1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
|
SUBROUTINE CTIM21( LINE, NSIZES, NN, NTYPES, DOTYPE, NPARMS, NNB,
$ NSHFTS, MAXBS, LDAS, TIMMIN, NOUT, ISEED, A,
$ ARE, AIM, H, HRE, HIM, Z, ZRE, ZIM, W, WRE,
$ WIM, WORK, WORKRE, WORKIM, LWORK, RWORK,
$ LLWORK, IWORK, TIMES, LDT1, LDT2, LDT3, OPCNTS,
$ LDO1, LDO2, LDO3, INFO )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER*80 LINE
INTEGER INFO, LDO1, LDO2, LDO3, LDT1, LDT2, LDT3,
$ LWORK, NOUT, NPARMS, NSIZES, NTYPES
REAL TIMMIN
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * ), LLWORK( * )
INTEGER ISEED( * ), IWORK( * ), LDAS( * ), MAXBS( * ),
$ NN( * ), NNB( * ), NSHFTS( * )
REAL AIM( * ), ARE( * ), HIM( * ), HRE( * ),
$ OPCNTS( LDO1, LDO2, LDO3, * ), RWORK( * ),
$ TIMES( LDT1, LDT2, LDT3, * ), WIM( * ),
$ WORKIM( * ), WORKRE( * ), WRE( * ), ZIM( * ),
$ ZRE( * )
COMPLEX A( * ), H( * ), W( * ), WORK( * ), Z( * )
* ..
*
* Purpose
* =======
*
* CTIM21 times the LAPACK routines for the COMPLEX non-symmetric
* eigenvalue problem.
*
* For each N value in NN(1:NSIZES) and .TRUE. value in
* DOTYPE(1:NTYPES), a matrix will be generated and used to test the
* selected routines. Thus, NSIZES*(number of .TRUE. values in
* DOTYPE) matrices will be generated.
*
* Arguments
* =========
*
* LINE (input) CHARACTER*80
* On entry, LINE contains the input line which requested
* this routine. This line may contain a subroutine name,
* such as CGEHRD, indicating that only routine CGEHRD will
* be timed, or it may contain a generic name, such as CHS.
* In this case, the rest of the line is scanned for the
* first 12 non-blank characters, corresponding to the twelve
* combinations of subroutine and options:
* LAPACK:
* 1: CGEHRD
* 2: CHSEQR(JOB='E')
* 3: CHSEQR(JOB='S')
* 4: CHSEQR(JOB='I')
* 5: CTREVC(JOB='L')
* 6: CTREVC(JOB='R')
* 7: CHSEIN(JOB='L')
* 8: CHSEIN(JOB='R')
* EISPACK:
* 9: CORTH (compare with CGEHRD)
* 10: COMQR (compare w/ CHSEQR -- JOB='E')
* 11: COMQR2 (compare w/ CHSEQR(JOB='I') plus CTREVC(JOB='R'))
* 12: CINVIT (compare with CHSEIN)
* If a character is 'T' or 't', the corresponding routine in
* this path is timed. If the entire line is blank, all the
* routines in the path are timed.
*
* NSIZES (input) INTEGER
* The number of values of N contained in the vector NN.
*
* NN (input) INTEGER array, dimension( NSIZES )
* The values of the matrix size N to be tested. For each
* N value in the array NN, and each .TRUE. value in DOTYPE,
* a matrix A will be generated and used to test the routines.
*
* NTYPES (input) INTEGER
* The number of types in DOTYPE. Only the first MAXTYP
* elements will be examined. Exception: if NSIZES=1 and
* NTYPES=MAXTYP+1, and DOTYPE=MAXTYP*f,t, then the input
* value of A will be used.
*
* DOTYPE (input) LOGICAL
* If DOTYPE(j) is .TRUE., then a matrix of type j will be
* generated. The matrix A has the form X**(-1) T X, where
* X is unitary (for j=1--4) or has condition sqrt(ULP)
* (for j=5--8), and T has random O(1) entries in the upper
* triangle and:
* (j=1,5) evenly spaced entries 1, ..., ULP with random
* arguments
* (j=2,6) geometrically spaced entries 1, ..., ULP with random
* arguments
* (j=3,7) "clustered" entries 1, ULP,..., ULP with random
* arguments
* (j=4,8) eigenvalues randomly chosen from ( ULP, 1 ) with
* random arguments
* on the diagonal.
*
* NPARMS (input) INTEGER
* The number of values in each of the arrays NNB, NSHFTS,
* MAXBS, and LDAS. For each matrix A generated according to
* NN and DOTYPE, tests will be run with (NB,NSHIFT,MAXB,LDA)=
* (NNB(1), NSHFTS(1), MAXBS(1), LDAS(1)),...,
* (NNB(NPARMS), NSHFTS(NPARMS), MAXBS(NPARMS), LDAS(NPARMS))
*
* NNB (input) INTEGER array, dimension( NPARMS )
* The values of the blocksize ("NB") to be tested.
*
* NSHFTS (input) INTEGER array, dimension( NPARMS )
* The values of the number of shifts ("NSHIFT") to be tested.
*
* MAXBS (input) INTEGER array, dimension( NPARMS )
* The values of "MAXB", the size of largest submatrix to be
* processed by CLAHQR (EISPACK method), to be tested.
*
* LDAS (input) INTEGER array, dimension( NPARMS )
* The values of LDA, the leading dimension of all matrices,
* to be tested.
*
* TIMMIN (input) REAL
* The minimum time a subroutine will be timed.
*
* NOUT (input) INTEGER
* If NOUT > 0 then NOUT specifies the unit number
* on which the output will be printed. If NOUT <= 0, no
* output is printed.
*
* ISEED (input/output) INTEGER array, dimension( 4 )
* The random seed used by the random number generator, used
* by the test matrix generator. It is used and updated on
* each call to CTIM21
*
* A (workspace) COMPLEX array,
* dimension( max(NN)*max(LDAS) )
* (a) During the testing of CGEHRD, the original matrix to
* be tested.
* (b) Later, the Schur form of the original matrix.
*
* ARE (workspace) REAL array,
* dimension( max(NN)*max(LDAS) )
* (a) During the testing of CORTH, the real part of the
* (b) Later, the Schur form of the original matrix.
* May be equivalenced with first half of A in calling routine.
*
* AIM (workspace) REAL array,
* dimension( max(NN)*max(LDAS) )
* (a) During the testing of CORTH, the imaginary part of the
* original matrix to be tested.
* (b) Later, the Schur form of the original matrix.
* May be equivalenced with second half of A in calling
* routine.
*
* H (workspace) COMPLEX array,
* dimension( max(NN)*max(LDAS) )
* The Hessenberg form of the original matrix.
*
* HRE (workspace) REAL array,
* dimension( max(NN)*max(LDAS) )
* The real part of the Hessenberg form of the original matrix.
* May be equivalenced with first half of H in calling routine.
* Used for testing EISPACK routines.
*
* HIM (workspace) REAL array,
* dimension( max(NN)*max(LDAS) )
* The imaginary part of the Hessenberg form of the original
* matrix. May be equivalenced with second half of H in calling
* routine. Used for testing EISPACK routines.
*
* Z (workspace) COMPLEX array,
* dimension( max(NN)*max(LDAS) )
* Various output arrays: from CGEHRD and CHSEQR, the
* unitary reduction matrices; from CTREVC and CHSEIN,
* the eigenvector matrices.
*
* ZRE (workspace) REAL array,
* dimension( max(NN)*max(LDAS) )
* Various output arrays in testing EISPACK routines.
* May be equivalenced with first half of Z in calling routine.
*
* ZIM (workspace) REAL array,
* dimension( max(NN)*max(LDAS) )
* Various output arrays in testing EISPACK routines.
* May be equivalenced with second half of Z in calling
* routine.
*
* W (workspace) COMPLEX array, dimension( 2*max(LDAS) )
* Holds computed eigenvalues.
*
* WRE (workspace) REAL array,
* dimension( 2*max(LDAS) )
* Holds real parts of computed eigenvalues. Used for testing
* EISPACK routines. May be equivalenced with first half of W
* in calling routine.
*
* WIM (workspace) REAL array,
* dimension( 2*max(LDAS) )
* Holds imaginary parts of computed eigenvalues. Used for
* testing EISPACK routines. May be equivalenced with second
* half of W in calling routine.
*
* WORK (workspace) COMPLEX array, dimension( LWORK )
*
* WORKRE (workspace) REAL array, dimension( LWORK )
* May be equivalenced with first half of WORK in calling
* routine.
*
* WORKIM (workspace) REAL array, dimension( LWORK )
* May be equivalenced with second half of WORK in calling
* routine.
*
* LWORK (input) INTEGER
* Number of elements in WORK. It must be at least:
* (a) max(NN)*( 3*max(NNB) + 2 )
* (b) max(NN)*( max(NNB+NSHFTS) + 1 )
* (c) max(NSHFTS)*( max(NSHFTS) + max(NN) )
* (d) max(MAXBS)*( max(MAXBS) + max(NN) )
* (e) max(NN)**2 + max(NN)
* (f) 4*max(NN)
*
* RWORK (workspace) REAL array, dimension
* ( max(max(NN),NSIZES*NTYPES*NPARMS) )
* This should *not* be EQUIVALENCEd with any part of WORK.
*
* LLWORK (workspace) LOGICAL array, dimension( max( max(NN), NPARMS ))
*
* IWORK (workspace) INTEGER array, dimension( 2*max(NN) )
* Workspace needed for parameters IFAILL and IFAILR in call
* to CHSEIN.
*
* TIMES (output) REAL array,
* dimension (LDT1,LDT2,LDT3,NSUBS)
* TIMES(i,j,k,l) will be set to the run time (in seconds) for
* subroutine l, with N=NN(k), matrix type j, and LDA=LDAS(i),
* MAXB=MAXBS(i), NBLOCK=NNB(i), and NSHIFT=NSHFTS(i).
*
* LDT1 (input) INTEGER
* The first dimension of TIMES. LDT1 >= min( 1, NPARMS ).
*
* LDT2 (input) INTEGER
* The second dimension of TIMES. LDT2 >= min( 1, NTYPES ).
*
* LDT3 (input) INTEGER
* The third dimension of TIMES. LDT3 >= min( 1, NSIZES ).
*
* OPCNTS (output) REAL array,
* dimension (LDO1,LDO2,LDO3,NSUBS)
* OPCNTS(i,j,k,l) will be set to the number of floating-point
* operations executed by subroutine l, with N=NN(k), matrix
* type j, and LDA=LDAS(i), MAXB=MAXBS(i), NBLOCK=NNB(i), and
* NSHIFT=NSHFTS(i).
*
* LDO1 (input) INTEGER
* The first dimension of OPCNTS. LDO1 >= min( 1, NPARMS ).
*
* LDO2 (input) INTEGER
* The second dimension of OPCNTS. LDO2 >= min( 1, NTYPES ).
*
* LDO3 (input) INTEGER
* The third dimension of OPCNTS. LDO3 >= min( 1, NSIZES ).
*
* INFO (output) INTEGER
* Error flag. It will be set to zero if no error occurred.
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXTYP, NSUBS
PARAMETER ( MAXTYP = 8, NSUBS = 12 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) )
* ..
* .. Local Scalars ..
LOGICAL RUNHQR, RUNHRD, RUNORT, RUNQRE, RUNQRS
INTEGER IC, ICONDS, IINFO, IMODE, IN, IPAR, ISUB,
$ ITEMP, ITYPE, J, J1, J2, J3, J4, JC, JR, LASTL,
$ LASTNL, LDA, LDAMIN, LDH, LDT, MAXB, MBMAX,
$ MTYPES, N, NB, NBMAX, NMAX, NSBMAX,
$ NSHIFT, NSMAX
REAL CONDS, RTULP, RTULPI, S1, S2, TIME, ULP,
$ ULPINV, UNTIME
* ..
* .. Local Arrays ..
LOGICAL TIMSUB( NSUBS )
CHARACTER ADUMMA( 1 )
CHARACTER*4 PNAMES( 4 )
CHARACTER*9 SUBNAM( NSUBS )
INTEGER INPARM( NSUBS ), IOLDSD( 4 ), KCONDS( MAXTYP ),
$ KMODE( MAXTYP )
* ..
* .. External Functions ..
REAL SLAMCH, SECOND, SOPLA
EXTERNAL SLAMCH, SECOND, SOPLA
* ..
* .. External Subroutines ..
EXTERNAL ATIMIN, CGEHRD, CHSEIN, CHSEQR, CINVIT, CLACPY,
$ CLATME, COMQR, COMQR2, CORTH, CTREVC, SLACPY,
$ SLASET, SPRTBE, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, MAX, MIN, REAL, SQRT
* ..
* .. Common blocks ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
REAL ITCNT, OPS
* ..
* .. Data statements ..
DATA SUBNAM / 'CGEHRD', 'CHSEQR(E)', 'CHSEQR(S)',
$ 'CHSEQR(V)', 'CTREVC(L)', 'CTREVC(R)',
$ 'CHSEIN(L)', 'CHSEIN(R)', 'CORTH', 'COMQR',
$ 'COMQR2', 'CINVIT' /
DATA INPARM / 2, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 /
DATA PNAMES / 'LDA', 'NB', 'NS', 'MAXB' /
DATA KMODE / 4, 3, 1, 5, 4, 3, 1, 5 /
DATA KCONDS / 4*1, 4*2 /
* ..
* .. Executable Statements ..
*
* Quick Return
*
INFO = 0
IF( NSIZES.LE.0 .OR. NTYPES.LE.0 .OR. NPARMS.LE.0 )
$ RETURN
*
*
* Extract the timing request from the input line.
*
CALL ATIMIN( 'CHS', LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
IF( INFO.NE.0 )
$ RETURN
*
* Compute Maximum Values
*
NMAX = 0
DO 10 J1 = 1, NSIZES
NMAX = MAX( NMAX, NN( J1 ) )
10 CONTINUE
*
LDAMIN = 2*MAX( 1, NMAX )
NBMAX = 0
NSMAX = 0
MBMAX = 0
NSBMAX = 0
DO 20 J1 = 1, NPARMS
LDAMIN = MIN( LDAMIN, LDAS( J1 ) )
NBMAX = MAX( NBMAX, NNB( J1 ) )
NSMAX = MAX( NSMAX, NSHFTS( J1 ) )
MBMAX = MAX( MBMAX, MAXBS( J1 ) )
NSBMAX = MAX( NSBMAX, NNB( J1 )+NSHFTS( J1 ) )
20 CONTINUE
*
* Check that N <= LDA for the input values.
*
IF( NMAX.GT.LDAMIN ) THEN
INFO = -10
WRITE( NOUT, FMT = 9999 )LINE( 1: 6 )
9999 FORMAT( 1X, A, ' timing run not attempted -- N < LDA', / )
RETURN
END IF
*
* Check LWORK
*
IF( LWORK.LT.MAX( NMAX*MAX( 4, 3*NBMAX+2, NSBMAX+1 ),
$ NSMAX*( NSMAX+NMAX ), MBMAX*( MBMAX+NMAX ),
$ ( NMAX+1 )*NMAX ) ) THEN
INFO = -29
WRITE( NOUT, FMT = 9998 )LINE( 1: 6 )
9998 FORMAT( 1X, A, ' timing run not attempted -- LWORK too small.',
$ / )
RETURN
END IF
*
* Check to see whether CGEHRD or CHSEQR must be run.
*
* RUNQRE -- if CHSEQR must be run to get eigenvalues.
* RUNQRS -- if CHSEQR must be run to get Schur form.
* RUNHRD -- if CGEHRD must be run.
*
RUNQRS = .FALSE.
RUNQRE = .FALSE.
RUNHRD = .FALSE.
IF( TIMSUB( 5 ) .OR. TIMSUB( 6 ) )
$ RUNQRS = .TRUE.
IF( ( TIMSUB( 7 ) .OR. TIMSUB( 8 ) ) )
$ RUNQRE = .TRUE.
IF( TIMSUB( 2 ) .OR. TIMSUB( 3 ) .OR. TIMSUB( 4 ) .OR. RUNQRS .OR.
$ RUNQRE )RUNHRD = .TRUE.
IF( TIMSUB( 3 ) .OR. TIMSUB( 4 ) .OR. RUNQRS )
$ RUNQRE = .FALSE.
IF( TIMSUB( 4 ) )
$ RUNQRS = .FALSE.
*
* Check to see whether CORTH or COMQR must be run.
*
* RUNHQR -- if COMQR must be run to get eigenvalues.
* RUNORT -- if CORTH must be run.
*
RUNHQR = .FALSE.
RUNORT = .FALSE.
IF( TIMSUB( 12 ) )
$ RUNHQR = .TRUE.
IF( TIMSUB( 10 ) .OR. TIMSUB( 11 ) .OR. RUNHQR )
$ RUNORT = .TRUE.
IF( TIMSUB( 10 ) .OR. TIMSUB( 11 ) )
$ RUNHQR = .FALSE.
IF( TIMSUB( 9 ) )
$ RUNORT = .FALSE.
*
* Various Constants
*
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
ULPINV = ONE / ULP
RTULP = SQRT( ULP )
RTULPI = ONE / RTULP
*
* Zero out OPCNTS, TIMES
*
DO 60 J4 = 1, NSUBS
DO 50 J3 = 1, NSIZES
DO 40 J2 = 1, NTYPES
DO 30 J1 = 1, NPARMS
OPCNTS( J1, J2, J3, J4 ) = ZERO
TIMES( J1, J2, J3, J4 ) = ZERO
30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE
*
* Do for each value of N:
*
DO 550 IN = 1, NSIZES
*
N = NN( IN )
*
* Do for each .TRUE. value in DOTYPE:
*
MTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.EQ.MAXTYP+1 .AND. NSIZES.EQ.1 )
$ MTYPES = NTYPES
DO 540 ITYPE = 1, MTYPES
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 540
*
* Save random number seed for error messages
*
DO 70 J = 1, 4
IOLDSD( J ) = ISEED( J )
70 CONTINUE
*
*-----------------------------------------------------------------------
*
* Time the LAPACK Routines
*
* Generate A
*
IF( ITYPE.LE.MAXTYP ) THEN
IMODE = KMODE( ITYPE )
ICONDS = KCONDS( ITYPE )
IF( ICONDS.EQ.1 ) THEN
CONDS = ONE
ELSE
CONDS = RTULPI
END IF
ADUMMA( 1 ) = ' '
CALL CLATME( N, 'S', ISEED, WORK, IMODE, ULPINV, CONE,
$ ADUMMA, 'T', 'T', 'T', RWORK, 4, CONDS, N,
$ N, ONE, A, N, WORK( N+1 ), IINFO )
END IF
*
* Time CGEHRD for each pair NNB(j), LDAS(j)
*
IF( TIMSUB( 1 ) ) THEN
DO 110 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
*
* If this combination of (NB,LDA) has occurred before,
* just use that value.
*
LASTNL = 0
DO 80 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) .AND. NB.EQ.
$ MIN( N, NNB( J ) ) )LASTNL = J
80 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
CALL XLAENV( 1, NB )
CALL XLAENV( 2, 2 )
CALL XLAENV( 3, NB )
*
* Time CGEHRD
*
IC = 0
OPS = ZERO
S1 = SECOND( )
90 CONTINUE
CALL CLACPY( 'Full', N, N, A, N, H, LDA )
*
CALL CGEHRD( N, 1, N, H, LDA, WORK,
$ WORK( N+1 ), LWORK-N, IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 1 ), IINFO, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
*
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 90
*
* Subtract the time used in CLACPY.
*
S1 = SECOND( )
DO 100 J = 1, IC
CALL CLACPY( 'Full', N, N, A, N, Z, LDA )
100 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 1 ) = MAX( TIME-UNTIME,
$ ZERO ) / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 1 ) = SOPLA( 'CGEHRD', N,
$ 1, N, 0, NB )
ELSE
OPCNTS( IPAR, ITYPE, IN, 1 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 1 )
TIMES( IPAR, ITYPE, IN, 1 ) = TIMES( LASTNL, ITYPE,
$ IN, 1 )
END IF
110 CONTINUE
LDH = LDA
ELSE
IF( RUNHRD ) THEN
CALL CLACPY( 'Full', N, N, A, N, H, N )
*
CALL CGEHRD( N, 1, N, H, N, WORK, WORK( N+1 ),
$ LWORK-N, IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 1 ), IINFO, N,
$ ITYPE, 0, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
LDH = N
END IF
END IF
*
* Time CHSEQR with JOB='E' for each 4-tuple
* NNB(j), NSHFTS(j), MAXBS(j), LDAS(j)
*
IF( TIMSUB( 2 ) ) THEN
DO 140 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = 1
NSHIFT = NSHFTS( IPAR )
MAXB = MAXBS( IPAR )
CALL XLAENV( 4, NSHIFT )
CALL XLAENV( 8, MAXB )
*
* Time CHSEQR with JOB='E'
*
IC = 0
OPS = ZERO
S1 = SECOND( )
120 CONTINUE
CALL CLACPY( 'Full', N, N, H, LDH, A, LDA )
*
CALL CHSEQR( 'E', 'N', N, 1, N, A, LDA, W, Z, LDA,
$ WORK, LWORK, IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 2 ), IINFO, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 120
*
* Subtract the time used in CLACPY.
*
S1 = SECOND( )
DO 130 J = 1, IC
CALL CLACPY( 'Full', N, N, H, LDH, Z, LDA )
130 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 2 ) = MAX( TIME-UNTIME,
$ ZERO ) / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 2 ) = OPS / REAL( IC )
140 CONTINUE
LDT = 0
ELSE
IF( RUNQRE ) THEN
CALL CLACPY( 'Full', N, N, H, LDH, A, N )
*
CALL CHSEQR( 'E', 'N', N, 1, N, A, N, W, Z, N,
$ WORK, LWORK, IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 2 ), IINFO, N,
$ ITYPE, 0, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
LDT = 0
END IF
END IF
*
* Time CHSEQR with JOB='S' for each 4-tuple
* NNB(j), NSHFTS(j), MAXBS(j), LDAS(j)
*
IF( TIMSUB( 3 ) ) THEN
DO 170 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = 1
NSHIFT = NSHFTS( IPAR )
MAXB = MAXBS( IPAR )
CALL XLAENV( 4, NSHIFT )
CALL XLAENV( 8, MAXB )
*
* Time CHSEQR with JOB='S'
*
IC = 0
OPS = ZERO
S1 = SECOND( )
150 CONTINUE
CALL CLACPY( 'Full', N, N, H, LDH, A, LDA )
*
CALL CHSEQR( 'S', 'N', N, 1, N, A, LDA, W, Z, LDA,
$ WORK, LWORK, IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 3 ), IINFO, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 150
*
* Subtract the time used in CLACPY.
*
S1 = SECOND( )
DO 160 J = 1, IC
CALL CLACPY( 'Full', N, N, H, LDH, Z, LDA )
160 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 3 ) = MAX( TIME-UNTIME,
$ ZERO ) / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 3 ) = OPS / REAL( IC )
170 CONTINUE
LDT = LDA
ELSE
IF( RUNQRS ) THEN
CALL CLACPY( 'Full', N, N, H, LDH, A, N )
*
CALL CHSEQR( 'S', 'N', N, 1, N, A, N, W, Z, N,
$ WORK, LWORK, IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 3 ), IINFO, N,
$ ITYPE, 0, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
LDT = N
END IF
END IF
*
* Time CHSEQR with JOB='I' for each 4-tuple
* NNB(j), NSHFTS(j), MAXBS(j), LDAS(j)
*
IF( TIMSUB( 4 ) ) THEN
DO 200 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = 1
NSHIFT = NSHFTS( IPAR )
MAXB = MAXBS( IPAR )
CALL XLAENV( 4, NSHIFT )
CALL XLAENV( 8, MAXB )
*
* Time CHSEQR with JOB='I'
*
IC = 0
OPS = ZERO
S1 = SECOND( )
180 CONTINUE
CALL CLACPY( 'Full', N, N, H, LDH, A, LDA )
*
CALL CHSEQR( 'S', 'I', N, 1, N, A, LDA, W, Z, LDA,
$ WORK, LWORK, IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 4 ), IINFO, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 180
*
* Subtract the time used in CLACPY.
*
S1 = SECOND( )
DO 190 J = 1, IC
CALL CLACPY( 'Full', N, N, H, LDH, Z, LDA )
190 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 4 ) = MAX( TIME-UNTIME,
$ ZERO ) / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 4 ) = OPS / REAL( IC )
200 CONTINUE
LDT = LDA
END IF
*
* Time CTREVC and CHSEIN with various values of LDA
*
* Select All Eigenvectors
*
DO 210 J = 1, N
LLWORK( J ) = .TRUE.
210 CONTINUE
*
DO 350 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has come up before, just use
* the value previously computed.
*
LASTL = 0
DO 220 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTL = J
220 CONTINUE
*
* Time CTREVC
*
IF( ( TIMSUB( 5 ) .OR. TIMSUB( 6 ) ) .AND. LASTL.EQ.0 )
$ THEN
*
* Copy T (which is in A) if necessary to get right LDA.
*
IF( LDA.GT.LDT ) THEN
DO 240 JC = N, 1, -1
DO 230 JR = N, 1, -1
A( JR+( JC-1 )*LDA ) = A( JR+( JC-1 )*LDT )
230 CONTINUE
240 CONTINUE
ELSE IF( LDA.LT.LDT ) THEN
DO 260 JC = 1, N
DO 250 JR = 1, N
A( JR+( JC-1 )*LDA ) = A( JR+( JC-1 )*LDT )
250 CONTINUE
260 CONTINUE
END IF
LDT = LDA
*
* Time CTREVC for Left Eigenvectors
*
IF( TIMSUB( 5 ) ) THEN
IC = 0
OPS = ZERO
S1 = SECOND( )
270 CONTINUE
*
CALL CTREVC( 'L', 'A', LLWORK, N, A, LDA, Z, LDA,
$ Z, LDA, N, ITEMP, WORK, RWORK, IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 5 ), IINFO, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 270
*
TIMES( IPAR, ITYPE, IN, 5 ) = TIME / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 5 ) = OPS / REAL( IC )
END IF
*
* Time CTREVC for Right Eigenvectors
*
IF( TIMSUB( 6 ) ) THEN
IC = 0
OPS = ZERO
S1 = SECOND( )
280 CONTINUE
CALL CTREVC( 'R', 'A', LLWORK, N, A, LDA, Z, LDA,
$ Z, LDA, N, ITEMP, WORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 6 ), IINFO, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 280
*
TIMES( IPAR, ITYPE, IN, 6 ) = TIME / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 6 ) = OPS / REAL( IC )
END IF
ELSE
IF( TIMSUB( 5 ) ) THEN
OPCNTS( IPAR, ITYPE, IN, 5 ) = OPCNTS( LASTL,
$ ITYPE, IN, 5 )
TIMES( IPAR, ITYPE, IN, 5 ) = TIMES( LASTL, ITYPE,
$ IN, 5 )
END IF
IF( TIMSUB( 6 ) ) THEN
OPCNTS( IPAR, ITYPE, IN, 6 ) = OPCNTS( LASTL,
$ ITYPE, IN, 6 )
TIMES( IPAR, ITYPE, IN, 6 ) = TIMES( LASTL, ITYPE,
$ IN, 6 )
END IF
END IF
*
* Time CHSEIN
*
IF( ( TIMSUB( 7 ) .OR. TIMSUB( 8 ) ) .AND. LASTL.EQ.0 )
$ THEN
*
* Copy H if necessary to get right LDA.
*
IF( LDA.GT.LDH ) THEN
DO 300 JC = N, 1, -1
DO 290 JR = N, 1, -1
H( JR+( JC-1 )*LDA ) = H( JR+( JC-1 )*LDH )
290 CONTINUE
300 CONTINUE
ELSE IF( LDA.LT.LDH ) THEN
DO 320 JC = 1, N
DO 310 JR = 1, N
H( JR+( JC-1 )*LDA ) = H( JR+( JC-1 )*LDH )
310 CONTINUE
320 CONTINUE
END IF
LDH = LDA
*
* Time CHSEIN for Left Eigenvectors
*
IF( TIMSUB( 7 ) ) THEN
IC = 0
OPS = ZERO
S1 = SECOND( )
330 CONTINUE
*
CALL CHSEIN( 'L', 'Q', 'N', LLWORK, N, H, LDA, W,
$ Z, LDA, Z, LDA, N, ITEMP, WORK, RWORK,
$ IWORK, IWORK( N+1 ), IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 7 ), IINFO, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 330
*
TIMES( IPAR, ITYPE, IN, 7 ) = TIME / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 7 ) = OPS / REAL( IC )
END IF
*
* Time CHSEIN for Right Eigenvectors
*
IF( TIMSUB( 8 ) ) THEN
IC = 0
OPS = ZERO
S1 = SECOND( )
340 CONTINUE
*
CALL CHSEIN( 'R', 'Q', 'N', LLWORK, N, H, LDA, W,
$ Z, LDA, Z, LDA, N, ITEMP, WORK, RWORK,
$ IWORK, IWORK( N+1 ), IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 8 ), IINFO, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 340
*
TIMES( IPAR, ITYPE, IN, 8 ) = TIME / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 8 ) = OPS / REAL( IC )
END IF
ELSE
IF( TIMSUB( 7 ) ) THEN
OPCNTS( IPAR, ITYPE, IN, 7 ) = OPCNTS( LASTL,
$ ITYPE, IN, 7 )
TIMES( IPAR, ITYPE, IN, 7 ) = TIMES( LASTL, ITYPE,
$ IN, 7 )
END IF
IF( TIMSUB( 8 ) ) THEN
OPCNTS( IPAR, ITYPE, IN, 8 ) = OPCNTS( LASTL,
$ ITYPE, IN, 8 )
TIMES( IPAR, ITYPE, IN, 8 ) = TIMES( LASTL, ITYPE,
$ IN, 8 )
END IF
END IF
350 CONTINUE
*
*-----------------------------------------------------------------------
*
* Time the EISPACK Routines
*
* Restore random number seed
*
DO 360 J = 1, 4
ISEED( J ) = IOLDSD( J )
360 CONTINUE
*
* Re-generate A, copy to ARE and AIM
*
IF( ITYPE.LE.MAXTYP ) THEN
IMODE = KMODE( ITYPE )
IF( ICONDS.EQ.1 ) THEN
CONDS = ONE
ELSE
CONDS = RTULPI
END IF
CALL CLATME( N, 'S', ISEED, WORK, IMODE, ULPINV, CONE,
$ ADUMMA, 'T', 'T', 'T', RWORK, 4, CONDS, N,
$ N, ONE, H, N, WORK( N+1 ), IINFO )
DO 370 J = 1, N*N
ARE( J ) = REAL( H( J ) )
AIM( J ) = AIMAG( H( J ) )
370 CONTINUE
END IF
*
* Time CORTH for each LDAS(j)
*
IF( TIMSUB( 9 ) ) THEN
DO 410 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has come up before, just use
* the value previously computed.
*
LASTL = 0
DO 380 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTL = J
380 CONTINUE
*
IF( LASTL.EQ.0 ) THEN
*
* Time CORTH
*
IC = 0
OPS = ZERO
S1 = SECOND( )
390 CONTINUE
CALL SLACPY( 'Full', N, N, ARE, N, HRE, LDA )
CALL SLACPY( 'Full', N, N, AIM, N, HIM, LDA )
CALL CORTH( LDA, N, 1, N, HRE, HIM, WORKRE,
$ WORKIM )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 390
*
* Subtract the time used in CLACPY.
*
S1 = SECOND( )
DO 400 J = 1, IC
CALL SLACPY( 'Full', N, N, ARE, N, ZRE, LDA )
CALL SLACPY( 'Full', N, N, AIM, N, ZIM, LDA )
400 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 9 ) = MAX( TIME-UNTIME,
$ ZERO ) / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 9 ) = OPS / REAL( IC )
ELSE
OPCNTS( IPAR, ITYPE, IN, 9 ) = OPCNTS( LASTL,
$ ITYPE, IN, 9 )
TIMES( IPAR, ITYPE, IN, 9 ) = TIMES( LASTL, ITYPE,
$ IN, 9 )
END IF
LDH = LDA
410 CONTINUE
ELSE
IF( RUNORT ) THEN
CALL SLACPY( 'Full', N, N, ARE, N, HRE, N )
CALL SLACPY( 'Full', N, N, AIM, N, HIM, N )
CALL CORTH( N, N, 1, N, HRE, HIM, WORKRE, WORKIM )
LDH = N
END IF
END IF
*
* Time COMQR for each LDAS(j)
*
IF( TIMSUB( 10 ) ) THEN
DO 450 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has come up before, just use
* the value previously computed.
*
LASTL = 0
DO 420 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTL = J
420 CONTINUE
*
IF( LASTL.EQ.0 ) THEN
*
* Time COMQR
*
IC = 0
OPS = ZERO
S1 = SECOND( )
430 CONTINUE
CALL SLACPY( 'Full', N, N, HRE, LDH, ARE, LDA )
CALL SLACPY( 'Full', N, N, HIM, LDH, AIM, LDA )
CALL COMQR( LDA, N, 1, N, ARE, AIM, WRE, WIM,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 10 ), IINFO,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 430
*
* Subtract the time used in CLACPY.
*
S1 = SECOND( )
DO 440 J = 1, IC
CALL SLACPY( 'Full', N, N, HRE, LDH, ZRE, LDA )
CALL SLACPY( 'Full', N, N, HIM, LDH, ZIM, LDA )
440 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 10 ) = MAX( TIME-UNTIME,
$ ZERO ) / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 10 ) = OPS / REAL( IC )
ELSE
OPCNTS( IPAR, ITYPE, IN, 10 ) = OPCNTS( LASTL,
$ ITYPE, IN, 10 )
TIMES( IPAR, ITYPE, IN, 10 ) = TIMES( LASTL, ITYPE,
$ IN, 10 )
END IF
450 CONTINUE
ELSE
IF( RUNHQR ) THEN
CALL SLACPY( 'Full', N, N, HRE, LDH, ARE, N )
CALL SLACPY( 'Full', N, N, HIM, LDH, AIM, N )
CALL COMQR( N, N, 1, N, ARE, AIM, WRE, WIM, IINFO )
END IF
END IF
*
* Time COMQR2 for each LDAS(j)
*
IF( TIMSUB( 11 ) ) THEN
DO 490 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has come up before, just use
* the value previously computed.
*
LASTL = 0
DO 460 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTL = J
460 CONTINUE
*
IF( LASTL.EQ.0 ) THEN
*
* Time COMQR2
*
IC = 0
OPS = ZERO
S1 = SECOND( )
470 CONTINUE
CALL SLACPY( 'Full', N, N, HRE, LDH, ARE, LDA )
CALL SLACPY( 'Full', N, N, HIM, LDH, AIM, LDA )
CALL SLASET( 'Full', N, N, ZERO, ONE, ZRE, LDA )
CALL SLASET( 'Full', N, N, ZERO, ZERO, ZIM, LDA )
CALL SLASET( 'Full', 1, N, ZERO, ZERO, WORKRE, 1 )
CALL SLASET( 'Full', 1, N, ZERO, ZERO, WORKIM, 1 )
CALL COMQR2( LDA, N, 1, N, WORKRE, WORKIM, ARE,
$ AIM, WRE, WIM, ZRE, ZIM, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 11 ), IINFO,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 470
*
* Subtract the time used in CLACPY.
*
S1 = SECOND( )
DO 480 J = 1, IC
CALL SLACPY( 'Full', N, N, HRE, LDH, ZRE, LDA )
CALL SLACPY( 'Full', N, N, HIM, LDH, ZIM, LDA )
480 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 11 ) = MAX( TIME-UNTIME,
$ ZERO ) / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 11 ) = OPS / REAL( IC )
ELSE
OPCNTS( IPAR, ITYPE, IN, 11 ) = OPCNTS( LASTL,
$ ITYPE, IN, 11 )
TIMES( IPAR, ITYPE, IN, 11 ) = TIMES( LASTL, ITYPE,
$ IN, 11 )
END IF
490 CONTINUE
END IF
*
* Time CINVIT for each LDAS(j)
*
* Select All Eigenvectors
*
DO 500 J = 1, N
LLWORK( J ) = .TRUE.
500 CONTINUE
*
IF( TIMSUB( 12 ) ) THEN
DO 530 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has come up before, just use
* the value previously computed.
*
LASTL = 0
DO 510 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTL = J
510 CONTINUE
*
IF( LASTL.EQ.0 ) THEN
*
* Copy H if necessary to get right LDA.
*
IF( LDA.NE.LDH ) THEN
CALL SLACPY( 'Full', N, N, HRE, LDH, ZRE, LDA )
CALL SLACPY( 'Full', N, N, HIM, LDH, ZIM, LDA )
CALL SLACPY( 'Full', N, N, ZRE, LDA, HRE, LDA )
CALL SLACPY( 'Full', N, N, ZIM, LDA, HIM, LDA )
END IF
LDH = LDA
*
* Time CINVIT for right eigenvectors.
*
IC = 0
OPS = ZERO
S1 = SECOND( )
520 CONTINUE
CALL CINVIT( LDA, N, HRE, HIM, WRE, WIM, LLWORK, N,
$ ITEMP, ZRE, ZIM, IINFO, WORKRE( N+1 ),
$ WORKIM( N+1 ), WORKRE, WORKIM )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9997 )SUBNAM( 12 ), IINFO,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 540
END IF
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 520
*
* TIME = TIME / REAL( IC )
* OPS1 = OPS / REAL( IC )
* OPCNTS( IPAR, ITYPE, IN, 12 ) = OPS1
* TIMES( IPAR, ITYPE, IN, 12 ) = SMFLOP( OPS1, TIME,
* $ IINFO )
TIMES( IPAR, ITYPE, IN, 12 ) = TIME / REAL( IC )
OPCNTS( IPAR, ITYPE, IN, 12 ) = OPS / REAL( IC )
ELSE
OPCNTS( IPAR, ITYPE, IN, 12 ) = OPCNTS( LASTL,
$ ITYPE, IN, 12 )
TIMES( IPAR, ITYPE, IN, 12 ) = TIMES( LASTL, ITYPE,
$ IN, 12 )
END IF
530 CONTINUE
END IF
*
540 CONTINUE
550 CONTINUE
*
*-----------------------------------------------------------------------
*
* Print a table of results for each timed routine.
*
ISUB = 1
IF( TIMSUB( ISUB ) ) THEN
CALL SPRTBE( SUBNAM( ISUB ), MTYPES, DOTYPE, NSIZES, NN,
$ INPARM( ISUB ), PNAMES, NPARMS, LDAS, NNB,
$ NSHFTS, MAXBS, OPCNTS( 1, 1, 1, ISUB ), LDO1,
$ LDO2, TIMES( 1, 1, 1, ISUB ), LDT1, LDT2,
$ RWORK, LLWORK, NOUT )
END IF
*
DO 555 IN = 1, NPARMS
NNB( IN ) = 1
555 CONTINUE
*
DO 560 ISUB = 2, NSUBS
IF( TIMSUB( ISUB ) ) THEN
CALL SPRTBE( SUBNAM( ISUB ), MTYPES, DOTYPE, NSIZES, NN,
$ INPARM( ISUB ), PNAMES, NPARMS, LDAS, NNB,
$ NSHFTS, MAXBS, OPCNTS( 1, 1, 1, ISUB ), LDO1,
$ LDO2, TIMES( 1, 1, 1, ISUB ), LDT1, LDT2,
$ RWORK, LLWORK, NOUT )
END IF
560 CONTINUE
*
9997 FORMAT( ' CTIM21: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', ITYPE=', I6, ', IPAR=', I6, ', ISEED=(',
$ 3( I5, ',' ), I5, ')' )
*
RETURN
*
* End of CTIM21
*
END
|