File: slarrf.f

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (162 lines) | stat: -rw-r--r-- 4,758 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
      SUBROUTINE SLARRF( N, D, L, LD, LLD, IFIRST, ILAST, W, DPLUS,
     $                   LPLUS, WORK, IWORK, INFO )
*
*  -- LAPACK auxiliary routine (instru to count ops, version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            IFIRST, ILAST, INFO, N
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               D( * ), DPLUS( * ), L( * ), LD( * ), LLD( * ),
     $                   LPLUS( * ), W( * ), WORK( * )
*     ..
*     Common block to return operation count
*     .. Common blocks ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. Scalars in Common ..
      REAL               ITCNT, OPS
*     ..
*
*  Purpose
*  =======
*
*  Given the initial representation L D L^T and its cluster of close
*  eigenvalues (in a relative measure), W( IFIRST ), W( IFIRST+1 ), ...
*  W( ILAST ), SLARRF finds a new relatively robust representation
*  L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
*  eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the diagonal matrix D.
*
*  L       (input) REAL array, dimension (N-1)
*          The (n-1) subdiagonal elements of the unit bidiagonal
*          matrix L.
*
*  LD      (input) REAL array, dimension (N-1)
*          The n-1 elements L(i)*D(i).
*
*  LLD     (input) REAL array, dimension (N-1)
*          The n-1 elements L(i)*L(i)*D(i).
*
*  IFIRST  (input) INTEGER
*          The index of the first eigenvalue in the cluster.
*
*  ILAST   (input) INTEGER
*          The index of the last eigenvalue in the cluster.
*
*  W       (input/output) REAL array, dimension (N)
*          On input, the eigenvalues of L D L^T in ascending order.
*          W( IFIRST ) through W( ILAST ) form the cluster of relatively
*          close eigenalues.
*          On output, W( IFIRST ) thru' W( ILAST ) are estimates of the
*          corresponding eigenvalues of L(+) D(+) L(+)^T.
*
*  SIGMA   (input) REAL
*          The shift used to form L(+) D(+) L(+)^T.
*
*  DPLUS   (output) REAL array, dimension (N)
*          The n diagonal elements of the diagonal matrix D(+).
*
*  LPLUS   (output) REAL array, dimension (N)
*          The first (n-1) elements of LPLUS contain the subdiagonal
*          elements of the unit bidiagonal matrix L(+). LPLUS( N ) is
*          set to SIGMA.
*
*  WORK    (input) REAL array, dimension (???)
*          Workspace.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Inderjit Dhillon, IBM Almaden, USA
*     Osni Marques, LBNL/NERSC, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, TWO
      PARAMETER          ( ZERO = 0.0E0, TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      REAL               DELTA, EPS, S, SIGMA
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, REAL
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      EPS = SLAMCH( 'Precision' )
      IF( IFIRST.EQ.1 ) THEN
         SIGMA = W( IFIRST )
      ELSE IF( ILAST.EQ.N ) THEN
         SIGMA = W( ILAST )
      ELSE
         INFO = 1
         RETURN
      END IF
*
*     Compute the new relatively robust representation (RRR)
*
      OPS = OPS + REAL( 3 )
      DELTA = TWO*EPS
   10 CONTINUE
      IF( IFIRST.EQ.1 ) THEN
         SIGMA = SIGMA - ABS( SIGMA )*DELTA
      ELSE
         SIGMA = SIGMA + ABS( SIGMA )*DELTA
      END IF
      S = -SIGMA
      OPS = OPS + REAL( 5*(N-1)+1 )
      DO 20 I = 1, N - 1
         DPLUS( I ) = D( I ) + S
         LPLUS( I ) = LD( I ) / DPLUS( I )
         S = S*LPLUS( I )*L( I ) - SIGMA
   20 CONTINUE
      DPLUS( N ) = D( N ) + S
      IF( IFIRST.EQ.1 ) THEN
         DO 30 I = 1, N
            IF( DPLUS( I ).LT.ZERO ) THEN
               OPS = OPS + REAL( 1 )
               DELTA = TWO*DELTA
               GO TO 10
            END IF
   30    CONTINUE
      ELSE
         DO 40 I = 1, N
            IF( DPLUS( I ).GT.ZERO ) THEN
               OPS = OPS + REAL( 1 )
               DELTA = TWO*DELTA
               GO TO 10
            END IF
   40    CONTINUE
      END IF
      DO 50 I = IFIRST, ILAST
         OPS = OPS + REAL( 1 )
         W( I ) = W( I ) - SIGMA
   50 CONTINUE
      LPLUS( N ) = SIGMA
*
      RETURN
*
*     End of SLARRF
*
      END