 ) = R
            X( I+2, I+2 ) = C
            X( I+1, I+1 ) = CLARND( 2, ISEED )
            I = I + 3
         END IF
         IF( I.LT.N ) THEN
            X( I, I ) = CLARND( 2, ISEED )
            X( I+1, I+1 ) = CLARND( 2, ISEED )
            IF( ABS( X( I, I ) ).GT.ABS( X( I+1, I+1 ) ) ) THEN
               X( I+1, I ) = 2.0*X( I, I )
            ELSE
               X( I+1, I ) = 2.0*X( I+1, I+1 )
            END IF
            I = I + 2
         ELSE IF( I.EQ.N ) THEN
            X( I, I ) = CLARND( 2, ISEED )
            I = I + 1
         END IF
      END IF
*
      RETURN
*
*     End of CLATSY
*
      END
 |