File: dlinpk.f

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (592 lines) | stat: -rw-r--r-- 17,599 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
      SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)
      INTEGER LDA,N,IPVT(*),INFO
      DOUBLE PRECISION A(LDA,*)
C
C     DGEFA FACTORS A DOUBLE PRECISION MATRIX BY GAUSSIAN ELIMINATION.
C
C     DGEFA IS USUALLY CALLED BY DGECO, BUT IT CAN BE CALLED
C     DIRECTLY WITH A SAVING IN TIME IF  RCOND  IS NOT NEEDED.
C     (TIME FOR DGECO) = (1 + 9/N)*(TIME FOR DGEFA) .
C
C     ON ENTRY
C
C        A       DOUBLE PRECISION(LDA, N)
C                THE MATRIX TO BE FACTORED.
C
C        LDA     INTEGER
C                THE LEADING DIMENSION OF THE ARRAY  A .
C
C        N       INTEGER
C                THE ORDER OF THE MATRIX  A .
C
C     ON RETURN
C
C        A       AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
C                WHICH WERE USED TO OBTAIN IT.
C                THE FACTORIZATION CAN BE WRITTEN  A = L*U  WHERE
C                L  IS A PRODUCT OF PERMUTATION AND UNIT LOWER
C                TRIANGULAR MATRICES AND  U  IS UPPER TRIANGULAR.
C
C        IPVT    INTEGER(N)
C                AN INTEGER VECTOR OF PIVOT INDICES.
C
C        INFO    INTEGER
C                = 0  NORMAL VALUE.
C                = K  IF  U(K,K) .EQ. 0.0 .  THIS IS NOT AN ERROR
C                     CONDITION FOR THIS SUBROUTINE, BUT IT DOES
C                     INDICATE THAT DGESL OR DGEDI WILL DIVIDE BY ZERO
C                     IF CALLED.  USE  RCOND  IN DGECO FOR A RELIABLE
C                     INDICATION OF SINGULARITY.
C
C     LINPACK. THIS VERSION DATED 08/14/78 .
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C     SUBROUTINES AND FUNCTIONS
C
C     BLAS DAXPY,DSCAL,IDAMAX
C
C     INTERNAL VARIABLES
C
      DOUBLE PRECISION T
      INTEGER IDAMAX,J,K,KP1,L,NM1
C
C
C     GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
C
      INFO = 0
      NM1 = N - 1
      IF (NM1 .LT. 1) GO TO 70
      DO 60 K = 1, NM1
         KP1 = K + 1
C
C        FIND L = PIVOT INDEX
C
         L = IDAMAX(N-K+1,A(K,K),1) + K - 1
         IPVT(K) = L
C
C        ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
C
         IF (A(L,K) .EQ. 0.0D0) GO TO 40
C
C           INTERCHANGE IF NECESSARY
C
            IF (L .EQ. K) GO TO 10
               T = A(L,K)
               A(L,K) = A(K,K)
               A(K,K) = T
   10       CONTINUE
C
C           COMPUTE MULTIPLIERS
C
            T = -1.0D0/A(K,K)
            CALL DSCAL(N-K,T,A(K+1,K),1)
C
C           ROW ELIMINATION WITH COLUMN INDEXING
C
            DO 30 J = KP1, N
               T = A(L,J)
               IF (L .EQ. K) GO TO 20
                  A(L,J) = A(K,J)
                  A(K,J) = T
   20          CONTINUE
               CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
   30       CONTINUE
         GO TO 50
   40    CONTINUE
            INFO = K
   50    CONTINUE
   60 CONTINUE
   70 CONTINUE
      IPVT(N) = N
      IF (A(N,N) .EQ. 0.0D0) INFO = N
      RETURN
      END
      SUBROUTINE DPOFA(A,LDA,N,INFO)
      INTEGER LDA,N,INFO
      DOUBLE PRECISION A(LDA,*)
C
C     DPOFA FACTORS A DOUBLE PRECISION SYMMETRIC POSITIVE DEFINITE
C     MATRIX.
C
C     DPOFA IS USUALLY CALLED BY DPOCO, BUT IT CAN BE CALLED
C     DIRECTLY WITH A SAVING IN TIME IF  RCOND  IS NOT NEEDED.
C     (TIME FOR DPOCO) = (1 + 18/N)*(TIME FOR DPOFA) .
C
C     ON ENTRY
C
C        A       DOUBLE PRECISION(LDA, N)
C                THE SYMMETRIC MATRIX TO BE FACTORED.  ONLY THE
C                DIAGONAL AND UPPER TRIANGLE ARE USED.
C
C        LDA     INTEGER
C                THE LEADING DIMENSION OF THE ARRAY  A .
C
C        N       INTEGER
C                THE ORDER OF THE MATRIX  A .
C
C     ON RETURN
C
C        A       AN UPPER TRIANGULAR MATRIX  R  SO THAT  A = TRANS(R)*R
C                WHERE  TRANS(R)  IS THE TRANSPOSE.
C                THE STRICT LOWER TRIANGLE IS UNALTERED.
C                IF  INFO .NE. 0 , THE FACTORIZATION IS NOT COMPLETE.
C
C        INFO    INTEGER
C                = 0  FOR NORMAL RETURN.
C                = K  SIGNALS AN ERROR CONDITION.  THE LEADING MINOR
C                     OF ORDER  K  IS NOT POSITIVE DEFINITE.
C
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C     SUBROUTINES AND FUNCTIONS
C
C     BLAS DDOT
C     FORTRAN DSQRT
C
C     INTERNAL VARIABLES
C
      DOUBLE PRECISION DDOT,T
      DOUBLE PRECISION S
      INTEGER J,JM1,K
C     BEGIN BLOCK WITH ...EXITS TO 40
C
C
         DO 30 J = 1, N
            INFO = J
            S = 0.0D0
            JM1 = J - 1
            IF (JM1 .LT. 1) GO TO 20
            DO 10 K = 1, JM1
               T = A(K,J) - DDOT(K-1,A(1,K),1,A(1,J),1)
               T = T/A(K,K)
               A(K,J) = T
               S = S + T*T
   10       CONTINUE
   20       CONTINUE
            S = A(J,J) - S
C     ......EXIT
            IF (S .LE. 0.0D0) GO TO 40
            A(J,J) = DSQRT(S)
   30    CONTINUE
         INFO = 0
   40 CONTINUE
      RETURN
      END
      SUBROUTINE DQRDC(X,LDX,N,P,QRAUX,JPVT,WORK,JOB)
      INTEGER LDX,N,P,JOB
      INTEGER JPVT(*)
      DOUBLE PRECISION X(LDX,*),QRAUX(*),WORK(*)
C
C     DQRDC USES HOUSEHOLDER TRANSFORMATIONS TO COMPUTE THE QR
C     FACTORIZATION OF AN N BY P MATRIX X.  COLUMN PIVOTING
C     BASED ON THE 2-NORMS OF THE REDUCED COLUMNS MAY BE
C     PERFORMED AT THE USERS OPTION.
C
C     ON ENTRY
C
C        X       DOUBLE PRECISION(LDX,P), WHERE LDX .GE. N.
C                X CONTAINS THE MATRIX WHOSE DECOMPOSITION IS TO BE
C                COMPUTED.
C
C        LDX     INTEGER.
C                LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C
C        N       INTEGER.
C                N IS THE NUMBER OF ROWS OF THE MATRIX X.
C
C        P       INTEGER.
C                P IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C
C        JPVT    INTEGER(P).
C                JPVT CONTAINS INTEGERS THAT CONTROL THE SELECTION
C                OF THE PIVOT COLUMNS.  THE K-TH COLUMN X(K) OF X
C                IS PLACED IN ONE OF THREE CLASSES ACCORDING TO THE
C                VALUE OF JPVT(K).
C
C                   IF JPVT(K) .GT. 0, THEN X(K) IS AN INITIAL
C                                      COLUMN.
C
C                   IF JPVT(K) .EQ. 0, THEN X(K) IS A FREE COLUMN.
C
C                   IF JPVT(K) .LT. 0, THEN X(K) IS A FINAL COLUMN.
C
C                BEFORE THE DECOMPOSITION IS COMPUTED, INITIAL COLUMNS
C                ARE MOVED TO THE BEGINNING OF THE ARRAY X AND FINAL
C                COLUMNS TO THE END.  BOTH INITIAL AND FINAL COLUMNS
C                ARE FROZEN IN PLACE DURING THE COMPUTATION AND ONLY
C                FREE COLUMNS ARE MOVED.  AT THE K-TH STAGE OF THE
C                REDUCTION, IF X(K) IS OCCUPIED BY A FREE COLUMN
C                IT IS INTERCHANGED WITH THE FREE COLUMN OF LARGEST
C                REDUCED NORM.  JPVT IS NOT REFERENCED IF
C                JOB .EQ. 0.
C
C        WORK    DOUBLE PRECISION(P).
C                WORK IS A WORK ARRAY.  WORK IS NOT REFERENCED IF
C                JOB .EQ. 0.
C
C        JOB     INTEGER.
C                JOB IS AN INTEGER THAT INITIATES COLUMN PIVOTING.
C                IF JOB .EQ. 0, NO PIVOTING IS DONE.
C                IF JOB .NE. 0, PIVOTING IS DONE.
C
C     ON RETURN
C
C        X       X CONTAINS IN ITS UPPER TRIANGLE THE UPPER
C                TRIANGULAR MATRIX R OF THE QR FACTORIZATION.
C                BELOW ITS DIAGONAL X CONTAINS INFORMATION FROM
C                WHICH THE ORTHOGONAL PART OF THE DECOMPOSITION
C                CAN BE RECOVERED.  NOTE THAT IF PIVOTING HAS
C                BEEN REQUESTED, THE DECOMPOSITION IS NOT THAT
C                OF THE ORIGINAL MATRIX X BUT THAT OF X
C                WITH ITS COLUMNS PERMUTED AS DESCRIBED BY JPVT.
C
C        QRAUX   DOUBLE PRECISION(P).
C                QRAUX CONTAINS FURTHER INFORMATION REQUIRED TO RECOVER
C                THE ORTHOGONAL PART OF THE DECOMPOSITION.
C
C        JPVT    JPVT(K) CONTAINS THE INDEX OF THE COLUMN OF THE
C                ORIGINAL MATRIX THAT HAS BEEN INTERCHANGED INTO
C                THE K-TH COLUMN, IF PIVOTING WAS REQUESTED.
C
C     LINPACK. THIS VERSION DATED 08/14/78 .
C     G.W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C
C     DQRDC USES THE FOLLOWING FUNCTIONS AND SUBPROGRAMS.
C
C     BLAS DAXPY,DDOT,DSCAL,DSWAP,DNRM2
C     FORTRAN DABS,DMAX1,MIN0,DSQRT
C
C     INTERNAL VARIABLES
C
      INTEGER J,JJ,JP,L,LP1,LUP,MAXJ,PL,PU
      DOUBLE PRECISION MAXNRM,DNRM2,TT
      DOUBLE PRECISION DDOT,NRMXL,T
      LOGICAL NEGJ,SWAPJ
C
C
      PL = 1
      PU = 0
      IF (JOB .EQ. 0) GO TO 60
C
C        PIVOTING HAS BEEN REQUESTED.  REARRANGE THE COLUMNS
C        ACCORDING TO JPVT.
C
         DO 20 J = 1, P
            SWAPJ = JPVT(J) .GT. 0
            NEGJ = JPVT(J) .LT. 0
            JPVT(J) = J
            IF (NEGJ) JPVT(J) = -J
            IF (.NOT.SWAPJ) GO TO 10
               IF (J .NE. PL) CALL DSWAP(N,X(1,PL),1,X(1,J),1)
               JPVT(J) = JPVT(PL)
               JPVT(PL) = J
               PL = PL + 1
   10       CONTINUE
   20    CONTINUE
         PU = P
         DO 50 JJ = 1, P
            J = P - JJ + 1
            IF (JPVT(J) .GE. 0) GO TO 40
               JPVT(J) = -JPVT(J)
               IF (J .EQ. PU) GO TO 30
                  CALL DSWAP(N,X(1,PU),1,X(1,J),1)
                  JP = JPVT(PU)
                  JPVT(PU) = JPVT(J)
                  JPVT(J) = JP
   30          CONTINUE
               PU = PU - 1
   40       CONTINUE
   50    CONTINUE
   60 CONTINUE
C
C     COMPUTE THE NORMS OF THE FREE COLUMNS.
C
      IF (PU .LT. PL) GO TO 80
      DO 70 J = PL, PU
         QRAUX(J) = DNRM2(N,X(1,J),1)
         WORK(J) = QRAUX(J)
   70 CONTINUE
   80 CONTINUE
C
C     PERFORM THE HOUSEHOLDER REDUCTION OF X.
C
      LUP = MIN0(N,P)
      DO 200 L = 1, LUP
         IF (L .LT. PL .OR. L .GE. PU) GO TO 120
C
C           LOCATE THE COLUMN OF LARGEST NORM AND BRING IT
C           INTO THE PIVOT POSITION.
C
            MAXNRM = 0.0D0
            MAXJ = L
            DO 100 J = L, PU
               IF (QRAUX(J) .LE. MAXNRM) GO TO 90
                  MAXNRM = QRAUX(J)
                  MAXJ = J
   90          CONTINUE
  100       CONTINUE
            IF (MAXJ .EQ. L) GO TO 110
               CALL DSWAP(N,X(1,L),1,X(1,MAXJ),1)
               QRAUX(MAXJ) = QRAUX(L)
               WORK(MAXJ) = WORK(L)
               JP = JPVT(MAXJ)
               JPVT(MAXJ) = JPVT(L)
               JPVT(L) = JP
  110       CONTINUE
  120    CONTINUE
         QRAUX(L) = 0.0D0
         IF (L .EQ. N) GO TO 190
C
C           COMPUTE THE HOUSEHOLDER TRANSFORMATION FOR COLUMN L.
C
            NRMXL = DNRM2(N-L+1,X(L,L),1)
            IF (NRMXL .EQ. 0.0D0) GO TO 180
               IF (X(L,L) .NE. 0.0D0) NRMXL = DSIGN(NRMXL,X(L,L))
               CALL DSCAL(N-L+1,1.0D0/NRMXL,X(L,L),1)
               X(L,L) = 1.0D0 + X(L,L)
C
C              APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS,
C              UPDATING THE NORMS.
C
               LP1 = L + 1
               IF (P .LT. LP1) GO TO 170
               DO 160 J = LP1, P
                  T = -DDOT(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
                  CALL DAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
                  IF (J .LT. PL .OR. J .GT. PU) GO TO 150
                  IF (QRAUX(J) .EQ. 0.0D0) GO TO 150
                     TT = 1.0D0 - (DABS(X(L,J))/QRAUX(J))**2
                     TT = DMAX1(TT,0.0D0)
                     T = TT
                     TT = 1.0D0 + 0.05D0*TT*(QRAUX(J)/WORK(J))**2
                     IF (TT .EQ. 1.0D0) GO TO 130
                        QRAUX(J) = QRAUX(J)*DSQRT(T)
                     GO TO 140
  130                CONTINUE
                        QRAUX(J) = DNRM2(N-L,X(L+1,J),1)
                        WORK(J) = QRAUX(J)
  140                CONTINUE
  150             CONTINUE
  160          CONTINUE
  170          CONTINUE
C
C              SAVE THE TRANSFORMATION.
C
               QRAUX(L) = X(L,L)
               X(L,L) = -NRMXL
  180       CONTINUE
  190    CONTINUE
  200 CONTINUE
      RETURN
      END
      SUBROUTINE DGTSL(N,C,D,E,B,INFO)
      INTEGER N,INFO
      DOUBLE PRECISION C(*),D(*),E(*),B(*)
C
C     DGTSL GIVEN A GENERAL TRIDIAGONAL MATRIX AND A RIGHT HAND
C     SIDE WILL FIND THE SOLUTION.
C
C     ON ENTRY
C
C        N       INTEGER
C                IS THE ORDER OF THE TRIDIAGONAL MATRIX.
C
C        C       DOUBLE PRECISION(N)
C                IS THE SUBDIAGONAL OF THE TRIDIAGONAL MATRIX.
C                C(2) THROUGH C(N) SHOULD CONTAIN THE SUBDIAGONAL.
C                ON OUTPUT C IS DESTROYED.
C
C        D       DOUBLE PRECISION(N)
C                IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
C                ON OUTPUT D IS DESTROYED.
C
C        E       DOUBLE PRECISION(N)
C                IS THE SUPERDIAGONAL OF THE TRIDIAGONAL MATRIX.
C                E(1) THROUGH E(N-1) SHOULD CONTAIN THE SUPERDIAGONAL.
C                ON OUTPUT E IS DESTROYED.
C
C        B       DOUBLE PRECISION(N)
C                IS THE RIGHT HAND SIDE VECTOR.
C
C     ON RETURN
C
C        B       IS THE SOLUTION VECTOR.
C
C        INFO    INTEGER
C                = 0 NORMAL VALUE.
C                = K IF THE K-TH ELEMENT OF THE DIAGONAL BECOMES
C                    EXACTLY ZERO.  THE SUBROUTINE RETURNS WHEN
C                    THIS IS DETECTED.
C
C     LINPACK. THIS VERSION DATED 08/14/78 .
C     JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
C
C     NO EXTERNALS
C     FORTRAN DABS
C
C     INTERNAL VARIABLES
C
      INTEGER K,KB,KP1,NM1,NM2
      DOUBLE PRECISION T
C     BEGIN BLOCK PERMITTING ...EXITS TO 100
C
         INFO = 0
         C(1) = D(1)
         NM1 = N - 1
         IF (NM1 .LT. 1) GO TO 40
            D(1) = E(1)
            E(1) = 0.0D0
            E(N) = 0.0D0
C
            DO 30 K = 1, NM1
               KP1 = K + 1
C
C              FIND THE LARGEST OF THE TWO ROWS
C
               IF (DABS(C(KP1)) .LT. DABS(C(K))) GO TO 10
C
C                 INTERCHANGE ROW
C
                  T = C(KP1)
                  C(KP1) = C(K)
                  C(K) = T
                  T = D(KP1)
                  D(KP1) = D(K)
                  D(K) = T
                  T = E(KP1)
                  E(KP1) = E(K)
                  E(K) = T
                  T = B(KP1)
                  B(KP1) = B(K)
                  B(K) = T
   10          CONTINUE
C
C              ZERO ELEMENTS
C
               IF (C(K) .NE. 0.0D0) GO TO 20
                  INFO = K
C     ............EXIT
                  GO TO 100
   20          CONTINUE
               T = -C(KP1)/C(K)
               C(KP1) = D(KP1) + T*D(K)
               D(KP1) = E(KP1) + T*E(K)
               E(KP1) = 0.0D0
               B(KP1) = B(KP1) + T*B(K)
   30       CONTINUE
   40    CONTINUE
         IF (C(N) .NE. 0.0D0) GO TO 50
            INFO = N
         GO TO 90
   50    CONTINUE
C
C           BACK SOLVE
C
            NM2 = N - 2
            B(N) = B(N)/C(N)
            IF (N .EQ. 1) GO TO 80
               B(NM1) = (B(NM1) - D(NM1)*B(N))/C(NM1)
               IF (NM2 .LT. 1) GO TO 70
               DO 60 KB = 1, NM2
                  K = NM2 - KB + 1
                  B(K) = (B(K) - D(K)*B(K+1) - E(K)*B(K+2))/C(K)
   60          CONTINUE
   70          CONTINUE
   80       CONTINUE
   90    CONTINUE
  100 CONTINUE
C
      RETURN
      END
      SUBROUTINE DPTSL(N,D,E,B)
      INTEGER N
      DOUBLE PRECISION D(*),E(*),B(*)
C
C     DPTSL GIVEN A POSITIVE DEFINITE TRIDIAGONAL MATRIX AND A RIGHT
C     HAND SIDE WILL FIND THE SOLUTION.
C
C     ON ENTRY
C
C        N        INTEGER
C                 IS THE ORDER OF THE TRIDIAGONAL MATRIX.
C
C        D        DOUBLE PRECISION(N)
C                 IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
C                 ON OUTPUT D IS DESTROYED.
C
C        E        DOUBLE PRECISION(N)
C                 IS THE OFFDIAGONAL OF THE TRIDIAGONAL MATRIX.
C                 E(1) THROUGH E(N-1) SHOULD CONTAIN THE
C                 OFFDIAGONAL.
C
C        B        DOUBLE PRECISION(N)
C                 IS THE RIGHT HAND SIDE VECTOR.
C
C     ON RETURN
C
C        B        CONTAINS THE SOULTION.
C
C     LINPACK. THIS VERSION DATED 08/14/78 .
C     JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
C
C     NO EXTERNALS
C     FORTRAN MOD
C
C     INTERNAL VARIABLES
C
      INTEGER K,KBM1,KE,KF,KP1,NM1,NM1D2
      DOUBLE PRECISION T1,T2
C
C     CHECK FOR 1 X 1 CASE
C
      IF (N .NE. 1) GO TO 10
         B(1) = B(1)/D(1)
      GO TO 70
   10 CONTINUE
         NM1 = N - 1
         NM1D2 = NM1/2
         IF (N .EQ. 2) GO TO 30
            KBM1 = N - 1
C
C           ZERO TOP HALF OF SUBDIAGONAL AND BOTTOM HALF OF
C           SUPERDIAGONAL
C
            DO 20 K = 1, NM1D2
               T1 = E(K)/D(K)
               D(K+1) = D(K+1) - T1*E(K)
               B(K+1) = B(K+1) - T1*B(K)
               T2 = E(KBM1)/D(KBM1+1)
               D(KBM1) = D(KBM1) - T2*E(KBM1)
               B(KBM1) = B(KBM1) - T2*B(KBM1+1)
               KBM1 = KBM1 - 1
   20       CONTINUE
   30    CONTINUE
         KP1 = NM1D2 + 1
C
C        CLEAN UP FOR POSSIBLE 2 X 2 BLOCK AT CENTER
C
         IF (MOD(N,2) .NE. 0) GO TO 40
            T1 = E(KP1)/D(KP1)
            D(KP1+1) = D(KP1+1) - T1*E(KP1)
            B(KP1+1) = B(KP1+1) - T1*B(KP1)
            KP1 = KP1 + 1
   40    CONTINUE
C
C        BACK SOLVE STARTING AT THE CENTER, GOING TOWARDS THE TOP
C        AND BOTTOM
C
         B(KP1) = B(KP1)/D(KP1)
         IF (N .EQ. 2) GO TO 60
            K = KP1 - 1
            KE = KP1 + NM1D2 - 1
            DO 50 KF = KP1, KE
               B(K) = (B(K) - E(K)*B(K+1))/D(K)
               B(KF+1) = (B(KF+1) - E(KF)*B(KF))/D(KF+1)
               K = K - 1
   50       CONTINUE
   60    CONTINUE
         IF (MOD(N,2) .EQ. 0) B(1) = (B(1) - E(1)*B(2))/D(1)
   70 CONTINUE
      RETURN
      END