File: dlarrb.f

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (304 lines) | stat: -rw-r--r-- 9,460 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
      SUBROUTINE DLARRB( N, D, L, LD, LLD, IFIRST, ILAST, SIGMA, RELTOL,
     $                   W, WGAP, WERR, WORK, IWORK, INFO )
*
*  -- LAPACK auxiliary routine (instru to count ops, version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            IFIRST, ILAST, INFO, N
      DOUBLE PRECISION   RELTOL, SIGMA
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   D( * ), L( * ), LD( * ), LLD( * ), W( * ),
     $                   WERR( * ), WGAP( * ), WORK( * )
*     ..
*     Common block to return operation count
*     .. Common blocks ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. Scalars in Common ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
*
*  Purpose
*  =======
*
*  Given the relatively robust representation(RRR) L D L^T, DLARRB
*  does ``limited'' bisection to locate the eigenvalues of L D L^T,
*  W( IFIRST ) thru' W( ILAST ), to more accuracy. Intervals
*  [left, right] are maintained by storing their mid-points and
*  semi-widths in the arrays W and WERR respectively.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The n diagonal elements of the diagonal matrix D.
*
*  L       (input) DOUBLE PRECISION array, dimension (N-1)
*          The n-1 subdiagonal elements of the unit bidiagonal matrix L.
*
*  LD      (input) DOUBLE PRECISION array, dimension (N-1)
*          The n-1 elements L(i)*D(i).
*
*  LLD     (input) DOUBLE PRECISION array, dimension (N-1)
*          The n-1 elements L(i)*L(i)*D(i).
*
*  IFIRST  (input) INTEGER
*          The index of the first eigenvalue in the cluster.
*
*  ILAST   (input) INTEGER
*          The index of the last eigenvalue in the cluster.
*
*  SIGMA   (input) DOUBLE PRECISION
*          The shift used to form L D L^T (see DLARRF).
*
*  RELTOL  (input) DOUBLE PRECISION
*          The relative tolerance.
*
*  W       (input/output) DOUBLE PRECISION array, dimension (N)
*          On input, W( IFIRST ) thru' W( ILAST ) are estimates of the
*          corresponding eigenvalues of L D L^T.
*          On output, these estimates are ``refined''.
*
*  WGAP    (input/output) DOUBLE PRECISION array, dimension (N)
*          The gaps between the eigenvalues of L D L^T. Very small
*          gaps are changed on output.
*
*  WERR    (input/output) DOUBLE PRECISION array, dimension (N)
*          On input, WERR( IFIRST ) thru' WERR( ILAST ) are the errors
*          in the estimates W( IFIRST ) thru' W( ILAST ).
*          On output, these are the ``refined'' errors.
*
*****Reminder to Inder --- WORK is never used in this subroutine *****
*  WORK    (input) DOUBLE PRECISION array, dimension (???)
*          Workspace.
*
*  IWORK   (input) INTEGER array, dimension (2*N)
*          Workspace.
*
*****Reminder to Inder --- INFO is never set in this subroutine ******
*  INFO    (output) INTEGER
*          Error flag.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Inderjit Dhillon, IBM Almaden, USA
*     Osni Marques, LBNL/NERSC, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, TWO, HALF
      PARAMETER          ( ZERO = 0.0D0, TWO = 2.0D0, HALF = 0.5D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CNT, I, I1, I2, INITI1, INITI2, J, K, NCNVRG,
     $                   NEIG, NINT, NRIGHT, OLNINT
      DOUBLE PRECISION   DELTA, EPS, GAP, LEFT, MID, PERT, RIGHT, S,
     $                   THRESH, TMP, WIDTH
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'Precision' )
      I1 = IFIRST
      I2 = IFIRST
      NEIG = ILAST - IFIRST + 1
      NCNVRG = 0
      THRESH = RELTOL
      DO 10 I = IFIRST, ILAST
         OPS = OPS + DBLE( 3 )
         IWORK( I ) = 0
         PERT = EPS*( ABS( SIGMA )+ABS( W( I ) ) )
         WERR( I ) = WERR( I ) + PERT
         IF( WGAP( I ).LT.PERT )
     $      WGAP( I ) = PERT
   10 CONTINUE
      DO 20 I = I1, ILAST
         IF( I.EQ.1 ) THEN
            GAP = WGAP( I )
         ELSE IF( I.EQ.N ) THEN
            GAP = WGAP( I-1 )
         ELSE
            GAP = MIN( WGAP( I-1 ), WGAP( I ) )
         END IF
         OPS = OPS + DBLE( 1 )
         IF( WERR( I ).LT.THRESH*GAP ) THEN
            NCNVRG = NCNVRG + 1
            IWORK( I ) = 1
            IF( I1.EQ.I )
     $         I1 = I1 + 1
         ELSE
            I2 = I
         END IF
   20 CONTINUE
*
*     Initialize the unconverged intervals.
*
      I = I1
      NINT = 0
      RIGHT = ZERO
   30 CONTINUE
      IF( I.LE.I2 ) THEN
         IF( IWORK( I ).EQ.0 ) THEN
            DELTA = EPS
            OPS = OPS + DBLE( 1 )
            LEFT = W( I ) - WERR( I )
*
*           Do while( CNT(LEFT).GT.I-1 )
*
   40       CONTINUE
            IF( I.GT.I1 .AND. LEFT.LE.RIGHT ) THEN
               LEFT = RIGHT
               CNT = I - 1
            ELSE
               S = -LEFT
               CNT = 0
               DO 50 J = 1, N - 1
                  OPS = OPS + DBLE( 5 )
                  TMP = D( J ) + S
                  S = S*( LD( J ) / TMP )*L( J ) - LEFT
                  IF( TMP.LT.ZERO )
     $               CNT = CNT + 1
   50          CONTINUE
               TMP = D( N ) + S
               IF( TMP.LT.ZERO )
     $            CNT = CNT + 1
               IF( CNT.GT.I-1 ) THEN
                  OPS = OPS + DBLE( 4 )
                  DELTA = TWO*DELTA
                  LEFT = LEFT - ( ABS( SIGMA )+ABS( LEFT ) )*DELTA
                  GO TO 40
               END IF
            END IF
            OPS = OPS + DBLE( 1 )
            DELTA = EPS
            RIGHT = W( I ) + WERR( I )
*
*           Do while( CNT(RIGHT).LT.I )
*
   60       CONTINUE
            S = -RIGHT
            CNT = 0
            OPS = OPS + DBLE( 5*( N-1 )+1 )
            DO 70 J = 1, N - 1
               TMP = D( J ) + S
               S = S*( LD( J ) / TMP )*L( J ) - RIGHT
               IF( TMP.LT.ZERO )
     $            CNT = CNT + 1
   70       CONTINUE
            TMP = D( N ) + S
            IF( TMP.LT.ZERO )
     $         CNT = CNT + 1
            IF( CNT.LT.I ) THEN
               OPS = OPS + DBLE( 4 )
               DELTA = TWO*DELTA
               RIGHT = RIGHT + ( ABS( SIGMA )+ABS( RIGHT ) )*DELTA
               GO TO 60
            END IF
            WERR( I ) = LEFT
            W( I ) = RIGHT
            IWORK( N+I ) = CNT
            NINT = NINT + 1
            I = CNT + 1
         ELSE
            I = I + 1
         END IF
         GO TO 30
      END IF
*
*     While( NCNVRG.LT.NEIG )
*
      INITI1 = I1
      INITI2 = I2
   80 CONTINUE
      IF( NCNVRG.LT.NEIG ) THEN
         OLNINT = NINT
         I = I1
         DO 100 K = 1, OLNINT
            NRIGHT = IWORK( N+I )
            IF( IWORK( I ).EQ.0 ) THEN
               OPS = OPS + DBLE( 2 )
               MID = HALF*( WERR( I )+W( I ) )
               S = -MID
               CNT = 0
               OPS = OPS + DBLE( 5*( N-1 )+1 )
               DO 90 J = 1, N - 1
                  TMP = D( J ) + S
                  S = S*( LD( J ) / TMP )*L( J ) - MID
                  IF( TMP.LT.ZERO )
     $               CNT = CNT + 1
   90          CONTINUE
               TMP = D( N ) + S
               IF( TMP.LT.ZERO )
     $            CNT = CNT + 1
               CNT = MAX( I-1, MIN( NRIGHT, CNT ) )
               IF( I.EQ.NRIGHT ) THEN
                  IF( I.EQ.IFIRST ) THEN
                     OPS = OPS + DBLE( 1 )
                     GAP = WERR( I+1 ) - W( I )
                  ELSE IF( I.EQ.ILAST ) THEN
                     OPS = OPS + DBLE( 1 )
                     GAP = WERR( I ) - W( I-1 )
                  ELSE
                     OPS = OPS + DBLE( 2 )
                     GAP = MIN( WERR( I+1 )-W( I ), WERR( I )-W( I-1 ) )
                  END IF
                  OPS = OPS + DBLE( 2 )
                  WIDTH = W( I ) - MID
                  IF( WIDTH.LT.THRESH*GAP ) THEN
                     NCNVRG = NCNVRG + 1
                     IWORK( I ) = 1
                     IF( I1.EQ.I ) THEN
                        I1 = I1 + 1
                        NINT = NINT - 1
                     END IF
                  END IF
               END IF
               IF( IWORK( I ).EQ.0 )
     $            I2 = K
               IF( CNT.EQ.I-1 ) THEN
                  WERR( I ) = MID
               ELSE IF( CNT.EQ.NRIGHT ) THEN
                  W( I ) = MID
               ELSE
                  IWORK( N+I ) = CNT
                  NINT = NINT + 1
                  WERR( CNT+1 ) = MID
                  W( CNT+1 ) = W( I )
                  W( I ) = MID
                  I = CNT + 1
                  IWORK( N+I ) = NRIGHT
               END IF
            END IF
            I = NRIGHT + 1
  100    CONTINUE
         NINT = NINT - OLNINT + I2
         GO TO 80
      END IF
      DO 110 I = INITI1, INITI2
         OPS = OPS + DBLE( 3 )
         W( I ) = HALF*( WERR( I )+W( I ) )
         WERR( I ) = W( I ) - WERR( I )
  110 CONTINUE
*
      RETURN
*
*     End of DLARRB
*
      END