| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 
 | *> \brief \b ZLAGHE
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLAGHE( N, K, D, A, LDA, ISEED, WORK, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, K, LDA, N
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       DOUBLE PRECISION   D( * )
*       COMPLEX*16         A( LDA, * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLAGHE generates a complex hermitian matrix A, by pre- and post-
*> multiplying a real diagonal matrix D with a random unitary matrix:
*> A = U*D*U'. The semi-bandwidth may then be reduced to k by additional
*> unitary transformations.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of nonzero subdiagonals within the band of A.
*>          0 <= K <= N-1.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The diagonal elements of the diagonal matrix D.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The generated n by n hermitian matrix A (the full matrix is
*>          stored).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= N.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry, the seed of the random number generator; the array
*>          elements must be between 0 and 4095, and ISEED(4) must be
*>          odd.
*>          On exit, the seed is updated.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_matgen
*
*  =====================================================================
      SUBROUTINE ZLAGHE( N, K, D, A, LDA, ISEED, WORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      DOUBLE PRECISION   D( * )
      COMPLEX*16         A( LDA, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO, ONE, HALF
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
     $                   ONE = ( 1.0D+0, 0.0D+0 ),
     $                   HALF = ( 0.5D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   WN
      COMPLEX*16         ALPHA, TAU, WA, WB
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZAXPY, ZGEMV, ZGERC, ZHEMV, ZHER2,
     $                   ZLARNV, ZSCAL
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DZNRM2
      COMPLEX*16         ZDOTC
      EXTERNAL           DZNRM2, ZDOTC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCONJG, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      END IF
      IF( INFO.LT.0 ) THEN
         CALL XERBLA( 'ZLAGHE', -INFO )
         RETURN
      END IF
*
*     initialize lower triangle of A to diagonal matrix
*
      DO 20 J = 1, N
         DO 10 I = J + 1, N
            A( I, J ) = ZERO
   10    CONTINUE
   20 CONTINUE
      DO 30 I = 1, N
         A( I, I ) = D( I )
   30 CONTINUE
*
*     Generate lower triangle of hermitian matrix
*
      DO 40 I = N - 1, 1, -1
*
*        generate random reflection
*
         CALL ZLARNV( 3, ISEED, N-I+1, WORK )
         WN = DZNRM2( N-I+1, WORK, 1 )
         WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
         IF( WN.EQ.ZERO ) THEN
            TAU = ZERO
         ELSE
            WB = WORK( 1 ) + WA
            CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
            WORK( 1 ) = ONE
            TAU = DBLE( WB / WA )
         END IF
*
*        apply random reflection to A(i:n,i:n) from the left
*        and the right
*
*        compute  y := tau * A * u
*
         CALL ZHEMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO,
     $               WORK( N+1 ), 1 )
*
*        compute  v := y - 1/2 * tau * ( y, u ) * u
*
         ALPHA = -HALF*TAU*ZDOTC( N-I+1, WORK( N+1 ), 1, WORK, 1 )
         CALL ZAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 )
*
*        apply the transformation as a rank-2 update to A(i:n,i:n)
*
         CALL ZHER2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1,
     $               A( I, I ), LDA )
   40 CONTINUE
*
*     Reduce number of subdiagonals to K
*
      DO 60 I = 1, N - 1 - K
*
*        generate reflection to annihilate A(k+i+1:n,i)
*
         WN = DZNRM2( N-K-I+1, A( K+I, I ), 1 )
         WA = ( WN / ABS( A( K+I, I ) ) )*A( K+I, I )
         IF( WN.EQ.ZERO ) THEN
            TAU = ZERO
         ELSE
            WB = A( K+I, I ) + WA
            CALL ZSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 )
            A( K+I, I ) = ONE
            TAU = DBLE( WB / WA )
         END IF
*
*        apply reflection to A(k+i:n,i+1:k+i-1) from the left
*
         CALL ZGEMV( 'Conjugate transpose', N-K-I+1, K-1, ONE,
     $               A( K+I, I+1 ), LDA, A( K+I, I ), 1, ZERO, WORK, 1 )
         CALL ZGERC( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1,
     $               A( K+I, I+1 ), LDA )
*
*        apply reflection to A(k+i:n,k+i:n) from the left and the right
*
*        compute  y := tau * A * u
*
         CALL ZHEMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA,
     $               A( K+I, I ), 1, ZERO, WORK, 1 )
*
*        compute  v := y - 1/2 * tau * ( y, u ) * u
*
         ALPHA = -HALF*TAU*ZDOTC( N-K-I+1, WORK, 1, A( K+I, I ), 1 )
         CALL ZAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 )
*
*        apply hermitian rank-2 update to A(k+i:n,k+i:n)
*
         CALL ZHER2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1,
     $               A( K+I, K+I ), LDA )
*
         A( K+I, I ) = -WA
         DO 50 J = K + I + 1, N
            A( J, I ) = ZERO
   50    CONTINUE
   60 CONTINUE
*
*     Store full hermitian matrix
*
      DO 80 J = 1, N
         DO 70 I = J + 1, N
            A( J, I ) = DCONJG( A( I, J ) )
   70    CONTINUE
   80 CONTINUE
      RETURN
*
*     End of ZLAGHE
*
      END
 |