1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
|
SUBROUTINE DTIM26( LINE, NSIZES, NN, MM, NTYPES, DOTYPE, NPARMS,
$ NNB, LDAS, TIMMIN, NOUT, ISEED, A, H, U, VT, D,
$ E, TAUP, TAUQ, WORK, LWORK, IWORK, LLWORK,
$ TIMES, LDT1, LDT2, LDT3, OPCNTS, LDO1, LDO2,
$ LDO3, INFO )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER*80 LINE
INTEGER INFO, LDO1, LDO2, LDO3, LDT1, LDT2, LDT3,
$ LWORK, NOUT, NPARMS, NSIZES, NTYPES
DOUBLE PRECISION TIMMIN
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * ), LLWORK( * )
INTEGER ISEED( * ), IWORK( * ), LDAS( * ), MM( * ),
$ NN( * ), NNB( * )
DOUBLE PRECISION A( * ), D( * ), E( * ), H( * ),
$ OPCNTS( LDO1, LDO2, LDO3, * ), TAUP( * ),
$ TAUQ( * ), TIMES( LDT1, LDT2, LDT3, * ),
$ U( * ), VT( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DTIM26 times the LAPACK routines for the DOUBLE PRECISION
* singular value decomposition.
*
* For each N value in NN(1:NSIZES), M value in MM(1:NSIZES),
* and .TRUE. value in DOTYPE(1:NTYPES), a matrix will be generated
* and used to test the selected routines. Thus, NSIZES*(number of
* .TRUE. values in DOTYPE) matrices will be generated.
*
* Arguments
* =========
*
* LINE (input) CHARACTER*80
* On entry, LINE contains the input line which requested
* this routine. This line may contain a subroutine name,
* such as DGEBRD, indicating that only routine SGEBRD will
* be timed, or it may contain a generic name, such as DBD.
* In this case, the rest of the line is scanned for the
* first 11 non-blank characters, corresponding to the eleven
* combinations of subroutine and options:
* LAPACK:
* 1: DGEBRD
* (labeled DGEBRD in the output)
* 2: DBDSQR (singular values only)
* (labeled DBDSQR in the output)
* 3: DBDSQR (singular values and left singular vectors;
* assume original matrix M by N)
* (labeled DBDSQR(L) in the output)
* 4: DBDSQR (singular values and right singular vectors;
* assume original matrix M by N)
* (labeled DBDSQR(R) in the output)
* 5: DBDSQR (singular values and left and right singular
* vectors; assume original matrix M by N)
* (labeled DBDSQR(B) in the output)
* 6: DBDSQR (singular value and multiply square MIN(M,N)
* matrix by transpose of left singular vectors)
* (labeled DBDSQR(V) in the output)
* 7: DGEBRD+DBDSQR (singular values only)
* (labeled LAPSVD in the output)
* 8: DGEBRD+DORGBR+DBDSQR(L) (singular values and min(M,N)
* left singular vectors)
* (labeled LAPSVD(l) in the output)
* 9: DGEBRD+DORGBR+DBDSQR(L) (singular values and M left
* singular vectors)
* (labeled LAPSVD(L) in the output)
* 10: DGEBRD+DORGBR+DBDSQR(R) (singular values and N right
* singular vectors)
* (labeled LAPSVD(R) in the output)
* 11: DGEBRD+DORGBR+DBDSQR(B) (singular values and min(M,N)
* left singular vectors and N
* right singular vectors)
* (labeled LAPSVD(B) in the output)
* 12: DBDSDC (singular values and left and right singular
* vectors; assume original matrix min(M,N) by
* min(M,N))
* (labeled DBDSDC(B) in the output)
* 13: DGESDD (singular values and min(M,N) left singular
* vectors and N right singular vectors if M>=N,
* singular values and M left singular vectors
* and min(M,N) right singular vectors otherwise.)
* (labeled DGESDD(B) in the output)
* LINPACK:
* 14: DSVDC (singular values only) (comparable to 7 above)
* (labeled LINSVD in the output)
* 15: DSVDC (singular values and min(M,N) left singular
* vectors) (comparable to 8 above)
* (labeled LINSVD(l) in the output)
* 16: DSVDC (singular values and M left singular vectors)
* (comparable to 9 above)
* (labeled LINSVD(L) in the output)
* 17: DSVDC (singular values and N right singular vectors)
* (comparable to 10 above)
* (labeled LINSVD(R) in the output)
* 18: DSVDC (singular values and min(M,N) left singular
* vectors and N right singular vectors)
* (comparable to 11 above)
* (labeled LINSVD(B) in the output)
*
* If a character is 'T' or 't', the corresponding routine in
* this path is timed. If the entire line is blank, all the
* routines in the path are timed.
*
* NSIZES (input) INTEGER
* The number of values of N contained in the vector NN.
*
* NN (input) INTEGER array, dimension( NSIZES )
* The numbers of columns of the matrices to be tested. For
* each N value in the array NN, and each .TRUE. value in
* DOTYPE, a matrix A will be generated and used to test the
* routines.
*
* MM (input) INTEGER array, dimension( NSIZES )
* The numbers of rows of the matrices to be tested. For
* each M value in the array MM, and each .TRUE. value in
* DOTYPE, a matrix A will be generated and used to test the
* routines.
*
* NTYPES (input) INTEGER
* The number of types in DOTYPE. Only the first MAXTYP
* elements will be examined. Exception: if NSIZES=1 and
* NTYPES=MAXTYP+1, and DOTYPE=MAXTYP*f,t, then the input
* value of A will be used.
*
* DOTYPE (input) LOGICAL
* If DOTYPE(j) is .TRUE., then a matrix of type j will be
* generated as follows:
* j=1: A = U*D*V where U and V are random orthogonal
* matrices and D has evenly spaced entries 1,...,ULP
* with random signs on the diagonal
* j=2: A = U*D*V where U and V are random orthogonal
* matrices and D has geometrically spaced entries
* 1,...,ULP with random signs on the diagonal
* j=3: A = U*D*V where U and V are random orthogonal
* matrices and D has "clustered" entries
* 1,ULP,...,ULP with random signs on the diagonal
* j=4: A contains uniform random numbers from [-1,1]
* j=5: A is a special nearly bidiagonal matrix, where the
* upper bidiagonal entries are exp(-2*r*log(ULP))
* and the nonbidiagonal entries are r*ULP, where r
* is a uniform random number from [0,1]
*
* NPARMS (input) INTEGER
* The number of values in each of the arrays NNB and LDAS.
* For each matrix A generated according to NN, MM and DOTYPE,
* tests will be run with (NB,,LDA)= (NNB(1), LDAS(1)),...,
* (NNB(NPARMS), LDAS(NPARMS)).
*
* NNB (input) INTEGER array, dimension( NPARMS )
* The values of the blocksize ("NB") to be tested.
*
* LDAS (input) INTEGER array, dimension( NPARMS )
* The values of LDA, the leading dimension of all matrices,
* to be tested.
*
* TIMMIN (input) DOUBLE PRECISION
* The minimum time a subroutine will be timed.
*
* NOUT (input) INTEGER
* If NOUT > 0 then NOUT specifies the unit number
* on which the output will be printed. If NOUT <= 0, no
* output is printed.
*
* ISEED (input/output) INTEGER array, dimension( 4 )
* The random seed used by the random number generator, used
* by the test matrix generator. It is used and updated on
* each call to DTIM26.
*
* A (workspace) DOUBLE PRECISION array,
* dimension( max(NN)*max(LDAS))
* During the testing of DGEBRD, the original dense matrix.
*
* H (workspace) DOUBLE PRECISION array,
* dimension( max(NN)*max(LDAS))
* The Householder vectors used to reduce A to bidiagonal
* form (as returned by DGEBD2.)
*
* U (workspace) DOUBLE PRECISION array,
* dimension( max(NN,MM)*max(LDAS) )
* The left singular vectors of the original matrix.
*
* VT (workspace) DOUBLE PRECISION array,
* dimension( max(NN,MM)*max(LDAS) )
* The right singular vectors of the original matrix.
*
* D (workspace) DOUBLE PRECISION array, dimension( max(NN,MM) )
* Diagonal entries of bidiagonal matrix to which A
* is reduced.
*
* E (workspace) DOUBLE PRECISION array, dimension( max(NN,MM) )
* Offdiagonal entries of bidiagonal matrix to which A
* is reduced.
*
* TAUP (workspace) DOUBLE PRECISION array, dimension( max(NN,MM) )
* The coefficients for the Householder transformations
* applied on the right to reduce A to bidiagonal form.
*
* TAUQ (workspace) DOUBLE PRECISION array, dimension( max(NN,MM) )
* The coefficients for the Householder transformations
* applied on the left to reduce A to bidiagonal form.
*
* WORK (workspace) DOUBLE PRECISION array, dimension( LWORK )
*
* LWORK (input) INTEGER
* Number of elements in WORK. Must be at least
* MAX(6*MIN(M,N),3*MAX(M,N),NSIZES*NPARMS*NTYPES)
*
* IWORK (workspace) INTEGER array, dimension at least 8*min(M,N).
*
* LLWORK (workspace) LOGICAL array, dimension( NPARMS ),
*
* TIMES (output) DOUBLE PRECISION array,
* dimension (LDT1,LDT2,LDT3,NSUBS)
* TIMES(i,j,k,l) will be set to the run time (in seconds) for
* subroutine/path l, with N=NN(k), M=MM(k), matrix type j,
* LDA=LDAS(i), and NBLOCK=NNB(i).
*
* LDT1 (input) INTEGER
* The first dimension of TIMES. LDT1 >= min( 1, NPARMS ).
*
* LDT2 (input) INTEGER
* The second dimension of TIMES. LDT2 >= min( 1, NTYPES ).
*
* LDT3 (input) INTEGER
* The third dimension of TIMES. LDT3 >= min( 1, NSIZES ).
*
* OPCNTS (output) DOUBLE PRECISION array,
* dimension (LDO1,LDO2,LDO3,NSUBS)
* OPCNTS(i,j,k,l) will be set to the number of floating-point
* operations executed by subroutine/path l, with N=NN(k),
* M=MM(k), matrix type j, LDA=LDAS(i), and NBLOCK=NNB(i).
*
* LDO1 (input) INTEGER
* The first dimension of OPCNTS. LDO1 >= min( 1, NPARMS ).
*
* LDO2 (input) INTEGER
* The second dimension of OPCNTS. LDO2 >= min( 1, NTYPES ).
*
* LDO3 (input) INTEGER
* The third dimension of OPCNTS. LDO3 >= min( 1, NSIZES ).
*
* INFO (output) INTEGER
* Error flag. It will be set to zero if no error occurred.
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXTYP, NSUBS
PARAMETER ( MAXTYP = 5, NSUBS = 18 )
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
* ..
* .. Local Scalars ..
LOGICAL RUNBRD, TRNBRD
CHARACTER UPLO
INTEGER IC, IINFO, IMODE, IN, IPAR, ISUB, ITYPE, J, J1,
$ J2, J3, J4, KU, KVT, LASTNL, LDA, LDH, M,
$ MINMN, MTYPES, N, NB
DOUBLE PRECISION CONDS, ESUM, S1, S2, TIME, ULP, ULPINV, UNTIME
* ..
* .. Local Arrays ..
LOGICAL TIMSUB( NSUBS )
CHARACTER*4 PNAMES( 2 )
CHARACTER*9 SUBNAM( NSUBS )
INTEGER INPARM( NSUBS ), IOLDSD( 4 ), JDUM( 1 ),
$ KMODE( 3 )
DOUBLE PRECISION DUM( 1 )
* ..
* .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH, DLARND, DOPLA, DSECND, DOPLA2
EXTERNAL DASUM, DLAMCH, DLARND, DOPLA, DSECND, DOPLA2
* ..
* .. External Subroutines ..
EXTERNAL ATIMIN, DBDSDC, DBDSQR, DCOPY, DGEBRD, DGESDD,
$ DLACPY, DLASET, DLATMR, DLATMS, DORGBR, DPRTBV,
$ DSVDC, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, EXP, LOG, MAX, MIN
* ..
* .. Common blocks ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
DOUBLE PRECISION ITCNT, OPS
* ..
* .. Data statements ..
DATA SUBNAM / 'DGEBRD', 'DBDSQR', 'DBDSQR(L)',
$ 'DBDSQR(R)', 'DBDSQR(B)', 'DBDSQR(V)',
$ 'LAPSVD', 'LAPSVD(l)', 'LAPSVD(L)',
$ 'LAPSVD(R)', 'LAPSVD(B)', 'DBDSDC(B)',
$ 'DGESDD(B)', 'LINSVD', 'LINSVD(l)',
$ 'LINSVD(L)', 'LINSVD(R)', 'LINSVD(B)' /
DATA INPARM / 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2,
$ 1, 1, 1, 1, 1 /
DATA PNAMES / 'LDA', 'NB' /
DATA KMODE / 4, 3, 1 /
* ..
* .. Executable Statements ..
*
*
* Extract the timing request from the input line.
*
CALL ATIMIN( 'DBD', LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
IF( INFO.NE.0 )
$ RETURN
*
* Check LWORK and
* Check that N <= LDA and M <= LDA for the input values.
*
DO 20 J2 = 1, NSIZES
IF( LWORK.LT.MAX( 6*MIN( MM( J2 ), NN( J2 ) ), 3*MAX( MM( J2 ),
$ NN( J2 ) ), NSIZES*NPARMS*NTYPES ) ) THEN
INFO = -22
WRITE( NOUT, FMT = 9999 )LINE( 1: 6 )
RETURN
END IF
DO 10 J1 = 1, NPARMS
IF( MAX( NN( J2 ), MM( J2 ) ).GT.LDAS( J1 ) ) THEN
INFO = -9
WRITE( NOUT, FMT = 9999 )LINE( 1: 6 )
9999 FORMAT( 1X, A, ' timing run not attempted', / )
RETURN
END IF
10 CONTINUE
20 CONTINUE
*
* Check to see whether DGEBRD must be run.
*
* RUNBRD -- if DGEBRD must be run without timing.
* TRNBRD -- if DGEBRD must be run with timing.
*
RUNBRD = .FALSE.
TRNBRD = .FALSE.
IF( TIMSUB( 2 ) .OR. TIMSUB( 3 ) .OR. TIMSUB( 4 ) .OR.
$ TIMSUB( 5 ) .OR. TIMSUB( 6 ) )RUNBRD = .TRUE.
IF( TIMSUB( 1 ) )
$ RUNBRD = .FALSE.
IF( TIMSUB( 7 ) .OR. TIMSUB( 8 ) .OR. TIMSUB( 9 ) .OR.
$ TIMSUB( 10 ) .OR. TIMSUB( 11 ) )TRNBRD = .TRUE.
*
* Various Constants
*
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
ULPINV = ONE / ULP
CALL XLAENV( 9, 25 )
*
* Zero out OPCNTS, TIMES
*
DO 60 J4 = 1, NSUBS
DO 50 J3 = 1, NSIZES
DO 40 J2 = 1, NTYPES
DO 30 J1 = 1, NPARMS
OPCNTS( J1, J2, J3, J4 ) = ZERO
TIMES( J1, J2, J3, J4 ) = ZERO
30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE
*
* Do for each value of N:
*
DO 750 IN = 1, NSIZES
*
N = NN( IN )
M = MM( IN )
MINMN = MIN( M, N )
IF( M.GE.N ) THEN
UPLO = 'U'
KU = MINMN
KVT = MAX( MINMN-1, 0 )
ELSE
UPLO = 'L'
KU = MAX( MINMN-1, 0 )
KVT = MINMN
END IF
*
* Do for each .TRUE. value in DOTYPE:
*
MTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.EQ.MAXTYP+1 .AND. NSIZES.EQ.1 )
$ MTYPES = NTYPES
DO 740 ITYPE = 1, MTYPES
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 740
*
* Save random number seed for error messages
*
DO 70 J = 1, 4
IOLDSD( J ) = ISEED( J )
70 CONTINUE
*
*-----------------------------------------------------------------------
*
* Time the LAPACK Routines
*
* Generate A
*
IF( ITYPE.LE.MAXTYP ) THEN
IF( ITYPE.GE.1 .AND. ITYPE.LE.3 ) THEN
IMODE = KMODE( ITYPE )
CALL DLATMS( M, N, 'U', ISEED, 'N', D, IMODE, ULPINV,
$ ONE, M, N, 'N', A, M, WORK, INFO )
ELSE IF( ITYPE.GE.4 .AND. ITYPE.LE.5 ) THEN
IF( ITYPE.EQ.4 )
$ CONDS = -ONE
IF( ITYPE.EQ.5 )
$ CONDS = ULP
CALL DLATMR( M, N, 'S', ISEED, 'N', D, 6, ZERO, ONE,
$ 'T', 'N', D, 0, ONE, D, 0, ONE, 'N',
$ JDUM, M, N, ZERO, CONDS, 'N', A, M, JDUM,
$ INFO )
IF( ITYPE.EQ.5 ) THEN
CONDS = -TWO*LOG( ULP )
DO 80 J = 1, ( MINMN-1 )*M + MINMN, M + 1
A( J ) = EXP( CONDS*DLARND( 1, ISEED ) )
80 CONTINUE
IF( M.GE.N ) THEN
DO 90 J = M + 1, ( MINMN-1 )*M + MINMN - 1,
$ M + 1
A( J ) = EXP( CONDS*DLARND( 1, ISEED ) )
90 CONTINUE
ELSE
DO 100 J = 2, ( MINMN-2 )*M + MINMN, M + 1
A( J ) = EXP( CONDS*DLARND( 1, ISEED ) )
100 CONTINUE
END IF
END IF
END IF
END IF
*
* Time DGEBRD for each pair NNB(j), LDAS(j)
*
IF( TIMSUB( 1 ) .OR. TRNBRD ) THEN
DO 130 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
CALL XLAENV( 1, NB )
CALL XLAENV( 2, 2 )
CALL XLAENV( 3, NB )
*
* Time DGEBRD
*
IC = 0
OPS = ZERO
S1 = DSECND( )
110 CONTINUE
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
CALL DGEBRD( M, N, H, LDA, D, E, TAUQ, TAUP, WORK,
$ LWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 1 ), IINFO, M, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
*
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 110
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 120 J = 1, IC
CALL DLACPY( 'Full', M, N, A, M, U, LDA )
120 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 1 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 1 ) = DOPLA( 'DGEBRD', M, N,
$ 0, 0, NB )
130 CONTINUE
LDH = LDA
ELSE
IF( RUNBRD ) THEN
CALL DLACPY( 'Full', M, N, A, M, H, M )
CALL DGEBRD( M, N, H, M, D, E, TAUQ, TAUP, WORK,
$ LWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 1 ), IINFO, M, N,
$ ITYPE, 0, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
LDH = M
END IF
END IF
*
* Time DBDSQR (singular values only) for each pair
* NNB(j), LDAS(j)
*
IF( TIMSUB( 2 ) .OR. TIMSUB( 7 ) ) THEN
DO 170 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 140 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
140 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DBDSQR (singular values only)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
150 CONTINUE
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
CALL DBDSQR( UPLO, MINMN, 0, 0, 0, WORK,
$ WORK( MINMN+1 ), VT, LDA, U, LDA, U,
$ LDA, WORK( 2*MINMN+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 2 ), IINFO, M,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 150
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 160 J = 1, IC
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
160 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 2 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 2 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 2 ) = TIMES( LASTNL, ITYPE,
$ IN, 2 )
OPCNTS( IPAR, ITYPE, IN, 2 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 2 )
END IF
170 CONTINUE
END IF
*
* Time DBDSQR (singular values and left singular vectors,
* assume original matrix square) for each pair NNB(j), LDAS(j)
*
IF( TIMSUB( 3 ) .OR. TIMSUB( 8 ) .OR. TIMSUB( 9 ) ) THEN
DO 210 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 180 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
180 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DBDSQR (singular values and left singular
* vectors, assume original matrix square)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
190 CONTINUE
CALL DLASET( 'Full', M, MINMN, ONE, TWO, U, LDA )
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
CALL DBDSQR( UPLO, MINMN, 0, M, 0, WORK,
$ WORK( MINMN+1 ), VT, LDA, U, LDA, U,
$ LDA, WORK( 2*MINMN+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 3 ), IINFO, M,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 190
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 200 J = 1, IC
CALL DLASET( 'Full', M, MINMN, ONE, TWO, U,
$ LDA )
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
200 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 3 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 3 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 3 ) = TIMES( LASTNL, ITYPE,
$ IN, 3 )
OPCNTS( IPAR, ITYPE, IN, 3 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 3 )
END IF
210 CONTINUE
END IF
*
* Time DBDSQR (singular values and right singular vectors,
* assume original matrix square) for each pair NNB(j), LDAS(j)
*
IF( TIMSUB( 4 ) .OR. TIMSUB( 10 ) ) THEN
DO 250 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 220 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
220 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DBDSQR (singular values and right singular
* vectors, assume original matrix square)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
230 CONTINUE
CALL DLASET( 'Full', MINMN, N, ONE, TWO, VT, LDA )
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
CALL DBDSQR( UPLO, MINMN, N, 0, 0, WORK,
$ WORK( MINMN+1 ), VT, LDA, U, LDA, U,
$ LDA, WORK( 2*MINMN+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 4 ), IINFO, M,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 230
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 240 J = 1, IC
CALL DLASET( 'Full', MINMN, N, ONE, TWO, VT,
$ LDA )
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
240 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 4 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 4 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 4 ) = TIMES( LASTNL, ITYPE,
$ IN, 4 )
OPCNTS( IPAR, ITYPE, IN, 4 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 4 )
END IF
250 CONTINUE
END IF
*
* Time DBDSQR (singular values and left and right singular
* vectors,assume original matrix square) for each pair
* NNB(j), LDAS(j)
*
IF( TIMSUB( 5 ) .OR. TIMSUB( 11 ) ) THEN
DO 290 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 260 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
260 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DBDSQR (singular values and left and right
* singular vectors, assume original matrix square)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
270 CONTINUE
CALL DLASET( 'Full', MINMN, N, ONE, TWO, VT, LDA )
CALL DLASET( 'Full', M, MINMN, ONE, TWO, U, LDA )
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
CALL DBDSQR( UPLO, MINMN, N, M, 0, WORK,
$ WORK( MINMN+1 ), VT, LDA, U, LDA, U,
$ LDA, WORK( 2*MINMN+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 5 ), IINFO, M,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 270
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 280 J = 1, IC
CALL DLASET( 'Full', MINMN, N, ONE, TWO, VT,
$ LDA )
CALL DLASET( 'Full', M, MINMN, ONE, TWO, U,
$ LDA )
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
280 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 5 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 5 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 5 ) = TIMES( LASTNL, ITYPE,
$ IN, 5 )
OPCNTS( IPAR, ITYPE, IN, 5 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 5 )
END IF
290 CONTINUE
END IF
*
* Time DBDSQR (singular values and multiply square matrix
* by transpose of left singular vectors) for each pair
* NNB(j), LDAS(j)
*
IF( TIMSUB( 6 ) ) THEN
DO 330 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 300 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
300 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DBDSQR (singular values and multiply square
* matrix by transpose of left singular vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
310 CONTINUE
CALL DLASET( 'Full', MINMN, MINMN, ONE, TWO, U,
$ LDA )
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
CALL DBDSQR( UPLO, MINMN, 0, 0, MINMN, WORK,
$ WORK( MINMN+1 ), VT, LDA, U, LDA, U,
$ LDA, WORK( 2*MINMN+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 6 ), IINFO, M,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 310
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 320 J = 1, IC
CALL DLASET( 'Full', MINMN, MINMN, ONE, TWO, U,
$ LDA )
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
320 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 6 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 6 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 6 ) = TIMES( LASTNL, ITYPE,
$ IN, 6 )
OPCNTS( IPAR, ITYPE, IN, 6 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 6 )
END IF
330 CONTINUE
END IF
*
* Time DGEBRD+DBDSQR (singular values only) for each pair
* NNB(j), LDAS(j)
* Use previously computed timings for DGEBRD & DBDSQR
*
IF( TIMSUB( 7 ) ) THEN
DO 340 IPAR = 1, NPARMS
TIMES( IPAR, ITYPE, IN, 7 ) = TIMES( IPAR, ITYPE, IN,
$ 1 ) + TIMES( IPAR, ITYPE, IN, 2 )
OPCNTS( IPAR, ITYPE, IN, 7 ) = OPCNTS( IPAR, ITYPE,
$ IN, 1 ) + OPCNTS( IPAR, ITYPE, IN, 2 )
340 CONTINUE
END IF
*
* Time DGEBRD+DORGBR+DBDSQR (singular values and min(M,N)
* left singular vectors) for each pair NNB(j), LDAS(j)
*
* Use previously computed timings for DGEBRD & DBDSQR
*
IF( TIMSUB( 8 ) ) THEN
DO 370 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
CALL XLAENV( 1, NB )
CALL XLAENV( 2, 2 )
CALL XLAENV( 3, NB )
*
* Time DGEBRD+DORGBR+DBDSQR (singular values and
* min(M,N) left singular vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
350 CONTINUE
CALL DLACPY( 'L', M, MINMN, H, LDH, U, LDA )
CALL DORGBR( 'Q', M, MINMN, KU, U, LDA, TAUQ, WORK,
$ LWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 8 ), IINFO, M, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 350
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 360 J = 1, IC
CALL DLACPY( 'L', M, MINMN, H, LDH, U, LDA )
360 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 8 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC ) + TIMES( IPAR, ITYPE, IN, 1 ) +
$ TIMES( IPAR, ITYPE, IN, 3 )
OPCNTS( IPAR, ITYPE, IN, 8 ) = DOPLA2( 'DORGBR', 'Q',
$ M, MINMN, KU, 0, NB ) + OPCNTS( IPAR, ITYPE, IN,
$ 1 ) + OPCNTS( IPAR, ITYPE, IN, 3 )
370 CONTINUE
END IF
*
* Time DGEBRD+DORGBR+DBDSQR (singular values and M
* left singular vectors) for each pair NNB(j), LDAS(j)
*
* Use previously computed timings for DGEBRD & DBDSQR
*
IF( TIMSUB( 9 ) ) THEN
DO 400 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
CALL XLAENV( 1, NB )
CALL XLAENV( 2, 2 )
CALL XLAENV( 3, NB )
*
* Time DGEBRD+DORGBR+DBDSQR (singular values and
* M left singular vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
380 CONTINUE
CALL DLACPY( 'L', M, MINMN, H, LDH, U, LDA )
CALL DORGBR( 'Q', M, M, KU, U, LDA, TAUQ, WORK, LWORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 9 ), IINFO, M, N,
$ ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 380
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 390 J = 1, IC
CALL DLACPY( 'L', M, MINMN, H, LDH, U, LDA )
390 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 9 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC ) + TIMES( IPAR, ITYPE, IN, 1 ) +
$ TIMES( IPAR, ITYPE, IN, 3 )
OPCNTS( IPAR, ITYPE, IN, 9 ) = DOPLA2( 'DORGBR', 'Q',
$ M, M, KU, 0, NB ) + OPCNTS( IPAR, ITYPE, IN, 1 ) +
$ OPCNTS( IPAR, ITYPE, IN, 3 )
400 CONTINUE
END IF
*
* Time DGEBRD+DORGBR+DBDSQR (singular values and N
* right singular vectors) for each pair NNB(j), LDAS(j)
*
* Use previously computed timings for DGEBRD & DBDSQR
*
IF( TIMSUB( 10 ) ) THEN
DO 430 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
CALL XLAENV( 1, NB )
CALL XLAENV( 2, 2 )
CALL XLAENV( 3, NB )
*
* Time DGEBRD+DORGBR+DBDSQR (singular values and
* N right singular vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
410 CONTINUE
CALL DLACPY( 'U', MINMN, N, H, LDH, VT, LDA )
CALL DORGBR( 'P', N, N, KVT, VT, LDA, TAUP, WORK,
$ LWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 10 ), IINFO, M,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 410
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 420 J = 1, IC
CALL DLACPY( 'U', MINMN, N, H, LDH, VT, LDA )
420 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 10 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC ) + TIMES( IPAR, ITYPE, IN, 1 ) +
$ TIMES( IPAR, ITYPE, IN, 4 )
OPCNTS( IPAR, ITYPE, IN, 10 ) = DOPLA2( 'DORGBR', 'P',
$ N, N, KVT, 0, NB ) + OPCNTS( IPAR, ITYPE, IN, 1 ) +
$ OPCNTS( IPAR, ITYPE, IN, 4 )
430 CONTINUE
END IF
*
* Time DGEBRD+DORGBR+DBDSQR (singular values and min(M,N) left
* singular vectors and N right singular vectors) for each pair
* NNB(j), LDAS(j)
*
* Use previously computed timings for DGEBRD & DBDSQR
*
IF( TIMSUB( 11 ) ) THEN
DO 460 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
CALL XLAENV( 1, NB )
CALL XLAENV( 2, 2 )
CALL XLAENV( 3, NB )
*
* Time DGEBRD+DORGBR+DBDSQR (singular values and
* min(M,N) left singular vectors and N right singular
* vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
440 CONTINUE
CALL DLACPY( 'L', M, MINMN, H, LDH, U, LDA )
CALL DORGBR( 'Q', M, MINMN, KU, U, LDA, TAUQ, WORK,
$ LWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 11 ), IINFO, M,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
CALL DLACPY( 'U', MINMN, N, H, LDH, VT, LDA )
CALL DORGBR( 'P', N, N, KVT, VT, LDA, TAUP, WORK,
$ LWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 11 ), IINFO, M,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 440
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 450 J = 1, IC
CALL DLACPY( 'L', MINMN, MINMN, H, LDH, VT, LDA )
450 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 11 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC ) + TIMES( IPAR, ITYPE, IN, 1 ) +
$ TIMES( IPAR, ITYPE, IN, 5 )
OPCNTS( IPAR, ITYPE, IN, 11 ) = DOPLA2( 'DORGBR', 'Q',
$ M, MINMN, KU, 0, NB ) + DOPLA2( 'DORGBR', 'P', N,
$ N, KVT, 0, NB ) + OPCNTS( IPAR, ITYPE, IN, 1 ) +
$ OPCNTS( IPAR, ITYPE, IN, 5 )
460 CONTINUE
END IF
*
* Time DBDSDC (singular values and left and right singular
* vectors,assume original matrix square) for each pair
* NNB(j), LDAS(j)
*
IF( TIMSUB( 12 ) ) THEN
ESUM = DASUM( MINMN-1, E, 1 )
IF( ESUM.EQ.ZERO ) THEN
CALL DLACPY( 'Full', M, N, A, M, H, M )
CALL DGEBRD( M, N, H, M, D, E, TAUQ, TAUP, WORK,
$ LWORK, IINFO )
END IF
DO 500 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 470 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
470 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DBDSDC (singular values and left and right
* singular vectors, assume original matrix square).
*
IC = 0
OPS = ZERO
S1 = DSECND( )
480 CONTINUE
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
CALL DBDSDC( UPLO, 'I', MINMN, WORK,
$ WORK( MINMN+1 ), U, LDA, VT, LDA, DUM,
$ JDUM, WORK( 2*MINMN+1 ), IWORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 12 ), IINFO,
$ M, N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 480
*
* Subtract the time used in DCOPY.
*
S1 = DSECND( )
DO 490 J = 1, IC
CALL DCOPY( MINMN, D, 1, WORK, 1 )
CALL DCOPY( MINMN-1, E, 1, WORK( MINMN+1 ), 1 )
490 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 12 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 12 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 12 ) = TIMES( LASTNL,
$ ITYPE, IN, 12 )
OPCNTS( IPAR, ITYPE, IN, 12 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 12 )
END IF
500 CONTINUE
END IF
*
* Time DGESDD( singular values and min(M,N) left singular
* vectors and N right singular vectors when M>=N,
* singular values and M left singular vectors and min(M,N)
* right singular vectors otherwise) for each pair
* NNB(j), LDAS(j)
*
IF( TIMSUB( 13 ) ) THEN
DO 530 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
NB = MIN( N, NNB( IPAR ) )
CALL XLAENV( 1, NB )
CALL XLAENV( 2, 2 )
CALL XLAENV( 3, NB )
*
* Time DGESDD(singular values and min(M,N) left singular
* vectors and N right singular vectors when M>=N;
* singular values and M left singular vectors and
* min(M,N) right singular vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
510 CONTINUE
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
CALL DGESDD( 'S', M, N, H, LDA, WORK, U, LDA, VT, LDA,
$ WORK( MINMN+1 ), LWORK-MINMN, IWORK,
$ IINFO )
S2 = DSECND( )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 13 ), IINFO, M,
$ N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 510
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 520 J = 1, IC
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
520 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 13 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 13 ) = OPS / DBLE( IC )
530 CONTINUE
END IF
*
* Time DSVDC (singular values only) for each pair
* NNB(j), LDAS(j)
*
IF( TIMSUB( 14 ) ) THEN
DO 570 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 540 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
540 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DSVDC (singular values only)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
550 CONTINUE
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
CALL DSVDC( H, LDA, M, N, D, E, U, LDA, VT, LDA,
$ WORK, 0, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 14 ), IINFO,
$ M, N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 550
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 560 J = 1, IC
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
560 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 14 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 14 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 14 ) = TIMES( LASTNL,
$ ITYPE, IN, 14 )
OPCNTS( IPAR, ITYPE, IN, 14 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 14 )
END IF
570 CONTINUE
END IF
*
* Time DSVDC (singular values and min(M,N) left singular
* vectors) for each pair NNB(j), LDAS(j)
*
IF( TIMSUB( 15 ) ) THEN
DO 610 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 580 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
580 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DSVDC (singular values and min(M,N) left
* singular vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
590 CONTINUE
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
CALL DSVDC( H, LDA, M, N, D, E, U, LDA, VT, LDA,
$ WORK, 20, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 15 ), IINFO,
$ M, N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 590
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 600 J = 1, IC
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
600 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 15 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 15 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 15 ) = TIMES( LASTNL,
$ ITYPE, IN, 15 )
OPCNTS( IPAR, ITYPE, IN, 15 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 15 )
END IF
610 CONTINUE
END IF
*
* Time DSVDC (singular values and M left singular
* vectors) for each pair NNB(j), LDAS(j)
*
IF( TIMSUB( 16 ) ) THEN
DO 650 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 620 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
620 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DSVDC (singular values and M left singular
* vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
630 CONTINUE
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
CALL DSVDC( H, LDA, M, N, D, E, U, LDA, VT, LDA,
$ WORK, 10, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 16 ), IINFO,
$ M, N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 630
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 640 J = 1, IC
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
640 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 16 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 16 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 16 ) = TIMES( LASTNL,
$ ITYPE, IN, 16 )
OPCNTS( IPAR, ITYPE, IN, 16 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 16 )
END IF
650 CONTINUE
END IF
*
* Time DSVDC (singular values and N right singular
* vectors) for each pair NNB(j), LDAS(j)
*
IF( TIMSUB( 17 ) ) THEN
DO 690 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 660 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
660 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DSVDC (singular values and N right singular
* vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
670 CONTINUE
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
CALL DSVDC( H, LDA, M, N, D, E, U, LDA, VT, LDA,
$ WORK, 1, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 17 ), IINFO,
$ M, N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 670
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 680 J = 1, IC
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
680 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 17 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 17 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 17 ) = TIMES( LASTNL,
$ ITYPE, IN, 17 )
OPCNTS( IPAR, ITYPE, IN, 17 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 17 )
END IF
690 CONTINUE
END IF
*
* Time DSVDC (singular values and min(M,N) left singular
* vectors and N right singular vectors) for each pair
* NNB(j), LDAS(j)
*
IF( TIMSUB( 18 ) ) THEN
DO 730 IPAR = 1, NPARMS
LDA = LDAS( IPAR )
*
* If this value of LDA has been used before, just
* use that value
*
LASTNL = 0
DO 700 J = 1, IPAR - 1
IF( LDA.EQ.LDAS( J ) )
$ LASTNL = J
700 CONTINUE
*
IF( LASTNL.EQ.0 ) THEN
*
* Time DSVDC (singular values and min(M,N) left
* singular vectors and N right singular vectors)
*
IC = 0
OPS = ZERO
S1 = DSECND( )
710 CONTINUE
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
CALL DSVDC( H, LDA, M, N, D, E, U, LDA, VT, LDA,
$ WORK, 21, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( 18 ), IINFO,
$ M, N, ITYPE, IPAR, IOLDSD
INFO = ABS( IINFO )
GO TO 740
END IF
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN )
$ GO TO 710
*
* Subtract the time used in DLACPY.
*
S1 = DSECND( )
DO 720 J = 1, IC
CALL DLACPY( 'Full', M, N, A, M, H, LDA )
720 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
*
TIMES( IPAR, ITYPE, IN, 18 ) = MAX( TIME-UNTIME,
$ ZERO ) / DBLE( IC )
OPCNTS( IPAR, ITYPE, IN, 18 ) = OPS / DBLE( IC )
*
ELSE
*
TIMES( IPAR, ITYPE, IN, 18 ) = TIMES( LASTNL,
$ ITYPE, IN, 18 )
OPCNTS( IPAR, ITYPE, IN, 18 ) = OPCNTS( LASTNL,
$ ITYPE, IN, 18 )
END IF
730 CONTINUE
END IF
*
740 CONTINUE
750 CONTINUE
*
*-----------------------------------------------------------------------
*
* Print a table of results for each timed routine.
*
DO 760 ISUB = 1, NSUBS
IF( TIMSUB( ISUB ) ) THEN
CALL DPRTBV( SUBNAM( ISUB ), NTYPES, DOTYPE, NSIZES, MM, NN,
$ INPARM( ISUB ), PNAMES, NPARMS, LDAS, NNB,
$ OPCNTS( 1, 1, 1, ISUB ), LDO1, LDO2,
$ TIMES( 1, 1, 1, ISUB ), LDT1, LDT2, WORK,
$ LLWORK, NOUT )
END IF
760 CONTINUE
*
RETURN
*
* End of DTIM26
*
9998 FORMAT( ' DTIM26: ', A, ' returned INFO=', I6, '.', / 9X, 'M=',
$ I6, ', N=', I6, ', ITYPE=', I6, ', IPAR=', I6, ', ',
$ ' ISEED=(', 4( I5, ',' ), I5, ')' )
*
END
|