1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
SUBROUTINE DLARRB( N, D, L, LD, LLD, IFIRST, ILAST, SIGMA, RELTOL,
$ W, WGAP, WERR, WORK, IWORK, INFO )
*
* -- LAPACK auxiliary routine (instru to count ops, version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER IFIRST, ILAST, INFO, N
DOUBLE PRECISION RELTOL, SIGMA
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), L( * ), LD( * ), LLD( * ), W( * ),
$ WERR( * ), WGAP( * ), WORK( * )
* ..
* Common block to return operation count
* .. Common blocks ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
DOUBLE PRECISION ITCNT, OPS
* ..
*
* Purpose
* =======
*
* Given the relatively robust representation(RRR) L D L^T, DLARRB
* does ``limited'' bisection to locate the eigenvalues of L D L^T,
* W( IFIRST ) thru' W( ILAST ), to more accuracy. Intervals
* [left, right] are maintained by storing their mid-points and
* semi-widths in the arrays W and WERR respectively.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix.
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The n diagonal elements of the diagonal matrix D.
*
* L (input) DOUBLE PRECISION array, dimension (N-1)
* The n-1 subdiagonal elements of the unit bidiagonal matrix L.
*
* LD (input) DOUBLE PRECISION array, dimension (N-1)
* The n-1 elements L(i)*D(i).
*
* LLD (input) DOUBLE PRECISION array, dimension (N-1)
* The n-1 elements L(i)*L(i)*D(i).
*
* IFIRST (input) INTEGER
* The index of the first eigenvalue in the cluster.
*
* ILAST (input) INTEGER
* The index of the last eigenvalue in the cluster.
*
* SIGMA (input) DOUBLE PRECISION
* The shift used to form L D L^T (see DLARRF).
*
* RELTOL (input) DOUBLE PRECISION
* The relative tolerance.
*
* W (input/output) DOUBLE PRECISION array, dimension (N)
* On input, W( IFIRST ) thru' W( ILAST ) are estimates of the
* corresponding eigenvalues of L D L^T.
* On output, these estimates are ``refined''.
*
* WGAP (input/output) DOUBLE PRECISION array, dimension (N)
* The gaps between the eigenvalues of L D L^T. Very small
* gaps are changed on output.
*
* WERR (input/output) DOUBLE PRECISION array, dimension (N)
* On input, WERR( IFIRST ) thru' WERR( ILAST ) are the errors
* in the estimates W( IFIRST ) thru' W( ILAST ).
* On output, these are the ``refined'' errors.
*
*****Reminder to Inder --- WORK is never used in this subroutine *****
* WORK (input) DOUBLE PRECISION array, dimension (???)
* Workspace.
*
* IWORK (input) INTEGER array, dimension (2*N)
* Workspace.
*
*****Reminder to Inder --- INFO is never set in this subroutine ******
* INFO (output) INTEGER
* Error flag.
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, TWO, HALF
PARAMETER ( ZERO = 0.0D0, TWO = 2.0D0, HALF = 0.5D0 )
* ..
* .. Local Scalars ..
INTEGER CNT, I, I1, I2, INITI1, INITI2, J, K, NCNVRG,
$ NEIG, NINT, NRIGHT, OLNINT
DOUBLE PRECISION DELTA, EPS, GAP, LEFT, MID, PERT, RIGHT, S,
$ THRESH, TMP, WIDTH
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'Precision' )
I1 = IFIRST
I2 = IFIRST
NEIG = ILAST - IFIRST + 1
NCNVRG = 0
THRESH = RELTOL
DO 10 I = IFIRST, ILAST
OPS = OPS + DBLE( 3 )
IWORK( I ) = 0
PERT = EPS*( ABS( SIGMA )+ABS( W( I ) ) )
WERR( I ) = WERR( I ) + PERT
IF( WGAP( I ).LT.PERT )
$ WGAP( I ) = PERT
10 CONTINUE
DO 20 I = I1, ILAST
IF( I.EQ.1 ) THEN
GAP = WGAP( I )
ELSE IF( I.EQ.N ) THEN
GAP = WGAP( I-1 )
ELSE
GAP = MIN( WGAP( I-1 ), WGAP( I ) )
END IF
OPS = OPS + DBLE( 1 )
IF( WERR( I ).LT.THRESH*GAP ) THEN
NCNVRG = NCNVRG + 1
IWORK( I ) = 1
IF( I1.EQ.I )
$ I1 = I1 + 1
ELSE
I2 = I
END IF
20 CONTINUE
*
* Initialize the unconverged intervals.
*
I = I1
NINT = 0
RIGHT = ZERO
30 CONTINUE
IF( I.LE.I2 ) THEN
IF( IWORK( I ).EQ.0 ) THEN
DELTA = EPS
OPS = OPS + DBLE( 1 )
LEFT = W( I ) - WERR( I )
*
* Do while( CNT(LEFT).GT.I-1 )
*
40 CONTINUE
IF( I.GT.I1 .AND. LEFT.LE.RIGHT ) THEN
LEFT = RIGHT
CNT = I - 1
ELSE
S = -LEFT
CNT = 0
DO 50 J = 1, N - 1
OPS = OPS + DBLE( 5 )
TMP = D( J ) + S
S = S*( LD( J ) / TMP )*L( J ) - LEFT
IF( TMP.LT.ZERO )
$ CNT = CNT + 1
50 CONTINUE
TMP = D( N ) + S
IF( TMP.LT.ZERO )
$ CNT = CNT + 1
IF( CNT.GT.I-1 ) THEN
OPS = OPS + DBLE( 4 )
DELTA = TWO*DELTA
LEFT = LEFT - ( ABS( SIGMA )+ABS( LEFT ) )*DELTA
GO TO 40
END IF
END IF
OPS = OPS + DBLE( 1 )
DELTA = EPS
RIGHT = W( I ) + WERR( I )
*
* Do while( CNT(RIGHT).LT.I )
*
60 CONTINUE
S = -RIGHT
CNT = 0
OPS = OPS + DBLE( 5*( N-1 )+1 )
DO 70 J = 1, N - 1
TMP = D( J ) + S
S = S*( LD( J ) / TMP )*L( J ) - RIGHT
IF( TMP.LT.ZERO )
$ CNT = CNT + 1
70 CONTINUE
TMP = D( N ) + S
IF( TMP.LT.ZERO )
$ CNT = CNT + 1
IF( CNT.LT.I ) THEN
OPS = OPS + DBLE( 4 )
DELTA = TWO*DELTA
RIGHT = RIGHT + ( ABS( SIGMA )+ABS( RIGHT ) )*DELTA
GO TO 60
END IF
WERR( I ) = LEFT
W( I ) = RIGHT
IWORK( N+I ) = CNT
NINT = NINT + 1
I = CNT + 1
ELSE
I = I + 1
END IF
GO TO 30
END IF
*
* While( NCNVRG.LT.NEIG )
*
INITI1 = I1
INITI2 = I2
80 CONTINUE
IF( NCNVRG.LT.NEIG ) THEN
OLNINT = NINT
I = I1
DO 100 K = 1, OLNINT
NRIGHT = IWORK( N+I )
IF( IWORK( I ).EQ.0 ) THEN
OPS = OPS + DBLE( 2 )
MID = HALF*( WERR( I )+W( I ) )
S = -MID
CNT = 0
OPS = OPS + DBLE( 5*( N-1 )+1 )
DO 90 J = 1, N - 1
TMP = D( J ) + S
S = S*( LD( J ) / TMP )*L( J ) - MID
IF( TMP.LT.ZERO )
$ CNT = CNT + 1
90 CONTINUE
TMP = D( N ) + S
IF( TMP.LT.ZERO )
$ CNT = CNT + 1
CNT = MAX( I-1, MIN( NRIGHT, CNT ) )
IF( I.EQ.NRIGHT ) THEN
IF( I.EQ.IFIRST ) THEN
OPS = OPS + DBLE( 1 )
GAP = WERR( I+1 ) - W( I )
ELSE IF( I.EQ.ILAST ) THEN
OPS = OPS + DBLE( 1 )
GAP = WERR( I ) - W( I-1 )
ELSE
OPS = OPS + DBLE( 2 )
GAP = MIN( WERR( I+1 )-W( I ), WERR( I )-W( I-1 ) )
END IF
OPS = OPS + DBLE( 2 )
WIDTH = W( I ) - MID
IF( WIDTH.LT.THRESH*GAP ) THEN
NCNVRG = NCNVRG + 1
IWORK( I ) = 1
IF( I1.EQ.I ) THEN
I1 = I1 + 1
NINT = NINT - 1
END IF
END IF
END IF
IF( IWORK( I ).EQ.0 )
$ I2 = K
IF( CNT.EQ.I-1 ) THEN
WERR( I ) = MID
ELSE IF( CNT.EQ.NRIGHT ) THEN
W( I ) = MID
ELSE
IWORK( N+I ) = CNT
NINT = NINT + 1
WERR( CNT+1 ) = MID
W( CNT+1 ) = W( I )
W( I ) = MID
I = CNT + 1
IWORK( N+I ) = NRIGHT
END IF
END IF
I = NRIGHT + 1
100 CONTINUE
NINT = NINT - OLNINT + I2
GO TO 80
END IF
DO 110 I = INITI1, INITI2
OPS = OPS + DBLE( 3 )
W( I ) = HALF*( WERR( I )+W( I ) )
WERR( I ) = W( I ) - WERR( I )
110 CONTINUE
*
RETURN
*
* End of DLARRB
*
END
|