File: ctim21.f

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (1273 lines) | stat: -rw-r--r-- 46,035 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
      SUBROUTINE CTIM21( LINE, NSIZES, NN, NTYPES, DOTYPE, NPARMS, NNB,
     $                   NSHFTS, MAXBS, LDAS, TIMMIN, NOUT, ISEED, A,
     $                   ARE, AIM, H, HRE, HIM, Z, ZRE, ZIM, W, WRE,
     $                   WIM, WORK, WORKRE, WORKIM, LWORK, RWORK,
     $                   LLWORK, IWORK, TIMES, LDT1, LDT2, LDT3, OPCNTS,
     $                   LDO1, LDO2, LDO3, INFO )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER*80       LINE
      INTEGER            INFO, LDO1, LDO2, LDO3, LDT1, LDT2, LDT3,
     $                   LWORK, NOUT, NPARMS, NSIZES, NTYPES
      REAL               TIMMIN
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * ), LLWORK( * )
      INTEGER            ISEED( * ), IWORK( * ), LDAS( * ), MAXBS( * ),
     $                   NN( * ), NNB( * ), NSHFTS( * )
      REAL               AIM( * ), ARE( * ), HIM( * ), HRE( * ),
     $                   OPCNTS( LDO1, LDO2, LDO3, * ), RWORK( * ),
     $                   TIMES( LDT1, LDT2, LDT3, * ), WIM( * ),
     $                   WORKIM( * ), WORKRE( * ), WRE( * ), ZIM( * ),
     $                   ZRE( * )
      COMPLEX            A( * ), H( * ), W( * ), WORK( * ), Z( * )
*     ..
*
*  Purpose
*  =======
*
*     CTIM21 times the LAPACK routines for the COMPLEX non-symmetric
*     eigenvalue problem.
*
*     For each N value in NN(1:NSIZES) and .TRUE. value in
*     DOTYPE(1:NTYPES), a matrix will be generated and used to test the
*     selected routines.  Thus, NSIZES*(number of .TRUE. values in
*     DOTYPE) matrices will be generated.
*
*  Arguments
*  =========
*
*  LINE    (input) CHARACTER*80
*          On entry, LINE contains the input line which requested
*          this routine.  This line may contain a subroutine name,
*          such as CGEHRD, indicating that only routine CGEHRD will
*          be timed, or it may contain a generic name, such as CHS.
*          In this case, the rest of the line is scanned for the
*          first 12 non-blank characters, corresponding to the twelve
*          combinations of subroutine and options:
*          LAPACK:
*          1: CGEHRD
*          2: CHSEQR(JOB='E')
*          3: CHSEQR(JOB='S')
*          4: CHSEQR(JOB='I')
*          5: CTREVC(JOB='L')
*          6: CTREVC(JOB='R')
*          7: CHSEIN(JOB='L')
*          8: CHSEIN(JOB='R')
*          EISPACK:
*           9: CORTH  (compare with CGEHRD)
*          10: COMQR  (compare w/ CHSEQR -- JOB='E')
*          11: COMQR2 (compare w/ CHSEQR(JOB='I') plus CTREVC(JOB='R'))
*          12: CINVIT (compare with CHSEIN)
*          If a character is 'T' or 't', the corresponding routine in
*          this path is timed.  If the entire line is blank, all the
*          routines in the path are timed.
*
*  NSIZES  (input) INTEGER
*          The number of values of N contained in the vector NN.
*
*  NN      (input) INTEGER array, dimension( NSIZES )
*          The values of the matrix size N to be tested.  For each
*          N value in the array NN, and each .TRUE. value in DOTYPE,
*          a matrix A will be generated and used to test the routines.
*
*  NTYPES  (input) INTEGER
*          The number of types in DOTYPE.  Only the first MAXTYP
*          elements will be examined.  Exception: if NSIZES=1 and
*          NTYPES=MAXTYP+1, and DOTYPE=MAXTYP*f,t, then the input
*          value of A will be used.
*
*  DOTYPE  (input) LOGICAL
*          If DOTYPE(j) is .TRUE., then a matrix of type j will be
*          generated.  The matrix A has the form X**(-1) T X, where
*          X is unitary (for j=1--4) or has condition sqrt(ULP)
*          (for j=5--8), and T has random O(1) entries in the upper
*          triangle and:
*          (j=1,5) evenly spaced entries 1, ..., ULP with random
*                  arguments
*          (j=2,6) geometrically spaced entries 1, ..., ULP with random
*                  arguments
*          (j=3,7) "clustered" entries 1, ULP,..., ULP with random
*                  arguments
*          (j=4,8) eigenvalues randomly chosen from ( ULP, 1 ) with
*                  random arguments
*          on the diagonal.
*
*  NPARMS  (input) INTEGER
*          The number of values in each of the arrays NNB, NSHFTS,
*          MAXBS, and LDAS.  For each matrix A generated according to
*          NN and DOTYPE, tests will be run with (NB,NSHIFT,MAXB,LDA)=
*          (NNB(1), NSHFTS(1), MAXBS(1), LDAS(1)),...,
*          (NNB(NPARMS), NSHFTS(NPARMS), MAXBS(NPARMS), LDAS(NPARMS))
*
*  NNB     (input) INTEGER array, dimension( NPARMS )
*          The values of the blocksize ("NB") to be tested.
*
*  NSHFTS  (input) INTEGER array, dimension( NPARMS )
*          The values of the number of shifts ("NSHIFT") to be tested.
*
*  MAXBS   (input) INTEGER array, dimension( NPARMS )
*          The values of "MAXB", the size of largest submatrix to be
*          processed by CLAHQR (EISPACK method), to be tested.
*
*  LDAS    (input) INTEGER array, dimension( NPARMS )
*          The values of LDA, the leading dimension of all matrices,
*          to be tested.
*
*  TIMMIN  (input) REAL
*          The minimum time a subroutine will be timed.
*
*  NOUT    (input) INTEGER
*          If NOUT > 0 then NOUT specifies the unit number
*          on which the output will be printed.  If NOUT <= 0, no
*          output is printed.
*
*  ISEED   (input/output) INTEGER array, dimension( 4 )
*          The random seed used by the random number generator, used
*          by the test matrix generator.  It is used and updated on
*          each call to CTIM21
*
*  A       (workspace) COMPLEX array,
*                      dimension( max(NN)*max(LDAS) )
*          (a) During the testing of CGEHRD, the original matrix to
*              be tested.
*          (b) Later, the Schur form of the original matrix.
*
*  ARE     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          (a) During the testing of CORTH, the real part of the
*          (b) Later, the Schur form of the original matrix.
*          May be equivalenced with first half of A in calling routine.
*
*  AIM     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          (a) During the testing of CORTH, the imaginary part of the
*              original matrix to be tested.
*          (b) Later, the Schur form of the original matrix.
*          May be equivalenced with second half of A in calling
*          routine.
*
*  H       (workspace) COMPLEX array,
*                      dimension( max(NN)*max(LDAS) )
*          The Hessenberg form of the original matrix.
*
*  HRE     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          The real part of the Hessenberg form of the original matrix.
*          May be equivalenced with first half of H in calling routine.
*          Used for testing EISPACK routines.
*
*  HIM     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          The imaginary part of the Hessenberg form of the original
*          matrix. May be equivalenced with second half of H in calling
*          routine. Used for testing EISPACK routines.
*
*  Z       (workspace) COMPLEX array,
*                      dimension( max(NN)*max(LDAS) )
*          Various output arrays: from CGEHRD and CHSEQR, the
*          unitary reduction matrices; from CTREVC and CHSEIN,
*          the eigenvector matrices.
*
*  ZRE     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          Various output arrays in testing EISPACK routines.
*          May be equivalenced with first half of Z in calling routine.
*
*  ZIM     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          Various output arrays in testing EISPACK routines.
*          May be equivalenced with second half of Z in calling
*          routine.
*
*  W       (workspace) COMPLEX array, dimension( 2*max(LDAS) )
*          Holds computed eigenvalues.
*
*  WRE     (workspace) REAL array,
*                      dimension( 2*max(LDAS) )
*          Holds real parts of computed eigenvalues. Used for testing
*          EISPACK routines. May be equivalenced with first half of W
*          in calling routine.
*
*  WIM     (workspace) REAL array,
*                      dimension( 2*max(LDAS) )
*          Holds imaginary parts of computed eigenvalues. Used for
*          testing EISPACK routines. May be equivalenced with second
*          half of W in calling routine.
*
*  WORK    (workspace) COMPLEX array, dimension( LWORK )
*
*  WORKRE  (workspace) REAL array, dimension( LWORK )
*          May be equivalenced with first half of WORK in calling
*          routine.
*
*  WORKIM  (workspace) REAL array, dimension( LWORK )
*          May be equivalenced with second half of WORK in calling
*          routine.
*
*  LWORK   (input) INTEGER
*          Number of elements in WORK.  It must be at least:
*          (a)  max(NN)*( 3*max(NNB) + 2 )
*          (b)  max(NN)*( max(NNB+NSHFTS) + 1 )
*          (c)  max(NSHFTS)*( max(NSHFTS) + max(NN) )
*          (d)  max(MAXBS)*( max(MAXBS) + max(NN) )
*          (e)  max(NN)**2  +  max(NN)
*          (f)  4*max(NN)
*
*  RWORK   (workspace) REAL array, dimension
*                   ( max(max(NN),NSIZES*NTYPES*NPARMS) )
*          This should *not* be EQUIVALENCEd with any part of WORK.
*
*  LLWORK  (workspace) LOGICAL array, dimension( max( max(NN), NPARMS ))
*
*  IWORK   (workspace) INTEGER array, dimension( 2*max(NN) )
*          Workspace needed for parameters IFAILL and IFAILR in call
*          to CHSEIN.
*
*  TIMES   (output) REAL array,
*                   dimension (LDT1,LDT2,LDT3,NSUBS)
*          TIMES(i,j,k,l) will be set to the run time (in seconds) for
*          subroutine l, with N=NN(k), matrix type j, and LDA=LDAS(i),
*          MAXB=MAXBS(i), NBLOCK=NNB(i), and NSHIFT=NSHFTS(i).
*
*  LDT1    (input) INTEGER
*          The first dimension of TIMES.  LDT1 >= min( 1, NPARMS ).
*
*  LDT2    (input) INTEGER
*          The second dimension of TIMES.  LDT2 >= min( 1, NTYPES ).
*
*  LDT3    (input) INTEGER
*          The third dimension of TIMES.  LDT3 >= min( 1, NSIZES ).
*
*  OPCNTS  (output) REAL array,
*                   dimension (LDO1,LDO2,LDO3,NSUBS)
*          OPCNTS(i,j,k,l) will be set to the number of floating-point
*          operations executed by subroutine l, with N=NN(k), matrix
*          type j, and LDA=LDAS(i), MAXB=MAXBS(i), NBLOCK=NNB(i), and
*          NSHIFT=NSHFTS(i).
*
*  LDO1    (input) INTEGER
*          The first dimension of OPCNTS.  LDO1 >= min( 1, NPARMS ).
*
*  LDO2    (input) INTEGER
*          The second dimension of OPCNTS.  LDO2 >= min( 1, NTYPES ).
*
*  LDO3    (input) INTEGER
*          The third dimension of OPCNTS.  LDO3 >= min( 1, NSIZES ).
*
*  INFO    (output) INTEGER
*          Error flag.  It will be set to zero if no error occurred.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXTYP, NSUBS
      PARAMETER          ( MAXTYP = 8, NSUBS = 12 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E0, 0.0E0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            RUNHQR, RUNHRD, RUNORT, RUNQRE, RUNQRS
      INTEGER            IC, ICONDS, IINFO, IMODE, IN, IPAR, ISUB,
     $                   ITEMP, ITYPE, J, J1, J2, J3, J4, JC, JR, LASTL,
     $                   LASTNL, LDA, LDAMIN, LDH, LDT, MAXB, MBMAX,
     $                   MTYPES, N, NB, NBMAX, NMAX, NSBMAX,
     $                   NSHIFT, NSMAX
      REAL               CONDS, RTULP, RTULPI, S1, S2, TIME, ULP,
     $                   ULPINV, UNTIME
*     ..
*     .. Local Arrays ..
      LOGICAL            TIMSUB( NSUBS )
      CHARACTER          ADUMMA( 1 )
      CHARACTER*4        PNAMES( 4 )
      CHARACTER*9        SUBNAM( NSUBS )
      INTEGER            INPARM( NSUBS ), IOLDSD( 4 ), KCONDS( MAXTYP ),
     $                   KMODE( MAXTYP )
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SECOND, SOPLA
      EXTERNAL           SLAMCH, SECOND, SOPLA
*     ..
*     .. External Subroutines ..
      EXTERNAL           ATIMIN, CGEHRD, CHSEIN, CHSEQR, CINVIT, CLACPY,
     $                   CLATME, COMQR, COMQR2, CORTH, CTREVC, SLACPY,
     $                   SLASET, SPRTBE, XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, MAX, MIN, REAL, SQRT
*     ..
*     .. Common blocks ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. Scalars in Common ..
      REAL               ITCNT, OPS
*     ..
*     .. Data statements ..
      DATA               SUBNAM / 'CGEHRD', 'CHSEQR(E)', 'CHSEQR(S)',
     $                   'CHSEQR(V)', 'CTREVC(L)', 'CTREVC(R)',
     $                   'CHSEIN(L)', 'CHSEIN(R)', 'CORTH', 'COMQR',
     $                   'COMQR2', 'CINVIT' /
      DATA               INPARM / 2, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 /
      DATA               PNAMES / 'LDA', 'NB', 'NS', 'MAXB' /
      DATA               KMODE / 4, 3, 1, 5, 4, 3, 1, 5 /
      DATA               KCONDS / 4*1, 4*2 /
*     ..
*     .. Executable Statements ..
*
*     Quick Return
*
      INFO = 0
      IF( NSIZES.LE.0 .OR. NTYPES.LE.0 .OR. NPARMS.LE.0 )
     $   RETURN
*
*
*     Extract the timing request from the input line.
*
      CALL ATIMIN( 'CHS', LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
      IF( INFO.NE.0 )
     $   RETURN
*
*     Compute Maximum Values
*
      NMAX = 0
      DO 10 J1 = 1, NSIZES
         NMAX = MAX( NMAX, NN( J1 ) )
   10 CONTINUE
*
      LDAMIN = 2*MAX( 1, NMAX )
      NBMAX = 0
      NSMAX = 0
      MBMAX = 0
      NSBMAX = 0
      DO 20 J1 = 1, NPARMS
         LDAMIN = MIN( LDAMIN, LDAS( J1 ) )
         NBMAX = MAX( NBMAX, NNB( J1 ) )
         NSMAX = MAX( NSMAX, NSHFTS( J1 ) )
         MBMAX = MAX( MBMAX, MAXBS( J1 ) )
         NSBMAX = MAX( NSBMAX, NNB( J1 )+NSHFTS( J1 ) )
   20 CONTINUE
*
*     Check that N <= LDA for the input values.
*
      IF( NMAX.GT.LDAMIN ) THEN
         INFO = -10
         WRITE( NOUT, FMT = 9999 )LINE( 1: 6 )
 9999    FORMAT( 1X, A, ' timing run not attempted -- N < LDA', / )
         RETURN
      END IF
*
*     Check LWORK
*
      IF( LWORK.LT.MAX( NMAX*MAX( 4, 3*NBMAX+2, NSBMAX+1 ),
     $    NSMAX*( NSMAX+NMAX ), MBMAX*( MBMAX+NMAX ),
     $    ( NMAX+1 )*NMAX ) ) THEN
         INFO = -29
         WRITE( NOUT, FMT = 9998 )LINE( 1: 6 )
 9998    FORMAT( 1X, A, ' timing run not attempted -- LWORK too small.',
     $         / )
         RETURN
      END IF
*
*     Check to see whether CGEHRD or CHSEQR must be run.
*
*     RUNQRE -- if CHSEQR must be run to get eigenvalues.
*     RUNQRS -- if CHSEQR must be run to get Schur form.
*     RUNHRD -- if CGEHRD must be run.
*
      RUNQRS = .FALSE.
      RUNQRE = .FALSE.
      RUNHRD = .FALSE.
      IF( TIMSUB( 5 ) .OR. TIMSUB( 6 ) )
     $   RUNQRS = .TRUE.
      IF( ( TIMSUB( 7 ) .OR. TIMSUB( 8 ) ) )
     $   RUNQRE = .TRUE.
      IF( TIMSUB( 2 ) .OR. TIMSUB( 3 ) .OR. TIMSUB( 4 ) .OR. RUNQRS .OR.
     $    RUNQRE )RUNHRD = .TRUE.
      IF( TIMSUB( 3 ) .OR. TIMSUB( 4 ) .OR. RUNQRS )
     $   RUNQRE = .FALSE.
      IF( TIMSUB( 4 ) )
     $   RUNQRS = .FALSE.
*
*     Check to see whether CORTH or COMQR must be run.
*
*     RUNHQR -- if COMQR must be run to get eigenvalues.
*     RUNORT -- if CORTH must be run.
*
      RUNHQR = .FALSE.
      RUNORT = .FALSE.
      IF( TIMSUB( 12 ) )
     $   RUNHQR = .TRUE.
      IF( TIMSUB( 10 ) .OR. TIMSUB( 11 ) .OR. RUNHQR )
     $   RUNORT = .TRUE.
      IF( TIMSUB( 10 ) .OR. TIMSUB( 11 ) )
     $   RUNHQR = .FALSE.
      IF( TIMSUB( 9 ) )
     $   RUNORT = .FALSE.
*
*     Various Constants
*
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
      ULPINV = ONE / ULP
      RTULP = SQRT( ULP )
      RTULPI = ONE / RTULP
*
*     Zero out OPCNTS, TIMES
*
      DO 60 J4 = 1, NSUBS
         DO 50 J3 = 1, NSIZES
            DO 40 J2 = 1, NTYPES
               DO 30 J1 = 1, NPARMS
                  OPCNTS( J1, J2, J3, J4 ) = ZERO
                  TIMES( J1, J2, J3, J4 ) = ZERO
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
   60 CONTINUE
*
*     Do for each value of N:
*
      DO 550 IN = 1, NSIZES
*
         N = NN( IN )
*
*        Do for each .TRUE. value in DOTYPE:
*
         MTYPES = MIN( MAXTYP, NTYPES )
         IF( NTYPES.EQ.MAXTYP+1 .AND. NSIZES.EQ.1 )
     $      MTYPES = NTYPES
         DO 540 ITYPE = 1, MTYPES
            IF( .NOT.DOTYPE( ITYPE ) )
     $         GO TO 540
*
*           Save random number seed for error messages
*
            DO 70 J = 1, 4
               IOLDSD( J ) = ISEED( J )
   70       CONTINUE
*
*-----------------------------------------------------------------------
*
*           Time the LAPACK Routines
*
*           Generate A
*
            IF( ITYPE.LE.MAXTYP ) THEN
               IMODE = KMODE( ITYPE )
               ICONDS = KCONDS( ITYPE )
               IF( ICONDS.EQ.1 ) THEN
                  CONDS = ONE
               ELSE
                  CONDS = RTULPI
               END IF
               ADUMMA( 1 ) = ' '
               CALL CLATME( N, 'S', ISEED, WORK, IMODE, ULPINV, CONE,
     $                      ADUMMA, 'T', 'T', 'T', RWORK, 4, CONDS, N,
     $                      N, ONE, A, N, WORK( N+1 ), IINFO )
            END IF
*
*           Time CGEHRD for each pair NNB(j), LDAS(j)
*
            IF( TIMSUB( 1 ) ) THEN
               DO 110 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = MIN( N, NNB( IPAR ) )
*
*                 If this combination of (NB,LDA) has occurred before,
*                 just use that value.
*
                  LASTNL = 0
                  DO 80 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) .AND. NB.EQ.
     $                   MIN( N, NNB( J ) ) )LASTNL = J
   80             CONTINUE
*
                  IF( LASTNL.EQ.0 ) THEN
                     CALL XLAENV( 1, NB )
                     CALL XLAENV( 2, 2 )
                     CALL XLAENV( 3, NB )
*
*                    Time CGEHRD
*
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
   90                CONTINUE
                     CALL CLACPY( 'Full', N, N, A, N, H, LDA )
*
                     CALL CGEHRD( N, 1, N, H, LDA, WORK,
     $                            WORK( N+1 ), LWORK-N, IINFO )
*
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 1 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 540
                     END IF
*
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 90
*
*                    Subtract the time used in CLACPY.
*
                     S1 = SECOND( )
                     DO 100 J = 1, IC
                        CALL CLACPY( 'Full', N, N, A, N, Z, LDA )
  100                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 1 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 1 ) = SOPLA( 'CGEHRD', N,
     $                       1, N, 0, NB )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 1 ) = OPCNTS( LASTNL,
     $                  ITYPE, IN, 1 )
                     TIMES( IPAR, ITYPE, IN, 1 ) = TIMES( LASTNL, ITYPE,
     $                  IN, 1 )
                  END IF
  110          CONTINUE
               LDH = LDA
            ELSE
               IF( RUNHRD ) THEN
                  CALL CLACPY( 'Full', N, N, A, N, H, N )
*
                  CALL CGEHRD( N, 1, N, H, N, WORK, WORK( N+1 ),
     $                         LWORK-N, IINFO )
*
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 1 ), IINFO, N,
     $                  ITYPE, 0, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 540
                  END IF
                  LDH = N
               END IF
            END IF
*
*           Time CHSEQR with JOB='E' for each 4-tuple
*           NNB(j), NSHFTS(j), MAXBS(j), LDAS(j)
*
            IF( TIMSUB( 2 ) ) THEN
               DO 140 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = 1
                  NSHIFT = NSHFTS( IPAR )
                  MAXB = MAXBS( IPAR )
                  CALL XLAENV( 4, NSHIFT )
                  CALL XLAENV( 8, MAXB )
*
*                 Time CHSEQR with JOB='E'
*
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
  120             CONTINUE
                  CALL CLACPY( 'Full', N, N, H, LDH, A, LDA )
*
                  CALL CHSEQR( 'E', 'N', N, 1, N, A, LDA, W, Z, LDA,
     $                         WORK, LWORK, IINFO )
*
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 2 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 540
                  END IF
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 120
*
*                 Subtract the time used in CLACPY.
*
                  S1 = SECOND( )
                  DO 130 J = 1, IC
                     CALL CLACPY( 'Full', N, N, H, LDH, Z, LDA )
  130             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
*
                  TIMES( IPAR, ITYPE, IN, 2 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 2 ) = OPS / REAL( IC )
  140          CONTINUE
               LDT = 0
            ELSE
               IF( RUNQRE ) THEN
                  CALL CLACPY( 'Full', N, N, H, LDH, A, N )
*
                  CALL CHSEQR( 'E', 'N', N, 1, N, A, N, W, Z, N,
     $                         WORK, LWORK, IINFO )
*
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 2 ), IINFO, N,
     $                  ITYPE, 0, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 540
                  END IF
                  LDT = 0
               END IF
            END IF
*
*           Time CHSEQR with JOB='S' for each 4-tuple
*           NNB(j), NSHFTS(j), MAXBS(j), LDAS(j)
*
            IF( TIMSUB( 3 ) ) THEN
               DO 170 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = 1
                  NSHIFT = NSHFTS( IPAR )
                  MAXB = MAXBS( IPAR )
                  CALL XLAENV( 4, NSHIFT )
                  CALL XLAENV( 8, MAXB )
*
*                 Time CHSEQR with JOB='S'
*
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
  150             CONTINUE
                  CALL CLACPY( 'Full', N, N, H, LDH, A, LDA )
*
                  CALL CHSEQR( 'S', 'N', N, 1, N, A, LDA, W, Z, LDA,
     $                         WORK, LWORK, IINFO )
*
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 3 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 540
                  END IF
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 150
*
*                 Subtract the time used in CLACPY.
*
                  S1 = SECOND( )
                  DO 160 J = 1, IC
                     CALL CLACPY( 'Full', N, N, H, LDH, Z, LDA )
  160             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
*
                  TIMES( IPAR, ITYPE, IN, 3 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 3 ) = OPS / REAL( IC )
  170          CONTINUE
               LDT = LDA
            ELSE
               IF( RUNQRS ) THEN
                  CALL CLACPY( 'Full', N, N, H, LDH, A, N )
*
                  CALL CHSEQR( 'S', 'N', N, 1, N, A, N, W, Z, N,
     $                         WORK, LWORK, IINFO )
*
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 3 ), IINFO, N,
     $                  ITYPE, 0, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 540
                  END IF
                  LDT = N
               END IF
            END IF
*
*           Time CHSEQR with JOB='I' for each 4-tuple
*           NNB(j), NSHFTS(j), MAXBS(j), LDAS(j)
*
            IF( TIMSUB( 4 ) ) THEN
               DO 200 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = 1
                  NSHIFT = NSHFTS( IPAR )
                  MAXB = MAXBS( IPAR )
                  CALL XLAENV( 4, NSHIFT )
                  CALL XLAENV( 8, MAXB )
*
*                 Time CHSEQR with JOB='I'
*
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
  180             CONTINUE
                  CALL CLACPY( 'Full', N, N, H, LDH, A, LDA )
*
                  CALL CHSEQR( 'S', 'I', N, 1, N, A, LDA, W, Z, LDA,
     $                         WORK, LWORK, IINFO )
*
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 4 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 540
                  END IF
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 180
*
*                 Subtract the time used in CLACPY.
*
                  S1 = SECOND( )
                  DO 190 J = 1, IC
                     CALL CLACPY( 'Full', N, N, H, LDH, Z, LDA )
  190             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
*
                  TIMES( IPAR, ITYPE, IN, 4 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 4 ) = OPS / REAL( IC )
  200          CONTINUE
               LDT = LDA
            END IF
*
*           Time CTREVC and CHSEIN with various values of LDA
*
*           Select All Eigenvectors
*
            DO 210 J = 1, N
               LLWORK( J ) = .TRUE.
  210       CONTINUE
*
            DO 350 IPAR = 1, NPARMS
               LDA = LDAS( IPAR )
*
*              If this value of LDA has come up before, just use
*              the value previously computed.
*
               LASTL = 0
               DO 220 J = 1, IPAR - 1
                  IF( LDA.EQ.LDAS( J ) )
     $               LASTL = J
  220          CONTINUE
*
*              Time CTREVC
*
               IF( ( TIMSUB( 5 ) .OR. TIMSUB( 6 ) ) .AND. LASTL.EQ.0 )
     $              THEN
*
*                 Copy T (which is in A) if necessary to get right LDA.
*
                  IF( LDA.GT.LDT ) THEN
                     DO 240 JC = N, 1, -1
                        DO 230 JR = N, 1, -1
                           A( JR+( JC-1 )*LDA ) = A( JR+( JC-1 )*LDT )
  230                   CONTINUE
  240                CONTINUE
                  ELSE IF( LDA.LT.LDT ) THEN
                     DO 260 JC = 1, N
                        DO 250 JR = 1, N
                           A( JR+( JC-1 )*LDA ) = A( JR+( JC-1 )*LDT )
  250                   CONTINUE
  260                CONTINUE
                  END IF
                  LDT = LDA
*
*                 Time CTREVC for Left Eigenvectors
*
                  IF( TIMSUB( 5 ) ) THEN
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  270                CONTINUE
*
                     CALL CTREVC( 'L', 'A', LLWORK, N, A, LDA, Z, LDA,
     $                            Z, LDA, N, ITEMP, WORK, RWORK, IINFO )
*
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 5 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 540
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 270
*
                     TIMES( IPAR, ITYPE, IN, 5 ) = TIME / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 5 ) = OPS / REAL( IC )
                  END IF
*
*                 Time CTREVC for Right Eigenvectors
*
                  IF( TIMSUB( 6 ) ) THEN
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  280                CONTINUE
                     CALL CTREVC( 'R', 'A', LLWORK, N, A, LDA, Z, LDA,
     $                            Z, LDA, N, ITEMP, WORK, RWORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 6 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 540
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 280
*
                     TIMES( IPAR, ITYPE, IN, 6 ) = TIME / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 6 ) = OPS / REAL( IC )
                  END IF
               ELSE
                  IF( TIMSUB( 5 ) ) THEN
                     OPCNTS( IPAR, ITYPE, IN, 5 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 5 )
                     TIMES( IPAR, ITYPE, IN, 5 ) = TIMES( LASTL, ITYPE,
     $                  IN, 5 )
                  END IF
                  IF( TIMSUB( 6 ) ) THEN
                     OPCNTS( IPAR, ITYPE, IN, 6 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 6 )
                     TIMES( IPAR, ITYPE, IN, 6 ) = TIMES( LASTL, ITYPE,
     $                  IN, 6 )
                  END IF
               END IF
*
*              Time CHSEIN
*
               IF( ( TIMSUB( 7 ) .OR. TIMSUB( 8 ) ) .AND. LASTL.EQ.0 )
     $              THEN
*
*                 Copy H if necessary to get right LDA.
*
                  IF( LDA.GT.LDH ) THEN
                     DO 300 JC = N, 1, -1
                        DO 290 JR = N, 1, -1
                           H( JR+( JC-1 )*LDA ) = H( JR+( JC-1 )*LDH )
  290                   CONTINUE
  300                CONTINUE
                  ELSE IF( LDA.LT.LDH ) THEN
                     DO 320 JC = 1, N
                        DO 310 JR = 1, N
                           H( JR+( JC-1 )*LDA ) = H( JR+( JC-1 )*LDH )
  310                   CONTINUE
  320                CONTINUE
                  END IF
                  LDH = LDA
*
*                 Time CHSEIN for Left Eigenvectors
*
                  IF( TIMSUB( 7 ) ) THEN
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  330                CONTINUE
*
                     CALL CHSEIN( 'L', 'Q', 'N', LLWORK, N, H, LDA, W,
     $                            Z, LDA, Z, LDA, N, ITEMP, WORK, RWORK,
     $                            IWORK, IWORK( N+1 ), IINFO )
*
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 7 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 540
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 330
*
                     TIMES( IPAR, ITYPE, IN, 7 ) = TIME / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 7 ) = OPS / REAL( IC )
                  END IF
*
*                 Time CHSEIN for Right Eigenvectors
*
                  IF( TIMSUB( 8 ) ) THEN
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  340                CONTINUE
*
                     CALL CHSEIN( 'R', 'Q', 'N', LLWORK, N, H, LDA, W,
     $                            Z, LDA, Z, LDA, N, ITEMP, WORK, RWORK,
     $                            IWORK, IWORK( N+1 ), IINFO )
*
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 8 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 540
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 340
*
                     TIMES( IPAR, ITYPE, IN, 8 ) = TIME / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 8 ) = OPS / REAL( IC )
                  END IF
               ELSE
                  IF( TIMSUB( 7 ) ) THEN
                     OPCNTS( IPAR, ITYPE, IN, 7 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 7 )
                     TIMES( IPAR, ITYPE, IN, 7 ) = TIMES( LASTL, ITYPE,
     $                  IN, 7 )
                  END IF
                  IF( TIMSUB( 8 ) ) THEN
                     OPCNTS( IPAR, ITYPE, IN, 8 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 8 )
                     TIMES( IPAR, ITYPE, IN, 8 ) = TIMES( LASTL, ITYPE,
     $                  IN, 8 )
                  END IF
               END IF
  350       CONTINUE
*
*-----------------------------------------------------------------------
*
*           Time the EISPACK Routines
*
*           Restore random number seed
*
            DO 360 J = 1, 4
               ISEED( J ) = IOLDSD( J )
  360       CONTINUE
*
*           Re-generate A, copy to ARE and AIM
*
            IF( ITYPE.LE.MAXTYP ) THEN
               IMODE = KMODE( ITYPE )
               IF( ICONDS.EQ.1 ) THEN
                  CONDS = ONE
               ELSE
                  CONDS = RTULPI
               END IF
               CALL CLATME( N, 'S', ISEED, WORK, IMODE, ULPINV, CONE,
     $                      ADUMMA, 'T', 'T', 'T', RWORK, 4, CONDS, N,
     $                      N, ONE, H, N, WORK( N+1 ), IINFO )
               DO 370 J = 1, N*N
                  ARE( J ) = REAL( H( J ) )
                  AIM( J ) = AIMAG( H( J ) )
  370          CONTINUE
            END IF
*
*           Time CORTH for each LDAS(j)
*
            IF( TIMSUB( 9 ) ) THEN
               DO 410 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 380 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  380             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time CORTH
*
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  390                CONTINUE
                     CALL SLACPY( 'Full', N, N, ARE, N, HRE, LDA )
                     CALL SLACPY( 'Full', N, N, AIM, N, HIM, LDA )
                     CALL CORTH( LDA, N, 1, N, HRE, HIM, WORKRE,
     $                           WORKIM )
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 390
*
*                    Subtract the time used in CLACPY.
*
                     S1 = SECOND( )
                     DO 400 J = 1, IC
                        CALL SLACPY( 'Full', N, N, ARE, N, ZRE, LDA )
                        CALL SLACPY( 'Full', N, N, AIM, N, ZIM, LDA )
  400                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 9 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 9 ) = OPS / REAL( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 9 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 9 )
                     TIMES( IPAR, ITYPE, IN, 9 ) = TIMES( LASTL, ITYPE,
     $                  IN, 9 )
                  END IF
                  LDH = LDA
  410          CONTINUE
            ELSE
               IF( RUNORT ) THEN
                  CALL SLACPY( 'Full', N, N, ARE, N, HRE, N )
                  CALL SLACPY( 'Full', N, N, AIM, N, HIM, N )
                  CALL CORTH( N, N, 1, N, HRE, HIM, WORKRE, WORKIM )
                  LDH = N
               END IF
            END IF
*
*           Time COMQR for each LDAS(j)
*
            IF( TIMSUB( 10 ) ) THEN
               DO 450 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 420 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  420             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time COMQR
*
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  430                CONTINUE
                     CALL SLACPY( 'Full', N, N, HRE, LDH, ARE, LDA )
                     CALL SLACPY( 'Full', N, N, HIM, LDH, AIM, LDA )
                     CALL COMQR( LDA, N, 1, N, ARE, AIM, WRE, WIM,
     $                           IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 10 ), IINFO,
     $                     N, ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 540
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 430
*
*                    Subtract the time used in CLACPY.
*
                     S1 = SECOND( )
                     DO 440 J = 1, IC
                        CALL SLACPY( 'Full', N, N, HRE, LDH, ZRE, LDA )
                        CALL SLACPY( 'Full', N, N, HIM, LDH, ZIM, LDA )
  440                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 10 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 10 ) = OPS / REAL( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 10 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 10 )
                     TIMES( IPAR, ITYPE, IN, 10 ) = TIMES( LASTL, ITYPE,
     $                  IN, 10 )
                  END IF
  450          CONTINUE
            ELSE
               IF( RUNHQR ) THEN
                  CALL SLACPY( 'Full', N, N, HRE, LDH, ARE, N )
                  CALL SLACPY( 'Full', N, N, HIM, LDH, AIM, N )
                  CALL COMQR( N, N, 1, N, ARE, AIM, WRE, WIM, IINFO )
               END IF
            END IF
*
*           Time COMQR2 for each LDAS(j)
*
            IF( TIMSUB( 11 ) ) THEN
               DO 490 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 460 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  460             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time COMQR2
*
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  470                CONTINUE
                     CALL SLACPY( 'Full', N, N, HRE, LDH, ARE, LDA )
                     CALL SLACPY( 'Full', N, N, HIM, LDH, AIM, LDA )
                     CALL SLASET( 'Full', N, N, ZERO, ONE, ZRE, LDA )
                     CALL SLASET( 'Full', N, N, ZERO, ZERO, ZIM, LDA )
                     CALL SLASET( 'Full', 1, N, ZERO, ZERO, WORKRE, 1 )
                     CALL SLASET( 'Full', 1, N, ZERO, ZERO, WORKIM, 1 )
                     CALL COMQR2( LDA, N, 1, N, WORKRE, WORKIM, ARE,
     $                            AIM, WRE, WIM, ZRE, ZIM, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 11 ), IINFO,
     $                     N, ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 540
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 470
*
*                    Subtract the time used in CLACPY.
*
                     S1 = SECOND( )
                     DO 480 J = 1, IC
                        CALL SLACPY( 'Full', N, N, HRE, LDH, ZRE, LDA )
                        CALL SLACPY( 'Full', N, N, HIM, LDH, ZIM, LDA )
  480                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 11 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 11 ) = OPS / REAL( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 11 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 11 )
                     TIMES( IPAR, ITYPE, IN, 11 ) = TIMES( LASTL, ITYPE,
     $                  IN, 11 )
                  END IF
  490          CONTINUE
            END IF
*
*           Time CINVIT for each LDAS(j)
*
*           Select All Eigenvectors
*
            DO 500 J = 1, N
               LLWORK( J ) = .TRUE.
  500       CONTINUE
*
            IF( TIMSUB( 12 ) ) THEN
               DO 530 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 510 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  510             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Copy H if necessary to get right LDA.
*
                     IF( LDA.NE.LDH ) THEN
                        CALL SLACPY( 'Full', N, N, HRE, LDH, ZRE, LDA )
                        CALL SLACPY( 'Full', N, N, HIM, LDH, ZIM, LDA )
                        CALL SLACPY( 'Full', N, N, ZRE, LDA, HRE, LDA )
                        CALL SLACPY( 'Full', N, N, ZIM, LDA, HIM, LDA )
                     END IF
                     LDH = LDA
*
*                    Time CINVIT for right eigenvectors.
*
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  520                CONTINUE
                     CALL CINVIT( LDA, N, HRE, HIM, WRE, WIM, LLWORK, N,
     $                            ITEMP, ZRE, ZIM, IINFO, WORKRE( N+1 ),
     $                            WORKIM( N+1 ), WORKRE, WORKIM )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 12 ), IINFO,
     $                     N, ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 540
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 520
*
*                    TIME = TIME / REAL( IC )
*                    OPS1 = OPS / REAL( IC )
*                    OPCNTS( IPAR, ITYPE, IN, 12 ) = OPS1
*                    TIMES( IPAR, ITYPE, IN, 12 ) = SMFLOP( OPS1, TIME,
*     $                  IINFO )
                     TIMES( IPAR, ITYPE, IN, 12 ) = TIME / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 12 ) = OPS / REAL( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 12 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 12 )
                     TIMES( IPAR, ITYPE, IN, 12 ) = TIMES( LASTL, ITYPE,
     $                  IN, 12 )
                  END IF
  530          CONTINUE
            END IF
*
  540    CONTINUE
  550 CONTINUE
*
*-----------------------------------------------------------------------
*
*     Print a table of results for each timed routine.
*
      ISUB = 1
      IF( TIMSUB( ISUB ) ) THEN
         CALL SPRTBE( SUBNAM( ISUB ), MTYPES, DOTYPE, NSIZES, NN,
     $                 INPARM( ISUB ), PNAMES, NPARMS, LDAS, NNB,
     $                 NSHFTS, MAXBS, OPCNTS( 1, 1, 1, ISUB ), LDO1,
     $                 LDO2, TIMES( 1, 1, 1, ISUB ), LDT1, LDT2,
     $                 RWORK, LLWORK, NOUT )
      END IF
*
      DO 555 IN = 1, NPARMS
         NNB( IN ) = 1
  555 CONTINUE
*
      DO 560 ISUB = 2, NSUBS
         IF( TIMSUB( ISUB ) ) THEN
            CALL SPRTBE( SUBNAM( ISUB ), MTYPES, DOTYPE, NSIZES, NN,
     $                   INPARM( ISUB ), PNAMES, NPARMS, LDAS, NNB,
     $                   NSHFTS, MAXBS, OPCNTS( 1, 1, 1, ISUB ), LDO1,
     $                   LDO2, TIMES( 1, 1, 1, ISUB ), LDT1, LDT2,
     $                   RWORK, LLWORK, NOUT )
         END IF
  560 CONTINUE
*
 9997 FORMAT( ' CTIM21: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', ITYPE=', I6, ', IPAR=', I6, ', ISEED=(',
     $      3( I5, ',' ), I5, ')' )
*
      RETURN
*
*     End of CTIM21
*
      END