File: ctim22.f

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (1252 lines) | stat: -rw-r--r-- 46,275 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
      SUBROUTINE CTIM22( LINE, NSIZES, NN, NTYPES, DOTYPE, NPARMS, NNB,
     $                   LDAS, TIMMIN, NOUT, ISEED, A, D, E, E2, U, URE,
     $                   UIM, TAU, TAURE, Z, ZRE, ZIM, WORK, LWORK,
     $                   RWORK, LLWORK, IWORK, TIMES, LDT1, LDT2, LDT3,
     $                   OPCNTS, LDO1, LDO2, LDO3, INFO )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 20, 2000
*
*     .. Scalar Arguments ..
      CHARACTER*80       LINE
      INTEGER            INFO, LDO1, LDO2, LDO3, LDT1, LDT2, LDT3,
     $                   LWORK, NOUT, NPARMS, NSIZES, NTYPES
      REAL               TIMMIN
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * ), LLWORK( * )
      INTEGER            ISEED( * ), IWORK( * ), LDAS( * ), NN( * ),
     $                   NNB( * )
      REAL               D( * ), E( * ), E2( * ),
     $                   OPCNTS( LDO1, LDO2, LDO3, * ), RWORK( * ),
     $                   TAURE( * ), TIMES( LDT1, LDT2, LDT3, * ),
     $                   UIM( * ), URE( * ), ZIM( * ), ZRE( * )
      COMPLEX            A( * ), TAU( * ), U( * ), WORK( * ), Z( * )
*     ..
*
*  Purpose
*  =======
*
*     CTIM22 times the LAPACK routines for the complex hermitian
*     eigenvalue problem.
*
*     For each N value in NN(1:NSIZES) and .TRUE. value in
*     DOTYPE(1:NTYPES), a matrix will be generated and used to test the
*     selected routines.  Thus, NSIZES*(number of .TRUE. values in
*     DOTYPE) matrices will be generated.
*
*  Arguments
*  =========
*
*  LINE    (input) CHARACTER*80
*          On entry, LINE contains the input line which requested
*          this routine.  This line may contain a subroutine name,
*          such as CHETRD, indicating that only routine CHETRD will
*          be timed, or it may contain a generic name, such as CST.
*          In this case, the rest of the line is scanned for the
*          first 12 non-blank characters, corresponding to the twelve
*          combinations of subroutine and options:
*          LAPACK:
*             1: CHETRD
*             2: CSTEQR(VECT='N')
*             3: CUNGTR+CSTEQR(VECT='V') (compare with IMTQL2+HTRIBK)
*             4: CPTEQR(VECT='N')
*             5: CUNGTR+CPTEQR(VECT='V')
*             6. SSTEBZ+CSTEIN+CUNMTR
*             7. CUNGTR+CSTEDC(COMPQ='V')
*             8. CSTEDC(COMPQ='I')+CUNMTR
*             9. CSTEGR(COMPQ='V')
*          EISPACK:
*            10: HTRIDI (compare with CHETRD)
*            11: IMTQL1 (compare w/ CSTEQR -- VECT='N')
*            12: IMTQL2+HTRIBK (compare w/ CUNGTR+CSTEQR(VECT='V') )
*          If a character is 'T' or 't', the corresponding routine in
*          this path is timed.  If the entire line is blank, all the
*          routines in the path are timed.
*
*  NSIZES  (input) INTEGER
*          The number of values of N contained in the vector NN.
*
*  NN      (input) INTEGER array, dimension( NSIZES )
*          The values of the matrix size N to be tested.  For each
*          N value in the array NN, and each .TRUE. value in DOTYPE,
*          a matrix A will be generated and used to test the routines.
*
*  NTYPES  (input) INTEGER
*          The number of types in DOTYPE.  Only the first MAXTYP
*          elements will be examined.  Exception: if NSIZES=1 and
*          NTYPES=MAXTYP+1, and DOTYPE=MAXTYP*f,t, then the input
*          value of A will be used.
*
*  DOTYPE  (input) LOGICAL
*          If DOTYPE(j) is .TRUE., then a matrix of type j will be
*          generated.  The matrix A has the form X**(-1) D X, where
*          X is unitary and D is diagonal with:
*          (j=1)  evenly spaced entries 1, ..., ULP with random signs.
*          (j=2)  geometrically spaced entries 1, ..., ULP with random
*                 signs.
*          (j=3)  "clustered" entries 1, ULP,..., ULP with random
*                 signs.
*          (j=4)  entries randomly chosen from ( ULP, 1 ).
*
*  NPARMS  (input) INTEGER
*          The number of values in each of the arrays NNB and LDAS.
*          For each matrix A generated according to NN and DOTYPE,
*          tests will be run with (NB,LDA)=
*          (NNB(1),LDAS(1)),...,(NNB(NPARMS), LDAS(NPARMS))
*
*  NNB     (input) INTEGER array, dimension( NPARMS )
*          The values of the blocksize ("NB") to be tested.
*
*  LDAS    (input) INTEGER array, dimension( NPARMS )
*          The values of LDA, the leading dimension of all matrices,
*          to be tested.
*
*  TIMMIN  (input) REAL
*          The minimum time a subroutine will be timed.
*
*  NOUT    (input) INTEGER
*          If NOUT > 0 then NOUT specifies the unit number
*          on which the output will be printed.  If NOUT <= 0, no
*          output is printed.
*
*  ISEED   (input/output) INTEGER array, dimension( 4 )
*          The random seed used by the random number generator, used
*          by the test matrix generator.  It is used and updated on
*          each call to CTIM22
*
*  A       (workspace) COMPLEX array, dimension( max(NN)*max(LDAS) )
*          The original matrix to be tested.
*
*  D       (workspace) REAL array, dimension( max(NN) )
*          The diagonal of the tridiagonal generated by CHETRD/HTRIDI.
*
*  E       (workspace) REAL array, dimension( max(NN) )
*          The off-diagonal of the tridiagonal generated by
*          CHETRD/HTRIDI.
*
*  E2      (workspace) REAL array, dimension( max(NN) )
*          The diagonal of a positive definite tridiagonal matrix
*          sent to CPTEQR.  The off-diagonal is in array E.
*
*  U       (workspace) COMPLEX array, dimension( max(NN)*max(LDAS) )
*          The array of Householder vectors output by CHETRD.  This
*          array is used only when URE and UIM are not; thus, on
*          nearly all computers, URE may be EQUIVALENCEd with the
*          first half of U in the main (calling) routine, and UIM with
*          the second half, although this is a violation of the
*          FORTRAN-77 standard.
*
*  URE     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          The array of the real parts of Householder vectors output by
*          HTRIDI.  This array is used only when U is not -- see the
*          note description of U.
*
*  UIM     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          The array of the imaginary parts of Householder vectors
*          output by HTRIDI.  This array is used only when U is not --
*          see the description of U.
*
*  TAU     (workspace) COMPLEX array, dimension( max(NN) )
*          The vector of coefficients for the Householder
*          transformations output by CHETRD.  This array is used only
*          when TAURE is not; thus, on nearly all computers, TAURE may
*          be EQUIVALENCEd with TAU in the main (calling) routine,
*          although this is a violation of the FORTRAN-77 standard.
*
*  TAURE   (workspace) REAL array, dimension( 2*max(NN) )
*          The vector of complex (modulus 1) factors output by HTRIDI.
*          This vector is used only when TAU is not -- see the
*          description of TAU.
*
*  Z       (workspace) COMPLEX array, dimension( max(NN)*max(LDAS) )
*          Various output arrays.  This array is used only when ZRE
*          and ZIM are not; thus, on nearly all computers, ZRE may be
*          EQUIVALENCEd with the first half of Z in the main (calling)
*          routine, and ZIM with the second half, although this is a
*          violation of the FORTRAN-77 standard.
*
*  ZRE     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          Various output arrays (real parts).  This array is used
*          only when Z is not -- see the description of Z.
*
*  ZIM     (workspace) REAL array,
*                      dimension( max(NN)*max(LDAS) )
*          Various output arrays (imaginary parts).  This array is
*          used only when Z is not -- see the description of Z.
*
*  WORK    (workspace) COMPLEX array, dimension( LWORK )
*
*  LWORK   (input) INTEGER
*          Number of elements in WORK.  It must be at least
*          max( (NNB + 2 )*LDAS, max(LDAS)*max(LDAS) )
*
*  RWORK   (workspace) REAL array, dimension
*                   ( max( 6*max(LDAS), NSIZES*NTYPES*NPARMS ),
*                     ( 1 + 3 * M + 2 * M * lg M + 3 * M**2 ) ),
*          where  M = max(lDAS), and lg M is the smallest integer k
*          such that 2^k >= N.
*          This should *not* be equivalenced to other arrays.
*
*  LLWORK  (workspace) LOGICAL array, dimension( NPARMS )
*
*  IWORK   (workspace) INTEGER array, dimension max( 5*max(LDAS),
*          ( 6 + 6*M + 5 * M * lg M ) ).
*
*  TIMES   (workspace) REAL array,
*                      dimension (LDT1,LDT2,LDT3,NSUBS)
*          TIMES(i,j,k,l) will be set to the run time (in seconds) for
*          subroutine l, with N=NN(k), matrix type j, and LDA=LDAS(i),
*          NBLOCK=NNB(i).
*
*  LDT1    (input) INTEGER
*          The first dimension of TIMES.  LDT1 >= min( 1, NPARMS ).
*
*  LDT2    (input) INTEGER
*          The second dimension of TIMES.  LDT2 >= min( 1, NTYPES ).
*
*  LDT3    (input) INTEGER
*          The third dimension of TIMES.  LDT3 >= min( 1, NSIZES ).
*
*  OPCNTS  (output) REAL array,
*                   dimension (LDO1,LDO2,LDO3,NSUBS)
*          OPCNTS(i,j,k,l) will be set to the number of floating-point
*          operations executed by subroutine l, with N=NN(k), matrix
*          type j, and LDA=LDAS(i), NBLOCK=NNB(i).
*
*  LDO1    (input) INTEGER
*          The first dimension of OPCNTS.  LDO1 >= min( 1, NPARMS ).
*
*  LDO2    (input) INTEGER
*          The second dimension of OPCNTS.  LDO2 >= min( 1, NTYPES ).
*
*  LDO3    (input) INTEGER
*          The third dimension of OPCNTS.  LDO3 >= min( 1, NSIZES ).
*
*  INFO    (output) INTEGER
*          Error flag.  It will be set to zero if no error occurred.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXTYP, NSUBS
      PARAMETER          ( MAXTYP = 4, NSUBS = 12 )
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            RUNHTR, RUNTRD
      CHARACTER          UPLO
      INTEGER            I, IC, IINFO, IL, ILWORK, IMODE, IN, INFSOK,
     $                   IPAR, ISUB, ITYPE, IU, J, J1, J2, J3, J4,
     $                   LASTL, LDA, LDU, LGN, LIWEDC, LIWEVR, LRWEDC,
     $                   LWEDC, LWEVR, M, MTYPES, N, NANSOK, NB, NSPLIT
      REAL               ABSTOL, S1, S2, TIME, ULP, ULPINV, UNTIME, VL,
     $                   VU
*     ..
*     .. Local Arrays ..
      LOGICAL            TIMSUB( NSUBS )
      CHARACTER*4        PNAMES( 4 )
      CHARACTER*20       SUBNAM( NSUBS )
      INTEGER            IDUMMA( 1 ), INPARM( NSUBS ), IOLDSD( 4 ),
     $                   KMODE( MAXTYP )
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      REAL               SECOND, SLAMCH, SOPLA
      EXTERNAL           ILAENV, SECOND, SLAMCH, SOPLA
*     ..
*     .. External Subroutines ..
      EXTERNAL           ATIMIN, CHETRD, CLACPY, CLATMS, CPTEQR, CSTEDC, 
     $                   CSTEGR, CSTEIN, CSTEQR, CUNGTR, CUNMTR, HTRIBK, 
     $                   HTRIDI, IMTQL1, IMTQL2, SCOPY, SLASET, SPRTBE, 
     $                   SSTEBZ, XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, INT, LOG, MAX, MIN, REAL
*     ..
*     .. Common blocks ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. Scalars in Common ..
      REAL               ITCNT, OPS
*     ..
*     .. Data statements ..
      DATA               SUBNAM / 'CHETRD', 'CSTEQR(N)',
     $                   'CUNGTR+CSTEQR(V)', 'CPTEQR(N)',
     $                   'CUNGTR+CPTEQR(V)', 'SSTEBZ+CSTEIN+CUNMTR',
     $                   'CUNGTR+CSTEDC(V)', 'CSTEDC(I)+CUNMTR',
     $                   'CSTEGR(V)', 'HTRIDI', 'IMTQL1',
     $                   'IMTQL2+HTRIBK' /
      DATA               INPARM / 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1 /
      DATA               PNAMES / 'LDA', 'NB', 'bad1', 'bad2' /
      DATA               KMODE / 4, 3, 1, 5 /
*     ..
*     .. Executable Statements ..
*
*
*     Extract the timing request from the input line.
*
      CALL ATIMIN( 'CST', LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
*
*     Disable timing of CSTEGR if we're non-IEEE-754 compliant.
*
      NANSOK = ILAENV( 10, 'CSTEGR', ' ', 0, 0, 0, 0 )
      INFSOK = ILAENV( 11, 'CSTEGR', ' ', 0, 0, 0, 0 )
      IF( NANSOK.NE.1 .OR. INFSOK.NE.1 )  THEN
         TIMSUB(9) = .FALSE.
      END IF
*
      IF( INFO.NE.0 )
     $   RETURN
*
*     Check that N <= LDA for the input values.
*
      DO 20 J2 = 1, NSIZES
         DO 10 J1 = 1, NPARMS
            IF( NN( J2 ).GT.LDAS( J1 ) ) THEN
               INFO = -8
               WRITE( NOUT, FMT = 9999 )LINE( 1: 6 )
 9999          FORMAT( 1X, A, ' timing run not attempted -- N > LDA',
     $               / )
               RETURN
            END IF
   10    CONTINUE
   20 CONTINUE
*
*     Check LWORK
*
      ILWORK = 0
      DO 30 J1 = 1, NPARMS
         ILWORK = MAX( ILWORK, ( NNB( J1 )+2 )*LDAS( J1 ) )
   30 CONTINUE
      IF( ILWORK.GT.LWORK ) THEN
         INFO = -18
         WRITE( NOUT, FMT = 9998 )LINE( 1: 6 )
 9998    FORMAT( 1X, A, ' timing run not attempted -- LWORK too small.',
     $         / )
         RETURN
      END IF
*
*     Check to see whether CHETRD must be run.
*
*     RUNTRD -- if CHETRD must be run.
*
      RUNTRD = .FALSE.
      IF( TIMSUB( 2 ) .OR. TIMSUB( 3 ) .OR. TIMSUB( 4 ) .OR.
     $    TIMSUB( 5 ) .OR. TIMSUB( 6 ) .OR. TIMSUB( 7 ) .OR.
     $    TIMSUB( 8 ) .OR. TIMSUB( 9 ) ) 
     $   RUNTRD = .TRUE.
*
*     Check to see whether HTRIDI must be run.
*
*     RUNHTR -- if HTRIDI must be run.
*
      RUNHTR = .FALSE.
      IF( TIMSUB( 10 ) .OR. TIMSUB( 11 ) .OR. TIMSUB( 12 ) )
     $   RUNHTR = .TRUE.
*
*     Various Constants
*
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
      ULPINV = ONE / ULP
      CALL XLAENV( 9, 25 )
*
*     Zero out OPCNTS, TIMES
*
      DO 70 J4 = 1, NSUBS
         DO 60 J3 = 1, NSIZES
            DO 50 J2 = 1, NTYPES
               DO 40 J1 = 1, NPARMS
                  OPCNTS( J1, J2, J3, J4 ) = ZERO
                  TIMES( J1, J2, J3, J4 ) = ZERO
   40          CONTINUE
   50       CONTINUE
   60    CONTINUE
   70 CONTINUE
*
*     Do for each value of N:
*
      DO 650 IN = 1, NSIZES
*
         N = NN( IN )
         IF( N.GT.0 ) THEN
            LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
            IF( 2**LGN.LT.N )
     $         LGN = LGN + 1
            IF( 2**LGN.LT.N )
     $         LGN = LGN + 1
            LWEDC = 1 + 4*N + 2*N*LGN + 3*N**2
            LRWEDC = 1 + 3*N + 2*N*LGN + 3*N**2
            LIWEDC = 6 + 6*N + 5*N*LGN
            LWEVR = 18*N
            LIWEVR = 10*N
         ELSE
            LWEDC = 8
            LRWEDC = 7
            LIWEDC = 12
            LWEVR = 1
            LIWEVR = 1
         END IF
*
*        Do for each .TRUE. value in DOTYPE:
*
         MTYPES = MIN( MAXTYP, NTYPES )
         IF( NTYPES.EQ.MAXTYP+1 .AND. NSIZES.EQ.1 )
     $      MTYPES = NTYPES
         DO 640 ITYPE = 1, MTYPES
            IF( .NOT.DOTYPE( ITYPE ) )
     $         GO TO 640
*
*           Save random number seed for error messages
*
            DO 80 J = 1, 4
               IOLDSD( J ) = ISEED( J )
   80       CONTINUE
*
*-----------------------------------------------------------------------
*
*           Time the LAPACK Routines
*
*           Generate A
*
            UPLO = 'L'
            IF( ITYPE.LE.MAXTYP ) THEN
               IMODE = KMODE( ITYPE )
               CALL CLATMS( N, N, 'S', ISEED, 'S', RWORK, IMODE, ULPINV,
     $                      ONE, N, N, UPLO, A, N, WORK, IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUT, FMT = 9997 )'CLATMS', IINFO, N, ITYPE,
     $               0, IOLDSD
                  INFO = ABS( IINFO )
                  GO TO 640
               END IF
            END IF
*
*           Time CHETRD for each pair NNB(j), LDAS(j)
*
            IF( TIMSUB( 1 ) ) THEN
               DO 110 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = MIN( N, NNB( IPAR ) )
                  CALL XLAENV( 1, NB )
                  CALL XLAENV( 2, 2 )
                  CALL XLAENV( 3, NB )
*
*                 Time CHETRD
*
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
   90             CONTINUE
                  CALL CLACPY( UPLO, N, N, A, N, U, LDA )
                  CALL CHETRD( UPLO, N, U, LDA, D, E, TAU, WORK, LWORK,
     $                         IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 1 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 190
                  END IF
*
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 90
*
*                 Subtract the time used in CLACPY.
*
                  S1 = SECOND( )
                  DO 100 J = 1, IC
                     CALL CLACPY( UPLO, N, N, A, N, Z, LDA )
  100             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
*
                  TIMES( IPAR, ITYPE, IN, 1 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 1 ) = SOPLA( 'CHETRD', N, 0,
     $               0, 0, NB )
                  LDU = LDA
  110          CONTINUE
            ELSE
               IF( RUNTRD ) THEN
                  CALL CLACPY( UPLO, N, N, A, N, U, N )
                  CALL CHETRD( UPLO, N, U, N, D, E, TAU, WORK, LWORK,
     $                         IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 1 ), IINFO, N,
     $                  ITYPE, 0, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 190
                  END IF
                  LDU = N
               END IF
            END IF
*
*           Time CSTEQR for each distinct LDA=LDAS(j)
*
            IF( TIMSUB( 2 ) ) THEN
               DO 150 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 120 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  120             CONTINUE
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time CSTEQR with VECT='N'
*
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  130                CONTINUE
                     CALL SCOPY( N, D, 1, RWORK, 1 )
                     CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                     CALL CSTEQR( 'N', N, RWORK, RWORK( LDA+1 ), Z, LDA,
     $                            RWORK( 2*LDA+1 ), IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 2 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 150
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 130
*
*                    Subtract the time used in SCOPY.
*
                     S1 = SECOND( )
                     DO 140 J = 1, IC
                        CALL SCOPY( N, D, 1, RWORK, 1 )
                        CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
  140                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 2 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 2 ) = OPS / REAL( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 2 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 2 )
                     TIMES( IPAR, ITYPE, IN, 2 ) = TIMES( LASTL, ITYPE,
     $                  IN, 2 )
                  END IF
  150          CONTINUE
            END IF
*
*           Time CUNGTR + CSTEQR(VECT='V') for each pair NNB(j), LDAS(j)
*
            IF( TIMSUB( 3 ) ) THEN
               DO 180 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = MIN( N, NNB( IPAR ) )
                  CALL XLAENV( 1, NB )
                  CALL XLAENV( 2, 2 )
                  CALL XLAENV( 3, NB )
*
*                 Time CUNGTR + CSTEQR
*
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
  160             CONTINUE
                  CALL CLACPY( 'L', N, N, A, N, Z, LDA )
                  CALL CUNGTR( 'L', N, Z, LDA, TAU, WORK, LWORK, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )'CUNGTR', IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 180
                  END IF
                  CALL SCOPY( N, D, 1, RWORK, 1 )
                  CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                  CALL CSTEQR( 'V', N, RWORK, RWORK( LDA+1 ), Z, LDA,
     $                         RWORK( 2*LDA+1 ), IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 3 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 180
                  END IF
*
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 160
*
*                 Subtract the time used in CLACPY.
*
                  S1 = SECOND( )
                  DO 170 J = 1, IC
                     CALL SCOPY( N, D, 1, RWORK, 1 )
                     CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                     CALL CLACPY( 'L', N, N, A, N, Z, LDA )
  170             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
*
                  TIMES( IPAR, ITYPE, IN, 3 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 3 ) = OPS / REAL( IC )
                  LDU = LDA
  180          CONTINUE
            END IF
*
  190       CONTINUE
*
*           Time CPTEQR for each distinct LDA=LDAS(j)
*
            IF( TIMSUB( 4 ) ) THEN
               DO 240 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 200 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  200             CONTINUE
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time CPTEQR with VECT='N'
*
*
*                    Modify the tridiagonal matrix to make it
*                    positive definite.
                     E2( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
                     DO 210 I = 2, N - 1
                        E2( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
     $                            ABS( E( I-1 ) )
  210                CONTINUE
                     E2( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  220                CONTINUE
                     CALL SCOPY( N, E2, 1, RWORK( 1 ), 1 )
                     CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                     CALL CPTEQR( 'N', N, RWORK, RWORK( LDA+1 ), Z, LDA,
     $                            RWORK( 2*LDA+1 ), IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 4 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 240
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 220
*
*                    Subtract the time used in SCOPY.
*
                     S1 = SECOND( )
                     DO 230 J = 1, IC
                        CALL SCOPY( N, E2, 1, RWORK, 1 )
                        CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
  230                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 4 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 4 ) = OPS / REAL( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 4 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 4 )
                     TIMES( IPAR, ITYPE, IN, 4 ) = TIMES( LASTL, ITYPE,
     $                  IN, 4 )
                  END IF
  240          CONTINUE
            END IF
*
*           Time CUNGTR + CPTEQR(VECT='V') for each pair NNB(j), LDAS(j)
*
            IF( TIMSUB( 5 ) ) THEN
               DO 290 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = MIN( N, NNB( IPAR ) )
                  CALL XLAENV( 1, NB )
                  CALL XLAENV( 2, 2 )
                  CALL XLAENV( 3, NB )
*
*                 Time CUNGTR + CPTEQR
*
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
  250             CONTINUE
                  CALL CLACPY( 'L', N, N, A, N, Z, LDA )
                  CALL CUNGTR( 'L', N, Z, LDA, TAU, WORK, LWORK, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )'CUNGTR', IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 290
                  END IF
*
*                 Modify the tridiagonal matrix to make it
*                 positive definite.
                  E2( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
                  DO 260 I = 2, N - 1
                     E2( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
     $                         ABS( E( I-1 ) )
  260             CONTINUE
                  E2( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
*
                  CALL SCOPY( N, E2, 1, RWORK, 1 )
                  CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                  CALL CPTEQR( 'V', N, RWORK, RWORK( LDA+1 ), Z, LDA,
     $                         RWORK( 2*LDA+1 ), IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 5 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 290
                  END IF
*
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 250
*
*                 Subtract the time used in CLACPY.
*
                  S1 = SECOND( )
                  DO 280 J = 1, IC
                     E2( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
                     DO 270 I = 2, N - 1
                        E2( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
     $                            ABS( E( I-1 ) )
  270                CONTINUE
                     E2( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
*
                     CALL SCOPY( N, E2, 1, RWORK, 1 )
                     CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                     CALL CLACPY( 'L', N, N, A, N, Z, LDA )
  280             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
*
                  TIMES( IPAR, ITYPE, IN, 5 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 5 ) = OPS / REAL( IC )
                  LDU = LDA
  290          CONTINUE
            END IF
*
*           Time SSTEBZ+CSTEIN+CUNMTR for each pair NNB(j), LDAS(j)
*
            IF( TIMSUB( 6 ) ) THEN
               VL = ZERO
               VU = ZERO
               IL = 1
               IU = N
               ABSTOL = ZERO
               DO 310 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = MIN( N, NNB( IPAR ) )
                  CALL XLAENV( 1, NB )
                  CALL XLAENV( 2, 2 )
*
*                 Time SSTEBZ + CSTEIN + CUNMTR
*
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
  300             CONTINUE
*
                  CALL SSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, D,
     $                         E, M, NSPLIT, RWORK( 1 ), IWORK( 1 ),
     $                         IWORK( N+1 ), RWORK( 2*N+1 ),
     $                         IWORK( 2*N+1 ), IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )'SSTEBZ', IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 310
                  END IF
*
                  CALL CSTEIN( N, D, E, N, RWORK( 1 ), IWORK( 1 ),
     $                         IWORK( N+1 ), Z, LDA, RWORK( N+1 ),
     $                         IWORK( 2*N+1 ), IWORK( 3*N+1 ), IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 6 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 310
                  END IF
*
                  CALL CUNMTR( 'L', 'L', 'N', N, N, U, LDU, TAU, Z, LDA,
     $                         WORK, LWORK, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )'CUNMTR', IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 310
                  END IF
*
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 300
                  UNTIME = ZERO
*
                  TIMES( IPAR, ITYPE, IN, 6 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 6 ) = OPS / REAL( IC )
                  LDU = LDA
  310          CONTINUE
            END IF
*
*           Time CUNGTR + CSTEDC(COMPQ='V') for each pair NNB(j),
*           LDAS(j)
*
            IF( TIMSUB( 7 ) ) THEN
               DO 340 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = MIN( N, NNB( IPAR ) )
                  CALL XLAENV( 1, NB )
                  CALL XLAENV( 2, 2 )
                  CALL XLAENV( 3, NB )
*
*                 Time CUNGTR + CSTEDC
*
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
  320             CONTINUE
                  CALL CLACPY( 'L', N, N, A, N, Z, LDA )
                  CALL CUNGTR( 'L', N, Z, LDA, TAU, WORK, LWORK, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )'CUNGTR', IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 340
                  END IF
                  CALL SCOPY( N, D, 1, RWORK, 1 )
                  CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                  CALL CSTEDC( 'V', N, RWORK, RWORK( LDA+1 ), Z, LDA,
     $                         WORK, LWEDC, RWORK( 2*LDA+1 ), LRWEDC,
     $                         IWORK, LIWEDC, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 7 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 340
                  END IF
*
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 320
*
*                 Subtract the time used in CLACPY.
*
                  S1 = SECOND( )
                  DO 330 J = 1, IC
                     CALL SCOPY( N, D, 1, RWORK, 1 )
                     CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                     CALL CLACPY( 'L', N, N, A, N, Z, LDA )
  330             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
*
                  TIMES( IPAR, ITYPE, IN, 7 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 7 ) = OPS / REAL( IC )
                  LDU = LDA
  340          CONTINUE
            END IF
*
*           Time CSTEDC(COMPQ='I') + CUNMTR for each pair NNB(j),
*           LDAS(j)
*
            IF( TIMSUB( 8 ) ) THEN
               DO 370 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = MIN( N, NNB( IPAR ) )
                  CALL XLAENV( 1, NB )
                  CALL XLAENV( 2, 2 )
                  CALL XLAENV( 3, NB )
*
*                 Time  CSTEDC + CUNMTR
*
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
  350             CONTINUE
                  CALL SCOPY( N, D, 1, RWORK, 1 )
                  CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                  CALL CSTEDC( 'I', N, RWORK, RWORK( LDA+1 ), Z, LDA,
     $                         WORK, LWEDC, RWORK( 2*LDA+1 ), LRWEDC,
     $                         IWORK, LIWEDC, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 8 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 370
                  END IF
*
                  CALL CUNMTR( 'L', 'L', 'N', N, N, U, LDU, TAU, Z, LDA,
     $                         WORK, LWORK, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )'CUNMTR', IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 370
                  END IF
*
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 350
*
*                 Subtract the time used in SCOPY.
*
                  S1 = SECOND( )
                  DO 360 J = 1, IC
                     CALL SCOPY( N, D, 1, RWORK, 1 )
                     CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
  360             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
*
                  TIMES( IPAR, ITYPE, IN, 8 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 8 ) = OPS / REAL( IC )
                  LDU = LDA
  370          CONTINUE
            END IF
*
*           Time CSTEGR(COMPQ='V') for each pair NNB(j), LDAS(j)
*
            IF( TIMSUB( 9 ) ) THEN
               DO 400 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = MIN( N, NNB( IPAR ) )
                  CALL XLAENV( 1, NB )
                  CALL XLAENV( 2, 2 )
                  CALL XLAENV( 3, NB )
*
                  ABSTOL = ZERO
                  VL = ZERO
                  VU = ZERO
                  IL = 1
                  IU = N
                  IC = 0
                  OPS = ZERO
                  S1 = SECOND( )
  380             CONTINUE
                  CALL SCOPY( N, D, 1, RWORK, 1 )
                  CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                  CALL CSTEGR( 'V', 'A', N, RWORK, RWORK( LDA+1 ),
     $                         VL, VU, IL, IU, ABSTOL, M,
     $                         RWORK( 2*LDA+1 ), Z, LDA, IWORK,
     $                         RWORK( 3*LDA+1 ), LWEVR,
     $                         IWORK( 2*LDA+1 ), LIWEVR, INFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUT, FMT = 9997 )SUBNAM( 9 ), IINFO, N,
     $                  ITYPE, IPAR, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 400
                  END IF
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN )
     $               GO TO 380
*
*                 Subtract the time used in SCOPY.
*
                  S1 = SECOND( )
                  DO 390 J = 1, IC
                     CALL SCOPY( N, D, 1, RWORK, 1 )
                     CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
  390             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
*
                  TIMES( IPAR, ITYPE, IN, 9 ) = MAX( TIME-UNTIME,
     $               ZERO ) / REAL( IC )
                  OPCNTS( IPAR, ITYPE, IN, 9 ) = OPS / REAL( IC )
  400          CONTINUE
            END IF
*
*-----------------------------------------------------------------------
*
*           Time the EISPACK Routines
*
*           Skip routines if N <= 0 (EISPACK requirement)
*
            IF( N.LE.0 )
     $         GO TO 640
*
*           Time HTRIDI for each LDAS(j)
*
            IF( TIMSUB( 10 ) ) THEN
               DO 480 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 410 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  410             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time HTRIDI
*
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  420                CONTINUE
                     DO 440 J2 = 0, N - 1
                        DO 430 J1 = 1, N
                           URE( J1+LDA*J2 ) = REAL( A( J1+N*J2 ) )
                           UIM( J1+LDA*J2 ) = AIMAG( A( J1+N*J2 ) )
  430                   CONTINUE
  440                CONTINUE
                     CALL HTRIDI( LDA, N, URE, UIM, D, E, RWORK, TAURE )
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 420
*
*                    Subtract the time used in copying A.
*
                     S1 = SECOND( )
                     DO 470 J = 1, IC
                        DO 460 J2 = 0, N - 1
                           DO 450 J1 = 1, N
                              ZRE( J1+LDA*J2 ) = REAL( A( J1+N*J2 ) )
                              ZIM( J1+LDA*J2 ) = AIMAG( A( J1+N*J2 ) )
  450                      CONTINUE
  460                   CONTINUE
  470                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
                     TIMES( IPAR, ITYPE, IN, 10 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 10 ) = OPS / REAL( IC )
                     LDU = LDA
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 10 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 10 )
                     TIMES( IPAR, ITYPE, IN, 10 ) = TIMES( LASTL, ITYPE,
     $                  IN, 10 )
                  END IF
  480          CONTINUE
            ELSE
               IF( RUNHTR ) THEN
                  DO 500 J2 = 0, N - 1
                     DO 490 J1 = 1, N
                        URE( J1+N*J2 ) = REAL( A( J1+N*J2 ) )
                        UIM( J1+N*J2 ) = AIMAG( A( J1+N*J2 ) )
  490                CONTINUE
  500             CONTINUE
                  CALL HTRIDI( N, N, URE, UIM, D, E, RWORK, TAURE )
                  LDU = N
               END IF
            END IF
*
*           Time IMTQL1 for each LDAS(j)
*
            IF( TIMSUB( 11 ) ) THEN
               DO 540 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 510 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  510             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time IMTQL1
*
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  520                CONTINUE
                     CALL SCOPY( N, D, 1, RWORK, 1 )
                     CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                     CALL IMTQL1( N, RWORK, RWORK( LDA+1 ), IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 11 ), IINFO,
     $                     N, ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 550
                     END IF
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 520
*
*                    Subtract the time used in SCOPY
*
                     S1 = SECOND( )
                     DO 530 J = 1, IC
                        CALL SCOPY( N, D, 1, RWORK, 1 )
                        CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
  530                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 11 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 11 ) = OPS / REAL( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 11 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 11 )
                     TIMES( IPAR, ITYPE, IN, 11 ) = TIMES( LASTL, ITYPE,
     $                  IN, 11 )
                  END IF
  540          CONTINUE
            END IF
  550       CONTINUE
*
*           Time IMTQL2 + HTRIBK for each LDAS(j)
*
            IF( TIMSUB( 12 ) ) THEN
               DO 630 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 560 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  560             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Change leading dimension of U
*
                     IF( LDA.GT.LDU ) THEN
                        DO 580 J2 = N - 1, 1, -1
                           DO 570 J1 = N, 1, -1
                              URE( J1+LDA*J2 ) = URE( J1+LDU*J2 )
                              UIM( J1+LDA*J2 ) = UIM( J1+LDU*J2 )
  570                      CONTINUE
  580                   CONTINUE
                        LDU = LDA
                     ELSE IF( LDA.LT.LDU ) THEN
                        DO 600 J2 = 1, N - 1
                           DO 590 J1 = 1, N
                              URE( J1+LDA*J2 ) = URE( J1+LDU*J2 )
                              UIM( J1+LDA*J2 ) = UIM( J1+LDU*J2 )
  590                      CONTINUE
  600                   CONTINUE
                        LDU = LDA
                     END IF
*
*                    Time IMTQL2 + HTRIBK
*
                     IC = 0
                     OPS = ZERO
                     S1 = SECOND( )
  610                CONTINUE
                     CALL SCOPY( N, D, 1, RWORK, 1 )
                     CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                     CALL SLASET( 'Full', N, N, ZERO, ONE, ZRE, LDA )
                     CALL IMTQL2( LDA, N, RWORK, RWORK( LDA+1 ), ZRE,
     $                            IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 12 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 640
                     END IF
                     CALL HTRIBK( LDA, N, URE, UIM, TAURE, N, ZRE, ZIM )
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 610
*
*                    Subtract the time used in copying
*
                     S1 = SECOND( )
                     DO 620 J = 1, IC
                        CALL SCOPY( N, D, 1, RWORK, 1 )
                        CALL SCOPY( N-1, E, 1, RWORK( LDA+1 ), 1 )
                        CALL SLASET( 'Full', N, N, ZERO, ONE, ZRE, LDA )
  620                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 12 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / REAL( IC )
                     OPCNTS( IPAR, ITYPE, IN, 12 ) = OPS / REAL( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 12 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 12 )
                     TIMES( IPAR, ITYPE, IN, 12 ) = TIMES( LASTL, ITYPE,
     $                  IN, 12 )
                  END IF
  630          CONTINUE
            END IF
*
  640    CONTINUE
  650 CONTINUE
*
*-----------------------------------------------------------------------
*
*     Print a table of results for each timed routine.
*
      DO 660 ISUB = 1, NSUBS
         IF( TIMSUB( ISUB ) ) THEN
            CALL SPRTBE( SUBNAM( ISUB ), MTYPES, DOTYPE, NSIZES, NN,
     $                   INPARM( ISUB ), PNAMES, NPARMS, LDAS, NNB,
     $                   IDUMMA, IDUMMA, OPCNTS( 1, 1, 1, ISUB ), LDO1,
     $                   LDO2, TIMES( 1, 1, 1, ISUB ), LDT1, LDT2,
     $                   RWORK, LLWORK, NOUT )
         END IF
  660 CONTINUE
*
 9997 FORMAT( ' CTIM22: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', ITYPE=', I6, ', IPAR=', I6, ', ISEED=(',
     $      3( I5, ',' ), I5, ')' )
*
      RETURN
*
*     End of CTIM22
*
      END