1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
*
* -- LAPACK routine (instrumented to count operations, version 3.0) --
* Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
* Courant Institute, NAG Ltd., and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER I
DOUBLE PRECISION DLAM, RHO
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( 2 ), DELTA( 2 ), Z( 2 )
* ..
* Common block to return operation count and iteration count
* ITCNT is unchanged, OPS is only incremented
* .. Common blocks ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
DOUBLE PRECISION ITCNT, OPS
* ..
*
* Purpose
* =======
*
* This subroutine computes the I-th eigenvalue of a symmetric rank-one
* modification of a 2-by-2 diagonal matrix
*
* diag( D ) + RHO * Z * transpose(Z) .
*
* The diagonal elements in the array D are assumed to satisfy
*
* D(i) < D(j) for i < j .
*
* We also assume RHO > 0 and that the Euclidean norm of the vector
* Z is one.
*
* Arguments
* =========
*
* I (input) INTEGER
* The index of the eigenvalue to be computed. I = 1 or I = 2.
*
* D (input) DOUBLE PRECISION array, dimension (2)
* The original eigenvalues. We assume D(1) < D(2).
*
* Z (input) DOUBLE PRECISION array, dimension (2)
* The components of the updating vector.
*
* DELTA (output) DOUBLE PRECISION array, dimension (2)
* The vector DELTA contains the information necessary
* to construct the eigenvectors.
*
* RHO (input) DOUBLE PRECISION
* The scalar in the symmetric updating formula.
*
* DLAM (output) DOUBLE PRECISION
* The computed lambda_I, the I-th updated eigenvalue.
*
* Further Details
* ===============
*
* Based on contributions by
* Ren-Cang Li, Computer Science Division, University of California
* at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, FOUR
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ FOUR = 4.0D0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION B, C, DEL, TAU, TEMP, W
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
DEL = D( 2 ) - D( 1 )
IF( I.EQ.1 ) THEN
W = ONE + TWO*RHO*( Z( 2 )*Z( 2 )-Z( 1 )*Z( 1 ) ) / DEL
IF( W.GT.ZERO ) THEN
OPS = OPS + 33
B = DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 1 )*Z( 1 )*DEL
*
* B > ZERO, always
*
TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
DLAM = D( 1 ) + TAU
DELTA( 1 ) = -Z( 1 ) / TAU
DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
ELSE
OPS = OPS + 31
B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 2 )*Z( 2 )*DEL
IF( B.GT.ZERO ) THEN
TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
ELSE
TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
END IF
DLAM = D( 2 ) + TAU
DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
DELTA( 2 ) = -Z( 2 ) / TAU
END IF
TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
DELTA( 1 ) = DELTA( 1 ) / TEMP
DELTA( 2 ) = DELTA( 2 ) / TEMP
ELSE
*
* Now I=2
*
OPS = OPS + 24
B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 2 )*Z( 2 )*DEL
IF( B.GT.ZERO ) THEN
TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
ELSE
TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
END IF
DLAM = D( 2 ) + TAU
DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
DELTA( 2 ) = -Z( 2 ) / TAU
TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
DELTA( 1 ) = DELTA( 1 ) / TEMP
DELTA( 2 ) = DELTA( 2 ) / TEMP
END IF
RETURN
*
* End OF DLAED5
*
END
|