1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
SUBROUTINE SLARRF( N, D, L, LD, LLD, IFIRST, ILAST, W, DPLUS,
$ LPLUS, WORK, IWORK, INFO )
*
* -- LAPACK auxiliary routine (instru to count ops, version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER IFIRST, ILAST, INFO, N
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL D( * ), DPLUS( * ), L( * ), LD( * ), LLD( * ),
$ LPLUS( * ), W( * ), WORK( * )
* ..
* Common block to return operation count
* .. Common blocks ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
REAL ITCNT, OPS
* ..
*
* Purpose
* =======
*
* Given the initial representation L D L^T and its cluster of close
* eigenvalues (in a relative measure), W( IFIRST ), W( IFIRST+1 ), ...
* W( ILAST ), SLARRF finds a new relatively robust representation
* L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
* eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D.
*
* L (input) REAL array, dimension (N-1)
* The (n-1) subdiagonal elements of the unit bidiagonal
* matrix L.
*
* LD (input) REAL array, dimension (N-1)
* The n-1 elements L(i)*D(i).
*
* LLD (input) REAL array, dimension (N-1)
* The n-1 elements L(i)*L(i)*D(i).
*
* IFIRST (input) INTEGER
* The index of the first eigenvalue in the cluster.
*
* ILAST (input) INTEGER
* The index of the last eigenvalue in the cluster.
*
* W (input/output) REAL array, dimension (N)
* On input, the eigenvalues of L D L^T in ascending order.
* W( IFIRST ) through W( ILAST ) form the cluster of relatively
* close eigenalues.
* On output, W( IFIRST ) thru' W( ILAST ) are estimates of the
* corresponding eigenvalues of L(+) D(+) L(+)^T.
*
* SIGMA (input) REAL
* The shift used to form L(+) D(+) L(+)^T.
*
* DPLUS (output) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D(+).
*
* LPLUS (output) REAL array, dimension (N)
* The first (n-1) elements of LPLUS contain the subdiagonal
* elements of the unit bidiagonal matrix L(+). LPLUS( N ) is
* set to SIGMA.
*
* WORK (input) REAL array, dimension (???)
* Workspace.
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, TWO
PARAMETER ( ZERO = 0.0E0, TWO = 2.0E0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL DELTA, EPS, S, SIGMA
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, REAL
* ..
* .. Executable Statements ..
*
INFO = 0
EPS = SLAMCH( 'Precision' )
IF( IFIRST.EQ.1 ) THEN
SIGMA = W( IFIRST )
ELSE IF( ILAST.EQ.N ) THEN
SIGMA = W( ILAST )
ELSE
INFO = 1
RETURN
END IF
*
* Compute the new relatively robust representation (RRR)
*
OPS = OPS + REAL( 3 )
DELTA = TWO*EPS
10 CONTINUE
IF( IFIRST.EQ.1 ) THEN
SIGMA = SIGMA - ABS( SIGMA )*DELTA
ELSE
SIGMA = SIGMA + ABS( SIGMA )*DELTA
END IF
S = -SIGMA
OPS = OPS + REAL( 5*(N-1)+1 )
DO 20 I = 1, N - 1
DPLUS( I ) = D( I ) + S
LPLUS( I ) = LD( I ) / DPLUS( I )
S = S*LPLUS( I )*L( I ) - SIGMA
20 CONTINUE
DPLUS( N ) = D( N ) + S
IF( IFIRST.EQ.1 ) THEN
DO 30 I = 1, N
IF( DPLUS( I ).LT.ZERO ) THEN
OPS = OPS + REAL( 1 )
DELTA = TWO*DELTA
GO TO 10
END IF
30 CONTINUE
ELSE
DO 40 I = 1, N
IF( DPLUS( I ).GT.ZERO ) THEN
OPS = OPS + REAL( 1 )
DELTA = TWO*DELTA
GO TO 10
END IF
40 CONTINUE
END IF
DO 50 I = IFIRST, ILAST
OPS = OPS + REAL( 1 )
W( I ) = W( I ) - SIGMA
50 CONTINUE
LPLUS( N ) = SIGMA
*
RETURN
*
* End of SLARRF
*
END
|