| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 
 | *> \brief \b CQRT14
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       REAL             FUNCTION CQRT14( TRANS, M, N, NRHS, A, LDA, X,
*                        LDX, WORK, LWORK )
* 
*       .. Scalar Arguments ..
*       CHARACTER          TRANS
*       INTEGER            LDA, LDX, LWORK, M, N, NRHS
*       ..
*       .. Array Arguments ..
*       COMPLEX            A( LDA, * ), WORK( LWORK ), X( LDX, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CQRT14 checks whether X is in the row space of A or A'.  It does so
*> by scaling both X and A such that their norms are in the range
*> [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
*> (if TRANS = 'C') or an LQ factorization of [A',X]' (if TRANS = 'N'),
*> and returning the norm of the trailing triangle, scaled by
*> MAX(M,N,NRHS)*eps.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N':  No transpose, check for X in the row space of A
*>          = 'C':  Conjugate transpose, check for X in row space of A'.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of X.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The M-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX array, dimension (LDX,NRHS)
*>          If TRANS = 'N', the N-by-NRHS matrix X.
*>          IF TRANS = 'C', the M-by-NRHS matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          length of workspace array required
*>          If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
*>          if TRANS = 'C', LWORK >= (N+NRHS)*(M+2).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      REAL             FUNCTION CQRT14( TRANS, M, N, NRHS, A, LDA, X,
     $                 LDX, WORK, LWORK )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            LDA, LDX, LWORK, M, N, NRHS
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), WORK( LWORK ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            TPSD
      INTEGER            I, INFO, J, LDWORK
      REAL               ANRM, ERR, XNRM
*     ..
*     .. Local Arrays ..
      REAL               RWORK( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE, SLAMCH
      EXTERNAL           LSAME, CLANGE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGELQ2, CGEQR2, CLACPY, CLASCL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CONJG, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
      CQRT14 = ZERO
      IF( LSAME( TRANS, 'N' ) ) THEN
         LDWORK = M + NRHS
         TPSD = .FALSE.
         IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN
            CALL XERBLA( 'CQRT14', 10 )
            RETURN
         ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
            RETURN
         END IF
      ELSE IF( LSAME( TRANS, 'C' ) ) THEN
         LDWORK = M
         TPSD = .TRUE.
         IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN
            CALL XERBLA( 'CQRT14', 10 )
            RETURN
         ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN
            RETURN
         END IF
      ELSE
         CALL XERBLA( 'CQRT14', 1 )
         RETURN
      END IF
*
*     Copy and scale A
*
      CALL CLACPY( 'All', M, N, A, LDA, WORK, LDWORK )
      ANRM = CLANGE( 'M', M, N, WORK, LDWORK, RWORK )
      IF( ANRM.NE.ZERO )
     $   CALL CLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO )
*
*     Copy X or X' into the right place and scale it
*
      IF( TPSD ) THEN
*
*        Copy X into columns n+1:n+nrhs of work
*
         CALL CLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ),
     $                LDWORK )
         XNRM = CLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK,
     $          RWORK )
         IF( XNRM.NE.ZERO )
     $      CALL CLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS,
     $                   WORK( N*LDWORK+1 ), LDWORK, INFO )
         ANRM = CLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK )
*
*        Compute QR factorization of X
*
         CALL CGEQR2( M, N+NRHS, WORK, LDWORK,
     $                WORK( LDWORK*( N+NRHS )+1 ),
     $                WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ),
     $                INFO )
*
*        Compute largest entry in upper triangle of
*        work(n+1:m,n+1:n+nrhs)
*
         ERR = ZERO
         DO 20 J = N + 1, N + NRHS
            DO 10 I = N + 1, MIN( M, J )
               ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) )
   10       CONTINUE
   20    CONTINUE
*
      ELSE
*
*        Copy X' into rows m+1:m+nrhs of work
*
         DO 40 I = 1, N
            DO 30 J = 1, NRHS
               WORK( M+J+( I-1 )*LDWORK ) = CONJG( X( I, J ) )
   30       CONTINUE
   40    CONTINUE
*
         XNRM = CLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK )
         IF( XNRM.NE.ZERO )
     $      CALL CLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ),
     $                   LDWORK, INFO )
*
*        Compute LQ factorization of work
*
         CALL CGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ),
     $                WORK( LDWORK*( N+1 )+1 ), INFO )
*
*        Compute largest entry in lower triangle in
*        work(m+1:m+nrhs,m+1:n)
*
         ERR = ZERO
         DO 60 J = M + 1, N
            DO 50 I = J, LDWORK
               ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) )
   50       CONTINUE
   60    CONTINUE
*
      END IF
*
      CQRT14 = ERR / ( REAL( MAX( M, N, NRHS ) )*SLAMCH( 'Epsilon' ) )
*
      RETURN
*
*     End of CQRT14
*
      END
 |