1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
SUBROUTINE DLARRE( N, D, E, TOL, NSPLIT, ISPLIT, M, W, WOFF,
$ GERSCH, WORK, INFO )
*
* -- LAPACK auxiliary routine (instru to count ops, version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, M, N, NSPLIT
DOUBLE PRECISION TOL
* ..
* .. Array Arguments ..
INTEGER ISPLIT( * )
DOUBLE PRECISION D( * ), E( * ), GERSCH( * ), W( * ), WOFF( * ),
$ WORK( * )
* ..
* Common block to return operation count
* .. Common blocks ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
DOUBLE PRECISION ITCNT, OPS
* ..
*
* Purpose
* =======
*
* Given the tridiagonal matrix T, DLARRE sets "small" off-diagonal
* elements to zero, and for each unreduced block T_i, it finds
* (i) the numbers sigma_i
* (ii) the base T_i - sigma_i I = L_i D_i L_i^T representations and
* (iii) eigenvalues of each L_i D_i L_i^T.
* The representations and eigenvalues found are then used by
* DSTEGR to compute the eigenvectors of a symmetric tridiagonal
* matrix. Currently, the base representations are limited to being
* positive or negative definite, and the eigenvalues of the definite
* matrices are found by the dqds algorithm (subroutine DLASQ2). As
* an added benefit, DLARRE also outputs the n Gerschgorin
* intervals for each L_i D_i L_i^T.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix.
*
* D (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the n diagonal elements of the tridiagonal
* matrix T.
* On exit, the n diagonal elements of the diagonal
* matrices D_i.
*
* E (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the (n-1) subdiagonal elements of the tridiagonal
* matrix T; E(N) need not be set.
* On exit, the subdiagonal elements of the unit bidiagonal
* matrices L_i.
*
* TOL (input) DOUBLE PRECISION
* The threshold for splitting. If on input |E(i)| < TOL, then
* the matrix T is split into smaller blocks.
*
* NSPLIT (input) INTEGER
* The number of blocks T splits into. 1 <= NSPLIT <= N.
*
* ISPLIT (output) INTEGER array, dimension (2*N)
* The splitting points, at which T breaks up into submatrices.
* The first submatrix consists of rows/columns 1 to ISPLIT(1),
* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
* etc., and the NSPLIT-th consists of rows/columns
* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
*
* M (output) INTEGER
* The total number of eigenvalues (of all the L_i D_i L_i^T)
* found.
*
* W (output) DOUBLE PRECISION array, dimension (N)
* The first M elements contain the eigenvalues. The
* eigenvalues of each of the blocks, L_i D_i L_i^T, are
* sorted in ascending order.
*
* WOFF (output) DOUBLE PRECISION array, dimension (N)
* The NSPLIT base points sigma_i.
*
* GERSCH (output) DOUBLE PRECISION array, dimension (2*N)
* The n Gerschgorin intervals.
*
* WORK (input) DOUBLE PRECISION array, dimension (4*N???)
* Workspace.
*
* INFO (output) INTEGER
* Output error code from DLASQ2
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, FOUR, FOURTH
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ FOUR = 4.0D0, FOURTH = ONE / FOUR )
* ..
* .. Local Scalars ..
INTEGER CNT, I, IBEGIN, IEND, IN, J, JBLK, MAXCNT
DOUBLE PRECISION DELTA, EPS, GL, GU, NRM, OFFD, S, SGNDEF,
$ SIGMA, TAU, TMP1, WIDTH
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLASQ2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
EPS = DLAMCH( 'Precision' )
*
* Compute Splitting Points
*
NSPLIT = 1
DO 10 I = 1, N - 1
IF( ABS( E( I ) ).LE.TOL ) THEN
ISPLIT( NSPLIT ) = I
NSPLIT = NSPLIT + 1
END IF
10 CONTINUE
ISPLIT( NSPLIT ) = N
*
IBEGIN = 1
DO 170 JBLK = 1, NSPLIT
IEND = ISPLIT( JBLK )
IF( IBEGIN.EQ.IEND ) THEN
W( IBEGIN ) = D( IBEGIN )
WOFF( JBLK ) = ZERO
IBEGIN = IEND + 1
GO TO 170
END IF
IN = IEND - IBEGIN + 1
*
* Form the n Gerschgorin intervals
*
OPS = OPS + DBLE( 4 )
GL = D( IBEGIN ) - ABS( E( IBEGIN ) )
GU = D( IBEGIN ) + ABS( E( IBEGIN ) )
GERSCH( 2*IBEGIN-1 ) = GL
GERSCH( 2*IBEGIN ) = GU
GERSCH( 2*IEND-1 ) = D( IEND ) - ABS( E( IEND-1 ) )
GERSCH( 2*IEND ) = D( IEND ) + ABS( E( IEND-1 ) )
GL = MIN( GERSCH( 2*IEND-1 ), GL )
GU = MAX( GERSCH( 2*IEND ), GU )
DO 20 I = IBEGIN + 1, IEND - 1
OPS = OPS + DBLE( 3 )
OFFD = ABS( E( I-1 ) ) + ABS( E( I ) )
GERSCH( 2*I-1 ) = D( I ) - OFFD
GL = MIN( GERSCH( 2*I-1 ), GL )
GERSCH( 2*I ) = D( I ) + OFFD
GU = MAX( GERSCH( 2*I ), GU )
20 CONTINUE
NRM = MAX( ABS( GL ), ABS( GU ) )
*
* Find the number SIGMA where the base representation
* T - sigma I = L D L^T is to be formed.
*
WIDTH = GU - GL
DO 30 I = IBEGIN, IEND - 1
OPS = OPS + DBLE( 1 )
WORK( I ) = E( I )*E( I )
30 CONTINUE
OPS = OPS + DBLE( 6 )
DO 50 J = 1, 2
IF( J.EQ.1 ) THEN
TAU = GL + FOURTH*WIDTH
ELSE
TAU = GU - FOURTH*WIDTH
END IF
TMP1 = D( IBEGIN ) - TAU
IF( TMP1.LT.ZERO ) THEN
CNT = 1
ELSE
CNT = 0
END IF
DO 40 I = IBEGIN + 1, IEND
OPS = OPS + DBLE( 3 )
TMP1 = D( I ) - TAU - WORK( I-1 ) / TMP1
IF( TMP1.LT.ZERO )
$ CNT = CNT + 1
40 CONTINUE
IF( CNT.EQ.0 ) THEN
GL = TAU
ELSE IF( CNT.EQ.IN ) THEN
GU = TAU
END IF
IF( J.EQ.1 ) THEN
MAXCNT = CNT
SIGMA = GL
SGNDEF = ONE
ELSE
IF( IN-CNT.GT.MAXCNT ) THEN
SIGMA = GU
SGNDEF = -ONE
END IF
END IF
50 CONTINUE
*
* Find the base L D L^T representation
*
OPS = OPS + DBLE( 1 )
WORK( 3*IN ) = ONE
DELTA = EPS
TAU = SGNDEF*NRM
60 CONTINUE
OPS = OPS + DBLE( 3+5*( IN-1 ) )
SIGMA = SIGMA - DELTA*TAU
WORK( 1 ) = D( IBEGIN ) - SIGMA
J = IBEGIN
DO 70 I = 1, IN - 1
WORK( 2*IN+I ) = ONE / WORK( 2*I-1 )
TMP1 = E( J )*WORK( 2*IN+I )
WORK( 2*I+1 ) = ( D( J+1 )-SIGMA ) - TMP1*E( J )
WORK( 2*I ) = TMP1
J = J + 1
70 CONTINUE
OPS = OPS + DBLE( IN )
DO 80 I = IN, 1, -1
TMP1 = SGNDEF*WORK( 2*I-1 )
IF( TMP1.LT.ZERO .OR. WORK( 2*IN+I ).EQ.ZERO .OR. .NOT.
$ ( TMP1.GT.ZERO .OR. TMP1.LT.ONE ) ) THEN
OPS = OPS + DBLE( 1 )
DELTA = TWO*DELTA
GO TO 60
END IF
J = J - 1
80 CONTINUE
*
OPS = OPS + DBLE( IN-1 )
J = IBEGIN
D( IBEGIN ) = WORK( 1 )
WORK( 1 ) = ABS( WORK( 1 ) )
DO 90 I = 1, IN - 1
TMP1 = E( J )
E( J ) = WORK( 2*I )
WORK( 2*I ) = ABS( TMP1*WORK( 2*I ) )
J = J + 1
D( J ) = WORK( 2*I+1 )
WORK( 2*I+1 ) = ABS( WORK( 2*I+1 ) )
90 CONTINUE
*
CALL DLASQ2( IN, WORK, INFO )
*
OPS = OPS + DBLE( 2 )
TAU = SGNDEF*WORK( IN )
WORK( 3*IN ) = ONE
DELTA = TWO*EPS
100 CONTINUE
OPS = OPS + DBLE( 2 )
TAU = TAU*( ONE-DELTA )
*
OPS = OPS + DBLE( 9*( IN-1 )+1 )
S = -TAU
J = IBEGIN
DO 110 I = 1, IN - 1
WORK( I ) = D( J ) + S
WORK( 2*IN+I ) = ONE / WORK( I )
* WORK( N+I ) = ( E( I ) * D( I ) ) / WORK( I )
WORK( IN+I ) = ( E( J )*D( J ) )*WORK( 2*IN+I )
S = S*WORK( IN+I )*E( J ) - TAU
J = J + 1
110 CONTINUE
WORK( IN ) = D( IEND ) + S
*
* Checking to see if all the diagonal elements of the new
* L D L^T representation have the same sign
*
OPS = OPS + DBLE( IN+1 )
DO 120 I = IN, 1, -1
TMP1 = SGNDEF*WORK( I )
IF( TMP1.LT.ZERO .OR. WORK( 2*IN+I ).EQ.ZERO .OR. .NOT.
$ ( TMP1.GT.ZERO .OR. TMP1.LT.ONE ) ) THEN
OPS = OPS + DBLE( 1 )
DELTA = TWO*DELTA
GO TO 100
END IF
120 CONTINUE
*
SIGMA = SIGMA + TAU
CALL DCOPY( IN, WORK, 1, D( IBEGIN ), 1 )
CALL DCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 )
WOFF( JBLK ) = SIGMA
*
* Update the n Gerschgorin intervals
*
OPS = OPS + DBLE( 2 )
DO 130 I = IBEGIN, IEND
GERSCH( 2*I-1 ) = GERSCH( 2*I-1 ) - SIGMA
GERSCH( 2*I ) = GERSCH( 2*I ) - SIGMA
130 CONTINUE
*
* Compute the eigenvalues of L D L^T.
*
J = IBEGIN
OPS = OPS + DBLE( 2*( IN-1 ) )
DO 140 I = 1, IN - 1
WORK( 2*I-1 ) = ABS( D( J ) )
WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 )
J = J + 1
140 CONTINUE
WORK( 2*IN-1 ) = ABS( D( IEND ) )
*
CALL DLASQ2( IN, WORK, INFO )
*
J = IBEGIN
IF( SGNDEF.GT.ZERO ) THEN
DO 150 I = 1, IN
W( J ) = WORK( IN-I+1 )
J = J + 1
150 CONTINUE
ELSE
DO 160 I = 1, IN
W( J ) = -WORK( I )
J = J + 1
160 CONTINUE
END IF
IBEGIN = IEND + 1
170 CONTINUE
M = N
*
RETURN
*
* End of DLARRE
*
END
|