| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 
 |       SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
     $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
     $                   INFO )
*
*  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --
*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
*     Courant Institute, NAG Ltd., and Rice University
*     October 31, 1999
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
     $                   SQRE
*     ..
*     .. Array Arguments ..
      INTEGER            CTOT( * ), IDXC( * )
      REAL               D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
     $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
     $                   Z( * )
*     ..
*     .. Common block to return operation count ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. Scalars in Common ..
      REAL               ITCNT, OPS
*     ..
*
*  Purpose
*  =======
*
*  SLASD3 finds all the square roots of the roots of the secular
*  equation, as defined by the values in D and Z.  It makes the
*  appropriate calls to SLASD4 and then updates the singular
*  vectors by matrix multiplication.
*
*  This code makes very mild assumptions about floating point
*  arithmetic. It will work on machines with a guard digit in
*  add/subtract, or on those binary machines without guard digits
*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
*  It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  SLASD3 is called from SLASD1.
*
*  Arguments
*  =========
*
*  NL     (input) INTEGER
*         The row dimension of the upper block.  NL >= 1.
*
*  NR     (input) INTEGER
*         The row dimension of the lower block.  NR >= 1.
*
*  SQRE   (input) INTEGER
*         = 0: the lower block is an NR-by-NR square matrix.
*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*
*         The bidiagonal matrix has N = NL + NR + 1 rows and
*         M = N + SQRE >= N columns.
*
*  K      (input) INTEGER
*         The size of the secular equation, 1 =< K = < N.
*
*  D      (output) REAL array, dimension(K)
*         On exit the square roots of the roots of the secular equation,
*         in ascending order.
*
*  Q      (workspace) REAL array,
*                     dimension at least (LDQ,K).
*
*  LDQ    (input) INTEGER
*         The leading dimension of the array Q.  LDQ >= K.
*
*  DSIGMA (input) REAL array, dimension(K)
*         The first K elements of this array contain the old roots
*         of the deflated updating problem.  These are the poles
*         of the secular equation.
*
*  U      (input) REAL array, dimension (LDU, N)
*         The last N - K columns of this matrix contain the deflated
*         left singular vectors.
*
*  LDU    (input) INTEGER
*         The leading dimension of the array U.  LDU >= N.
*
*  U2     (input) REAL array, dimension (LDU2, N)
*         The first K columns of this matrix contain the non-deflated
*         left singular vectors for the split problem.
*
*  LDU2   (input) INTEGER
*         The leading dimension of the array U2.  LDU2 >= N.
*
*  VT     (input) REAL array, dimension (LDVT, M)
*         The last M - K columns of VT' contain the deflated
*         right singular vectors.
*
*  LDVT   (input) INTEGER
*         The leading dimension of the array VT.  LDVT >= N.
*
*  VT2    (input) REAL array, dimension (LDVT2, N)
*         The first K columns of VT2' contain the non-deflated
*         right singular vectors for the split problem.
*
*  LDVT2  (input) INTEGER
*         The leading dimension of the array VT2.  LDVT2 >= N.
*
*  IDXC   (input) INTEGER array, dimension ( N )
*         The permutation used to arrange the columns of U (and rows of
*         VT) into three groups:  the first group contains non-zero
*         entries only at and above (or before) NL +1; the second
*         contains non-zero entries only at and below (or after) NL+2;
*         and the third is dense. The first column of U and the row of
*         VT are treated separately, however.
*
*         The rows of the singular vectors found by SLASD4
*         must be likewise permuted before the matrix multiplies can
*         take place.
*
*  CTOT   (input) INTEGER array, dimension ( 4 )
*         A count of the total number of the various types of columns
*         in U (or rows in VT), as described in IDXC. The fourth column
*         type is any column which has been deflated.
*
*  Z      (input) REAL array, dimension (K)
*         The first K elements of this array contain the components
*         of the deflation-adjusted updating row vector.
*
*  INFO   (output) INTEGER
*         = 0:  successful exit.
*         < 0:  if INFO = -i, the i-th argument had an illegal value.
*         > 0:  if INFO = 1, an singular value did not converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Huan Ren, Computer Science Division, University of
*     California at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO, NEGONE
      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0, NEGONE = -1.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
      REAL               RHO, TEMP
*     ..
*     .. External Functions ..
      REAL               SLAMC3, SNRM2, SOPBL3
      EXTERNAL           SLAMC3, SNRM2, SOPBL3
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEMM, SLACPY, SLASCL, SLASD4, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL, ABS, MAX, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( NL.LT.1 ) THEN
         INFO = -1
      ELSE IF( NR.LT.1 ) THEN
         INFO = -2
      ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
         INFO = -3
      END IF
*
      N = NL + NR + 1
      M = N + SQRE
      NLP1 = NL + 1
      NLP2 = NL + 2
*
      IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
         INFO = -4
      ELSE IF( LDQ.LT.K ) THEN
         INFO = -7
      ELSE IF( LDU.LT.N ) THEN
         INFO = -10
      ELSE IF( LDU2.LT.N ) THEN
         INFO = -12
      ELSE IF( LDVT.LT.M ) THEN
         INFO = -14
      ELSE IF( LDVT2.LT.M ) THEN
         INFO = -16
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASD3', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.1 ) THEN
         D( 1 ) = ABS( Z( 1 ) )
         CALL SCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
         IF( Z( 1 ).GT.ZERO ) THEN
            CALL SCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
         ELSE
            DO 10 I = 1, N
               U( I, 1 ) = -U2( I, 1 )
   10       CONTINUE
         END IF
         RETURN
      END IF
*
*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
*     be computed with high relative accuracy (barring over/underflow).
*     This is a problem on machines without a guard digit in
*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
*     which on any of these machines zeros out the bottommost
*     bit of DSIGMA(I) if it is 1; this makes the subsequent
*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
*     occurs. On binary machines with a guard digit (almost all
*     machines) it does not change DSIGMA(I) at all. On hexadecimal
*     and decimal machines with a guard digit, it slightly
*     changes the bottommost bits of DSIGMA(I). It does not account
*     for hexadecimal or decimal machines without guard digits
*     (we know of none). We use a subroutine call to compute
*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
*     this code.
*
      DO 20 I = 1, K
         DSIGMA( I ) = SLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
   20 CONTINUE
*
*     Keep a copy of Z.
*
      CALL SCOPY( K, Z, 1, Q, 1 )
*
*     Normalize Z.
*
      OPS = OPS + REAL( K*3 + 1)
      RHO = SNRM2( K, Z, 1 )
      CALL SLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
      RHO = RHO*RHO
*
*     Find the new singular values.
*
      DO 30 J = 1, K
         CALL SLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
     $                VT( 1, J ), INFO )
*
*        If the zero finder fails, the computation is terminated.
*
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
   30 CONTINUE
*
*     Compute updated Z.
*
      OPS = OPS + REAL( K*2 )
      DO 60 I = 1, K
         Z( I ) = U( I, K )*VT( I, K )
         OPS = OPS + REAL( (I-1)*6 )
         DO 40 J = 1, I - 1
            Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
     $               ( DSIGMA( I )-DSIGMA( J ) ) /
     $               ( DSIGMA( I )+DSIGMA( J ) ) )
   40    CONTINUE
         OPS = OPS + REAL( (K-I)*6 )
         DO 50 J = I, K - 1
            Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
     $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
     $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
   50    CONTINUE
         Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
   60 CONTINUE
*
*     Compute left singular vectors of the modified diagonal matrix,
*     and store related information for the right singular vectors.
*
      OPS = OPS + REAL( K*(3+K*2) + MAX(0,(K-1)*4) )
      DO 90 I = 1, K
         VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
         U( 1, I ) = NEGONE
         DO 70 J = 2, K
            VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
            U( J, I ) = DSIGMA( J )*VT( J, I )
   70    CONTINUE
         TEMP = SNRM2( K, U( 1, I ), 1 )
         Q( 1, I ) = U( 1, I ) / TEMP
         DO 80 J = 2, K
            JC = IDXC( J )
            Q( J, I ) = U( JC, I ) / TEMP
   80    CONTINUE
   90 CONTINUE
*
*     Update the left singular vector matrix.
*
      IF( K.EQ.2 ) THEN
         OPS = OPS + SOPBL3( 'SGEMM ', N, K, K ) 
         CALL SGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
     $               LDU )
         GO TO 100
      END IF
      IF( CTOT( 1 ).GT.0 ) THEN
         OPS = OPS + SOPBL3( 'SGEMM ', NL, K, CTOT( 1 ) )
         CALL SGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
     $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
         IF( CTOT( 3 ).GT.0 ) THEN
            KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
            OPS = OPS + SOPBL3( 'SGEMM ', NL, K, CTOT( 3 ) )
            CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
     $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
         END IF
      ELSE IF( CTOT( 3 ).GT.0 ) THEN
         KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
         OPS = OPS + SOPBL3( 'SGEMM ', NL, K, CTOT( 3 ) )
         CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
     $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
      ELSE
         CALL SLACPY( 'F', NL, K, U2, LDU2, U, LDU )
      END IF
      CALL SCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
      KTEMP = 2 + CTOT( 1 )
      CTEMP = CTOT( 2 ) + CTOT( 3 )
      OPS = OPS + SOPBL3( 'SGEMM ', NR, K, CTEMP )
      CALL SGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
     $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
*
*     Generate the right singular vectors.
*
  100 CONTINUE
      OPS = OPS + REAL( K*(K*2+1) + MAX(0,K-1) )
      DO 120 I = 1, K
         TEMP = SNRM2( K, VT( 1, I ), 1 )
         Q( I, 1 ) = VT( 1, I ) / TEMP
         DO 110 J = 2, K
            JC = IDXC( J )
            Q( I, J ) = VT( JC, I ) / TEMP
  110    CONTINUE
  120 CONTINUE
*
*     Update the right singular vector matrix.
*
      IF( K.EQ.2 ) THEN
         OPS = OPS + SOPBL3( 'SGEMM ', K, M, K ) 
         CALL SGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
     $               VT, LDVT )
         RETURN
      END IF
      KTEMP = 1 + CTOT( 1 )
      OPS = OPS + SOPBL3( 'SGEMM ', K, NLP1, KTEMP )
      CALL SGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
     $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
      KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
      OPS = OPS + SOPBL3( 'SGEMM ', K, NLP1, CTOT( 3 ) )
      IF( KTEMP.LE.LDVT2 )
     $   CALL SGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
     $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
     $               LDVT )
*
      KTEMP = CTOT( 1 ) + 1
      NRP1 = NR + SQRE
      IF( KTEMP.GT.1 ) THEN
         DO 130 I = 1, K
            Q( I, KTEMP ) = Q( I, 1 )
  130    CONTINUE
         DO 140 I = NLP2, M
            VT2( KTEMP, I ) = VT2( 1, I )
  140    CONTINUE
      END IF
      CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
      OPS = OPS + SOPBL3( 'SGEMM ', K, NRP1, CTEMP ) 
      CALL SGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
     $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
*
      RETURN
*
*     End of SLASD3
*
      END
 |