| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 
 |       SUBROUTINE SLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO )
*
*  -- LAPACK routine (instrumented to count operations, version 3.0) --
*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
*     Courant Institute, NAG Ltd., and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            I, INFO, N
      REAL               DLAM, RHO
*     ..
*     .. Array Arguments ..
      REAL               D( * ), DELTA( * ), Z( * )
*     ..
*     Common block to return operation count and iteration count
*     ITCNT is unchanged, OPS is only incremented
*     .. Common blocks ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. Scalars in Common ..
      REAL               ITCNT, OPS
*     ..
*
*  Purpose
*  =======
*
*  This subroutine computes the I-th updated eigenvalue of a symmetric
*  rank-one modification to a diagonal matrix whose elements are
*  given in the array d, and that
*
*             D(i) < D(j)  for  i < j
*
*  and that RHO > 0.  This is arranged by the calling routine, and is
*  no loss in generality.  The rank-one modified system is thus
*
*             diag( D )  +  RHO *  Z * Z_transpose.
*
*  where we assume the Euclidean norm of Z is 1.
*
*  The method consists of approximating the rational functions in the
*  secular equation by simpler interpolating rational functions.
*
*  Arguments
*  =========
*
*  N      (input) INTEGER
*         The length of all arrays.
*
*  I      (input) INTEGER
*         The index of the eigenvalue to be computed.  1 <= I <= N.
*
*  D      (input) REAL array, dimension (N)
*         The original eigenvalues.  It is assumed that they are in
*         order, D(I) < D(J)  for I < J.
*
*  Z      (input) REAL array, dimension (N)
*         The components of the updating vector.
*
*  DELTA  (output) REAL array, dimension (N)
*         If N .ne. 1, DELTA contains (D(j) - lambda_I) in its  j-th
*         component.  If N = 1, then DELTA(1) = 1.  The vector DELTA
*         contains the information necessary to construct the
*         eigenvectors.
*
*  RHO    (input) REAL
*         The scalar in the symmetric updating formula.
*
*  DLAM   (output) REAL
*         The computed lambda_I, the I-th updated eigenvalue.
*
*  INFO   (output) INTEGER
*         = 0:  successful exit
*         > 0:  if INFO = 1, the updating process failed.
*
*  Internal Parameters
*  ===================
*
*  Logical variable ORGATI (origin-at-i?) is used for distinguishing
*  whether D(i) or D(i+1) is treated as the origin.
*
*            ORGATI = .true.    origin at i
*            ORGATI = .false.   origin at i+1
*
*   Logical variable SWTCH3 (switch-for-3-poles?) is for noting
*   if we are working with THREE poles!
*
*   MAXIT is the maximum number of iterations allowed for each
*   eigenvalue.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ren-Cang Li, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 20 )
      REAL               ZERO, ONE, TWO, THREE, FOUR, EIGHT, TEN
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
     $                   THREE = 3.0E0, FOUR = 4.0E0, EIGHT = 8.0E0,
     $                   TEN = 10.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ORGATI, SWTCH, SWTCH3
      INTEGER            II, IIM1, IIP1, IP1, ITER, J, NITER
      REAL               A, B, C, DEL, DPHI, DPSI, DW, EPS, ERRETM, ETA,
     $                   PHI, PREW, PSI, RHOINV, TAU, TEMP, TEMP1, W
*     ..
*     .. Local Arrays ..
      REAL               ZZ( 3 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAED5, SLAED6
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Since this routine is called in an inner loop, we do no argument
*     checking.
*
*     Quick return for N=1 and 2.
*
      INFO = 0
      IF( N.EQ.1 ) THEN
*
*         Presumably, I=1 upon entry
*
         OPS = OPS + 3
         DLAM = D( 1 ) + RHO*Z( 1 )*Z( 1 )
         DELTA( 1 ) = ONE
         RETURN
      END IF
      IF( N.EQ.2 ) THEN
         CALL SLAED5( I, D, Z, DELTA, RHO, DLAM )
         RETURN
      END IF
*
*     Compute machine epsilon
*
      EPS = SLAMCH( 'Epsilon' )
      OPS = OPS + 1
      RHOINV = ONE / RHO
*
*     The case I = N
*
      IF( I.EQ.N ) THEN
*
*        Initialize some basic variables
*
         II = N - 1
         NITER = 1
*
*        Calculate initial guess
*
         OPS = OPS + 5*N + 1
         TEMP = RHO / TWO
*
*        If ||Z||_2 is not one, then TEMP should be set to
*        RHO * ||Z||_2^2 / TWO
*
         DO 10 J = 1, N
            DELTA( J ) = ( D( J )-D( I ) ) - TEMP
   10    CONTINUE
*
         PSI = ZERO
         DO 20 J = 1, N - 2
            PSI = PSI + Z( J )*Z( J ) / DELTA( J )
   20    CONTINUE
*
         C = RHOINV + PSI
         W = C + Z( II )*Z( II ) / DELTA( II ) +
     $       Z( N )*Z( N ) / DELTA( N )
*
         IF( W.LE.ZERO ) THEN
            OPS = OPS + 7
            TEMP = Z( N-1 )*Z( N-1 ) / ( D( N )-D( N-1 )+RHO ) +
     $             Z( N )*Z( N ) / RHO
            IF( C.LE.TEMP ) THEN
               TAU = RHO
            ELSE
               OPS = OPS + 14
               DEL = D( N ) - D( N-1 )
               A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
               B = Z( N )*Z( N )*DEL
               IF( A.LT.ZERO ) THEN
                  TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
               ELSE
                  TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
               END IF
            END IF
*
*           It can be proved that
*               D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO
*
         ELSE
            OPS = OPS + 16
            DEL = D( N ) - D( N-1 )
            A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
            B = Z( N )*Z( N )*DEL
            IF( A.LT.ZERO ) THEN
               TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
            ELSE
               TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
            END IF
*
*           It can be proved that
*               D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2
*
         END IF
*
         OPS = OPS + 2*N + 6*II + 14
         DO 30 J = 1, N
            DELTA( J ) = ( D( J )-D( I ) ) - TAU
   30    CONTINUE
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 40 J = 1, II
            TEMP = Z( J ) / DELTA( J )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
   40    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         TEMP = Z( N ) / DELTA( N )
         PHI = Z( N )*TEMP
         DPHI = TEMP*TEMP
         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
     $            ABS( TAU )*( DPSI+DPHI )
*
         W = RHOINV + PHI + PSI
*
*        Test for convergence
*
         IF( ABS( W ).LE.EPS*ERRETM ) THEN
            OPS = OPS + 1
            DLAM = D( I ) + TAU
            GO TO 250
         END IF
*
*        Calculate the new step
*
         OPS = OPS + 12
         NITER = NITER + 1
         C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI
         A = ( DELTA( N-1 )+DELTA( N ) )*W -
     $       DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )
         B = DELTA( N-1 )*DELTA( N )*W
         IF( C.LT.ZERO )
     $      C = ABS( C )
         IF( C.EQ.ZERO ) THEN
*           ETA = B/A
            OPS = OPS + 1
            ETA = RHO - TAU
         ELSE IF( A.GE.ZERO ) THEN
            OPS = OPS + 8
            ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            OPS = OPS + 8
            ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
         END IF
*
*        Note, eta should be positive if w is negative, and
*        eta should be negative otherwise. However,
*        if for some reason caused by roundoff, eta*w > 0,
*        we simply use one Newton step instead. This way
*        will guarantee eta*w < 0.
*
         OPS = OPS + N + 6*II + 16
         IF( W*ETA.GT.ZERO ) THEN
            OPS = OPS + 2
            ETA = -W / ( DPSI+DPHI )
         END IF
         TEMP = TAU + ETA
         IF( TEMP.GT.RHO ) THEN
            OPS = OPS + 1
            ETA = RHO - TAU
         END IF
         DO 50 J = 1, N
            DELTA( J ) = DELTA( J ) - ETA
   50    CONTINUE
*
         TAU = TAU + ETA
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 60 J = 1, II
            TEMP = Z( J ) / DELTA( J )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
   60    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         TEMP = Z( N ) / DELTA( N )
         PHI = Z( N )*TEMP
         DPHI = TEMP*TEMP
         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
     $            ABS( TAU )*( DPSI+DPHI )
*
         W = RHOINV + PHI + PSI
*
*        Main loop to update the values of the array   DELTA
*
         ITER = NITER + 1
*
         DO 90 NITER = ITER, MAXIT
*
*           Test for convergence
*
            OPS = OPS + 1
            IF( ABS( W ).LE.EPS*ERRETM ) THEN
               OPS = OPS + 1
               DLAM = D( I ) + TAU
               GO TO 250
            END IF
*
*           Calculate the new step
*
            OPS = OPS + 36 + N + 6*II
            C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI
            A = ( DELTA( N-1 )+DELTA( N ) )*W -
     $          DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )
            B = DELTA( N-1 )*DELTA( N )*W
            IF( A.GE.ZERO ) THEN
               ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            ELSE
               ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
            END IF
*
*           Note, eta should be positive if w is negative, and
*           eta should be negative otherwise. However,
*           if for some reason caused by roundoff, eta*w > 0,
*           we simply use one Newton step instead. This way
*           will guarantee eta*w < 0.
*
            IF( W*ETA.GT.ZERO )
     $         ETA = -W / ( DPSI+DPHI )
            TEMP = TAU + ETA
            IF( TEMP.LE.ZERO )
     $         ETA = ETA / TWO
            DO 70 J = 1, N
               DELTA( J ) = DELTA( J ) - ETA
   70       CONTINUE
*
            TAU = TAU + ETA
*
*           Evaluate PSI and the derivative DPSI
*
            DPSI = ZERO
            PSI = ZERO
            ERRETM = ZERO
            DO 80 J = 1, II
               TEMP = Z( J ) / DELTA( J )
               PSI = PSI + Z( J )*TEMP
               DPSI = DPSI + TEMP*TEMP
               ERRETM = ERRETM + PSI
   80       CONTINUE
            ERRETM = ABS( ERRETM )
*
*           Evaluate PHI and the derivative DPHI
*
            TEMP = Z( N ) / DELTA( N )
            PHI = Z( N )*TEMP
            DPHI = TEMP*TEMP
            ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
     $               ABS( TAU )*( DPSI+DPHI )
*
            W = RHOINV + PHI + PSI
   90    CONTINUE
*
*        Return with INFO = 1, NITER = MAXIT and not converged
*
         INFO = 1
         OPS = OPS + 1
         DLAM = D( I ) + TAU
         GO TO 250
*
*        End for the case I = N
*
      ELSE
*
*        The case for I < N
*
         NITER = 1
         IP1 = I + 1
*
*        Calculate initial guess
*
         TEMP = ( D( IP1 )-D( I ) ) / TWO
         DO 100 J = 1, N
            DELTA( J ) = ( D( J )-D( I ) ) - TEMP
  100    CONTINUE
*
         PSI = ZERO
         DO 110 J = 1, I - 1
            PSI = PSI + Z( J )*Z( J ) / DELTA( J )
  110    CONTINUE
*
         PHI = ZERO
         DO 120 J = N, I + 2, -1
            PHI = PHI + Z( J )*Z( J ) / DELTA( J )
  120    CONTINUE
         C = RHOINV + PSI + PHI
         W = C + Z( I )*Z( I ) / DELTA( I ) +
     $       Z( IP1 )*Z( IP1 ) / DELTA( IP1 )
*
         IF( W.GT.ZERO ) THEN
*
*           d(i)< the ith eigenvalue < (d(i)+d(i+1))/2
*
*           We choose d(i) as origin.
*
            ORGATI = .TRUE.
            DEL = D( IP1 ) - D( I )
            A = C*DEL + Z( I )*Z( I ) + Z( IP1 )*Z( IP1 )
            B = Z( I )*Z( I )*DEL
            IF( A.GT.ZERO ) THEN
               TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
            ELSE
               TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            END IF
         ELSE
*
*           (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1)
*
*           We choose d(i+1) as origin.
*
            ORGATI = .FALSE.
            DEL = D( IP1 ) - D( I )
            A = C*DEL - Z( I )*Z( I ) - Z( IP1 )*Z( IP1 )
            B = Z( IP1 )*Z( IP1 )*DEL
            IF( A.LT.ZERO ) THEN
               TAU = TWO*B / ( A-SQRT( ABS( A*A+FOUR*B*C ) ) )
            ELSE
               TAU = -( A+SQRT( ABS( A*A+FOUR*B*C ) ) ) / ( TWO*C )
            END IF
         END IF
*
         IF( ORGATI ) THEN
            DO 130 J = 1, N
               DELTA( J ) = ( D( J )-D( I ) ) - TAU
  130       CONTINUE
         ELSE
            DO 140 J = 1, N
               DELTA( J ) = ( D( J )-D( IP1 ) ) - TAU
  140       CONTINUE
         END IF
         IF( ORGATI ) THEN
            II = I
         ELSE
            II = I + 1
         END IF
         IIM1 = II - 1
         IIP1 = II + 1
         OPS = OPS + 13*N + 6*( IIM1-IIP1 ) + 45
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 150 J = 1, IIM1
            TEMP = Z( J ) / DELTA( J )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
  150    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         DPHI = ZERO
         PHI = ZERO
         DO 160 J = N, IIP1, -1
            TEMP = Z( J ) / DELTA( J )
            PHI = PHI + Z( J )*TEMP
            DPHI = DPHI + TEMP*TEMP
            ERRETM = ERRETM + PHI
  160    CONTINUE
*
         W = RHOINV + PHI + PSI
*
*        W is the value of the secular function with
*        its ii-th element removed.
*
         SWTCH3 = .FALSE.
         IF( ORGATI ) THEN
            IF( W.LT.ZERO )
     $         SWTCH3 = .TRUE.
         ELSE
            IF( W.GT.ZERO )
     $         SWTCH3 = .TRUE.
         END IF
         IF( II.EQ.1 .OR. II.EQ.N )
     $      SWTCH3 = .FALSE.
*
         TEMP = Z( II ) / DELTA( II )
         DW = DPSI + DPHI + TEMP*TEMP
         TEMP = Z( II )*TEMP
         W = W + TEMP
         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
     $            THREE*ABS( TEMP ) + ABS( TAU )*DW
*
*        Test for convergence
*
         IF( ABS( W ).LE.EPS*ERRETM ) THEN
            IF( ORGATI ) THEN
               DLAM = D( I ) + TAU
            ELSE
               DLAM = D( IP1 ) + TAU
            END IF
            GO TO 250
         END IF
*
*        Calculate the new step
*
         OPS = OPS + 14
         NITER = NITER + 1
         IF( .NOT.SWTCH3 ) THEN
            IF( ORGATI ) THEN
               C = W - DELTA( IP1 )*DW - ( D( I )-D( IP1 ) )*
     $             ( Z( I ) / DELTA( I ) )**2
            ELSE
               C = W - DELTA( I )*DW - ( D( IP1 )-D( I ) )*
     $             ( Z( IP1 ) / DELTA( IP1 ) )**2
            END IF
            A = ( DELTA( I )+DELTA( IP1 ) )*W -
     $          DELTA( I )*DELTA( IP1 )*DW
            B = DELTA( I )*DELTA( IP1 )*W
            IF( C.EQ.ZERO ) THEN
               IF( A.EQ.ZERO ) THEN
                  OPS = OPS + 5
                  IF( ORGATI ) THEN
                     A = Z( I )*Z( I ) + DELTA( IP1 )*DELTA( IP1 )*
     $                   ( DPSI+DPHI )
                  ELSE
                     A = Z( IP1 )*Z( IP1 ) + DELTA( I )*DELTA( I )*
     $                   ( DPSI+DPHI )
                  END IF
               END IF
               ETA = B / A
            ELSE IF( A.LE.ZERO ) THEN
               OPS = OPS + 8
               ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            ELSE
               OPS = OPS + 8
               ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
            END IF
         ELSE
*
*           Interpolation using THREE most relevant poles
*
            OPS = OPS + 15
            TEMP = RHOINV + PSI + PHI
            IF( ORGATI ) THEN
               TEMP1 = Z( IIM1 ) / DELTA( IIM1 )
               TEMP1 = TEMP1*TEMP1
               C = TEMP - DELTA( IIP1 )*( DPSI+DPHI ) -
     $             ( D( IIM1 )-D( IIP1 ) )*TEMP1
               ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
               ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*
     $                   ( ( DPSI-TEMP1 )+DPHI )
            ELSE
               TEMP1 = Z( IIP1 ) / DELTA( IIP1 )
               TEMP1 = TEMP1*TEMP1
               C = TEMP - DELTA( IIM1 )*( DPSI+DPHI ) -
     $             ( D( IIP1 )-D( IIM1 ) )*TEMP1
               ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*
     $                   ( DPSI+( DPHI-TEMP1 ) )
               ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
            END IF
            ZZ( 2 ) = Z( II )*Z( II )
            CALL SLAED6( NITER, ORGATI, C, DELTA( IIM1 ), ZZ, W, ETA,
     $                   INFO )
            IF( INFO.NE.0 )
     $         GO TO 250
         END IF
*
*        Note, eta should be positive if w is negative, and
*        eta should be negative otherwise. However,
*        if for some reason caused by roundoff, eta*w > 0,
*        we simply use one Newton step instead. This way
*        will guarantee eta*w < 0.
*
         OPS = OPS + 18 + 7*N + 6*( IIM1-IIP1 )
         IF( W*ETA.GE.ZERO ) THEN
            OPS = OPS + 1
            ETA = -W / DW
         END IF
         TEMP = TAU + ETA
         DEL = ( D( IP1 )-D( I ) ) / TWO
         IF( ORGATI ) THEN
            IF( TEMP.GE.DEL ) THEN
               OPS = OPS + 1
               ETA = DEL - TAU
            END IF
            IF( TEMP.LE.ZERO ) THEN
               OPS = OPS + 1
               ETA = ETA / TWO
            END IF
         ELSE
            IF( TEMP.LE.-DEL ) THEN
               OPS = OPS + 1
               ETA = -DEL - TAU
            END IF
            IF( TEMP.GE.ZERO ) THEN
               OPS = OPS + 1
               ETA = ETA / TWO
            END IF
         END IF
*
         PREW = W
*
  170    CONTINUE
         DO 180 J = 1, N
            DELTA( J ) = DELTA( J ) - ETA
  180    CONTINUE
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 190 J = 1, IIM1
            TEMP = Z( J ) / DELTA( J )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
  190    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         DPHI = ZERO
         PHI = ZERO
         DO 200 J = N, IIP1, -1
            TEMP = Z( J ) / DELTA( J )
            PHI = PHI + Z( J )*TEMP
            DPHI = DPHI + TEMP*TEMP
            ERRETM = ERRETM + PHI
  200    CONTINUE
*
         TEMP = Z( II ) / DELTA( II )
         DW = DPSI + DPHI + TEMP*TEMP
         TEMP = Z( II )*TEMP
         W = RHOINV + PHI + PSI + TEMP
         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
     $            THREE*ABS( TEMP ) + ABS( TAU+ETA )*DW
*
         SWTCH = .FALSE.
         IF( ORGATI ) THEN
            IF( -W.GT.ABS( PREW ) / TEN )
     $         SWTCH = .TRUE.
         ELSE
            IF( W.GT.ABS( PREW ) / TEN )
     $         SWTCH = .TRUE.
         END IF
*
         TAU = TAU + ETA
*
*        Main loop to update the values of the array   DELTA
*
         ITER = NITER + 1
*
         DO 240 NITER = ITER, MAXIT
*
*           Test for convergence
*
            OPS = OPS + 1
            IF( ABS( W ).LE.EPS*ERRETM ) THEN
               OPS = OPS + 1
               IF( ORGATI ) THEN
                  DLAM = D( I ) + TAU
               ELSE
                  DLAM = D( IP1 ) + TAU
               END IF
               GO TO 250
            END IF
*
*           Calculate the new step
*
            IF( .NOT.SWTCH3 ) THEN
               OPS = OPS + 14
               IF( .NOT.SWTCH ) THEN
                  IF( ORGATI ) THEN
                     C = W - DELTA( IP1 )*DW -
     $                   ( D( I )-D( IP1 ) )*( Z( I ) / DELTA( I ) )**2
                  ELSE
                     C = W - DELTA( I )*DW - ( D( IP1 )-D( I ) )*
     $                   ( Z( IP1 ) / DELTA( IP1 ) )**2
                  END IF
               ELSE
                  TEMP = Z( II ) / DELTA( II )
                  IF( ORGATI ) THEN
                     DPSI = DPSI + TEMP*TEMP
                  ELSE
                     DPHI = DPHI + TEMP*TEMP
                  END IF
                  C = W - DELTA( I )*DPSI - DELTA( IP1 )*DPHI
               END IF
               A = ( DELTA( I )+DELTA( IP1 ) )*W -
     $             DELTA( I )*DELTA( IP1 )*DW
               B = DELTA( I )*DELTA( IP1 )*W
               IF( C.EQ.ZERO ) THEN
                  IF( A.EQ.ZERO ) THEN
                     OPS = OPS + 5
                     IF( .NOT.SWTCH ) THEN
                        IF( ORGATI ) THEN
                           A = Z( I )*Z( I ) + DELTA( IP1 )*
     $                         DELTA( IP1 )*( DPSI+DPHI )
                        ELSE
                           A = Z( IP1 )*Z( IP1 ) +
     $                         DELTA( I )*DELTA( I )*( DPSI+DPHI )
                        END IF
                     ELSE
                        A = DELTA( I )*DELTA( I )*DPSI +
     $                      DELTA( IP1 )*DELTA( IP1 )*DPHI
                     END IF
                  END IF
                  OPS = OPS + 1
                  ETA = B / A
               ELSE IF( A.LE.ZERO ) THEN
                  OPS = OPS + 8
                  ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
               ELSE
                  OPS = OPS + 8
                  ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
               END IF
            ELSE
*
*              Interpolation using THREE most relevant poles
*
               OPS = OPS + 2
               TEMP = RHOINV + PSI + PHI
               IF( SWTCH ) THEN
                  OPS = OPS + 10
                  C = TEMP - DELTA( IIM1 )*DPSI - DELTA( IIP1 )*DPHI
                  ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*DPSI
                  ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*DPHI
               ELSE
                  OPS = OPS + 14
                  IF( ORGATI ) THEN
                     TEMP1 = Z( IIM1 ) / DELTA( IIM1 )
                     TEMP1 = TEMP1*TEMP1
                     C = TEMP - DELTA( IIP1 )*( DPSI+DPHI ) -
     $                   ( D( IIM1 )-D( IIP1 ) )*TEMP1
                     ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
                     ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*
     $                         ( ( DPSI-TEMP1 )+DPHI )
                  ELSE
                     TEMP1 = Z( IIP1 ) / DELTA( IIP1 )
                     TEMP1 = TEMP1*TEMP1
                     C = TEMP - DELTA( IIM1 )*( DPSI+DPHI ) -
     $                   ( D( IIP1 )-D( IIM1 ) )*TEMP1
                     ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*
     $                         ( DPSI+( DPHI-TEMP1 ) )
                     ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
                  END IF
               END IF
               CALL SLAED6( NITER, ORGATI, C, DELTA( IIM1 ), ZZ, W, ETA,
     $                      INFO )
               IF( INFO.NE.0 )
     $            GO TO 250
            END IF
*
*           Note, eta should be positive if w is negative, and
*           eta should be negative otherwise. However,
*           if for some reason caused by roundoff, eta*w > 0,
*           we simply use one Newton step instead. This way
*           will guarantee eta*w < 0.
*
            OPS = OPS + 7*N + 6*( IIM1-IIP1 ) + 18
            IF( W*ETA.GE.ZERO ) THEN
               OPS = OPS + 1
               ETA = -W / DW
            END IF
            TEMP = TAU + ETA
            DEL = ( D( IP1 )-D( I ) ) / TWO
            IF( ORGATI ) THEN
               IF( TEMP.GE.DEL ) THEN
                  ETA = DEL - TAU
                  OPS = OPS + 1
               END IF
               IF( TEMP.LE.ZERO ) THEN
                  ETA = ETA / TWO
                  OPS = OPS + 1
               END IF
            ELSE
               IF( TEMP.LE.-DEL ) THEN
                  ETA = -DEL - TAU
                  OPS = OPS + 1
               END IF
               IF( TEMP.GE.ZERO ) THEN
                  ETA = ETA / TWO
                  OPS = OPS + 1
               END IF
            END IF
*
            DO 210 J = 1, N
               DELTA( J ) = DELTA( J ) - ETA
  210       CONTINUE
*
            TAU = TAU + ETA
            PREW = W
*
*           Evaluate PSI and the derivative DPSI
*
            DPSI = ZERO
            PSI = ZERO
            ERRETM = ZERO
            DO 220 J = 1, IIM1
               TEMP = Z( J ) / DELTA( J )
               PSI = PSI + Z( J )*TEMP
               DPSI = DPSI + TEMP*TEMP
               ERRETM = ERRETM + PSI
  220       CONTINUE
            ERRETM = ABS( ERRETM )
*
*           Evaluate PHI and the derivative DPHI
*
            DPHI = ZERO
            PHI = ZERO
            DO 230 J = N, IIP1, -1
               TEMP = Z( J ) / DELTA( J )
               PHI = PHI + Z( J )*TEMP
               DPHI = DPHI + TEMP*TEMP
               ERRETM = ERRETM + PHI
  230       CONTINUE
*
            TEMP = Z( II ) / DELTA( II )
            DW = DPSI + DPHI + TEMP*TEMP
            TEMP = Z( II )*TEMP
            W = RHOINV + PHI + PSI + TEMP
            ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
     $               THREE*ABS( TEMP ) + ABS( TAU )*DW
            IF( W*PREW.GT.ZERO .AND. ABS( W ).GT.ABS( PREW ) / TEN )
     $         SWTCH = .NOT.SWTCH
*
  240    CONTINUE
*
*        Return with INFO = 1, NITER = MAXIT and not converged
*
         INFO = 1
         OPS = OPS + 1
         IF( ORGATI ) THEN
            DLAM = D( I ) + TAU
         ELSE
            DLAM = D( IP1 ) + TAU
         END IF
*
      END IF
*
  250 CONTINUE
      RETURN
*
*     End of SLAED4
*
      END
 |