1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/* ../netlib/cgeqrt3.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static complex c_b1 =
{
1.f,0.f
}
;
static integer c__1 = 1;
/* > \brief \b CGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the c ompact WY representation of Q. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CGEQRT3 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqrt3 .f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqrt3 .f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqrt3 .f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CGEQRT3( M, N, A, LDA, T, LDT, INFO ) */
/* .. Scalar Arguments .. */
/* INTEGER INFO, LDA, M, N, LDT */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX A( LDA, * ), T( LDT, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEQRT3 recursively computes a QR factorization of a complex M-by-N matrix A, */
/* > using the compact WY representation of Q. */
/* > */
/* > Based on the algorithm of Elmroth and Gustavson, */
/* > IBM J. Res. Develop. Vol 44 No. 4 July 2000. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= N. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the complex M-by-N matrix A. On exit, the elements on and */
/* > above the diagonal contain the N-by-N upper triangular matrix R;
the */
/* > elements below the diagonal are the columns of V. See below for */
/* > further details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (LDT,N) */
/* > The N-by-N upper triangular factor of the block reflector. */
/* > The elements on and above the diagonal contain the block */
/* > reflector T;
the elements below the diagonal are not used. */
/* > See below for further details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup complexGEcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix V stores the elementary reflectors H(i) in the i-th column */
/* > below the diagonal. For example, if M=5 and N=3, the matrix V is */
/* > */
/* > V = ( 1 ) */
/* > ( v1 1 ) */
/* > ( v1 v2 1 ) */
/* > ( v1 v2 v3 ) */
/* > ( v1 v2 v3 ) */
/* > */
/* > where the vi's represent the vectors which define H(i), which are returned */
/* > in the matrix A. The 1's along the diagonal of V are not stored in A. The */
/* > block reflector H is then given by */
/* > */
/* > H = I - V * T * V**H */
/* > */
/* > where V**H is the conjugate transpose of V. */
/* > */
/* > For details of the algorithm, see Elmroth and Gustavson (cited above). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */
int cgeqrt3_(integer *m, integer *n, complex *a, integer * lda, complex *t, integer *ldt, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4, i__5;
complex q__1;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__, j, i1, j1, n1, n2;
extern /* Subroutine */
int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *);
integer iinfo;
extern /* Subroutine */
int ctrmm_(char *, char *, char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *), clarfg_(integer *, complex *, complex *, integer *, complex *), xerbla_(char *, integer *);
/* -- LAPACK computational routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
/* Function Body */
*info = 0;
if (*n < 0)
{
*info = -2;
}
else if (*m < *n)
{
*info = -1;
}
else if (*lda < max(1,*m))
{
*info = -4;
}
else if (*ldt < max(1,*n))
{
*info = -6;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("CGEQRT3", &i__1);
return 0;
}
if (*n == 1)
{
/* Compute Householder transform when N=1 */
clarfg_(m, &a[a_offset], &a[min(2,*m) + a_dim1], &c__1, &t[t_offset]);
}
else
{
/* Otherwise, split A into blocks... */
n1 = *n / 2;
n2 = *n - n1;
/* Computing MIN */
i__1 = n1 + 1;
j1 = min(i__1,*n);
/* Computing MIN */
i__1 = *n + 1;
i1 = min(i__1,*m);
/* Compute A(1:M,1:N1) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1**H */
cgeqrt3_(m, &n1, &a[a_offset], lda, &t[t_offset], ldt, &iinfo);
/* Compute A(1:M,J1:N) = Q1**H A(1:M,J1:N) [workspace: T(1:N1,J1:N)] */
i__1 = n2;
for (j = 1;
j <= i__1;
++j)
{
i__2 = n1;
for (i__ = 1;
i__ <= i__2;
++i__)
{
i__3 = i__ + (j + n1) * t_dim1;
i__4 = i__ + (j + n1) * a_dim1;
t[i__3].r = a[i__4].r;
t[i__3].i = a[i__4].i; // , expr subst
}
}
ctrmm_("L", "L", "C", "U", &n1, &n2, &c_b1, &a[a_offset], lda, &t[j1 * t_dim1 + 1], ldt) ;
i__1 = *m - n1;
cgemm_("C", "N", &n1, &n2, &i__1, &c_b1, &a[j1 + a_dim1], lda, &a[j1 + j1 * a_dim1], lda, &c_b1, &t[j1 * t_dim1 + 1], ldt);
ctrmm_("L", "U", "C", "N", &n1, &n2, &c_b1, &t[t_offset], ldt, &t[j1 * t_dim1 + 1], ldt) ;
i__1 = *m - n1;
q__1.r = -1.f;
q__1.i = -0.f; // , expr subst
cgemm_("N", "N", &i__1, &n2, &n1, &q__1, &a[j1 + a_dim1], lda, &t[j1 * t_dim1 + 1], ldt, &c_b1, &a[j1 + j1 * a_dim1], lda);
ctrmm_("L", "L", "N", "U", &n1, &n2, &c_b1, &a[a_offset], lda, &t[j1 * t_dim1 + 1], ldt) ;
i__1 = n2;
for (j = 1;
j <= i__1;
++j)
{
i__2 = n1;
for (i__ = 1;
i__ <= i__2;
++i__)
{
i__3 = i__ + (j + n1) * a_dim1;
i__4 = i__ + (j + n1) * a_dim1;
i__5 = i__ + (j + n1) * t_dim1;
q__1.r = a[i__4].r - t[i__5].r;
q__1.i = a[i__4].i - t[i__5] .i; // , expr subst
a[i__3].r = q__1.r;
a[i__3].i = q__1.i; // , expr subst
}
}
/* Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2**H */
i__1 = *m - n1;
cgeqrt3_(&i__1, &n2, &a[j1 + j1 * a_dim1], lda, &t[j1 + j1 * t_dim1], ldt, &iinfo);
/* Compute T3 = T(1:N1,J1:N) = -T1 Y1**H Y2 T2 */
i__1 = n1;
for (i__ = 1;
i__ <= i__1;
++i__)
{
i__2 = n2;
for (j = 1;
j <= i__2;
++j)
{
i__3 = i__ + (j + n1) * t_dim1;
r_cnjg(&q__1, &a[j + n1 + i__ * a_dim1]);
t[i__3].r = q__1.r;
t[i__3].i = q__1.i; // , expr subst
}
}
ctrmm_("R", "L", "N", "U", &n1, &n2, &c_b1, &a[j1 + j1 * a_dim1], lda, &t[j1 * t_dim1 + 1], ldt);
i__1 = *m - *n;
cgemm_("C", "N", &n1, &n2, &i__1, &c_b1, &a[i1 + a_dim1], lda, &a[i1 + j1 * a_dim1], lda, &c_b1, &t[j1 * t_dim1 + 1], ldt);
q__1.r = -1.f;
q__1.i = -0.f; // , expr subst
ctrmm_("L", "U", "N", "N", &n1, &n2, &q__1, &t[t_offset], ldt, &t[j1 * t_dim1 + 1], ldt) ;
ctrmm_("R", "U", "N", "N", &n1, &n2, &c_b1, &t[j1 + j1 * t_dim1], ldt, &t[j1 * t_dim1 + 1], ldt);
/* Y = (Y1,Y2);
R = [ R1 A(1:N1,J1:N) ];
T = [T1 T3] */
/* [ 0 R2 ] [ 0 T2] */
}
return 0;
/* End of CGEQRT3 */
}
/* cgeqrt3_ */
|