File: chptrs.c

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (539 lines) | stat: -rw-r--r-- 19,667 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/* ../netlib/chptrs.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
 on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static complex c_b1 =
{
    1.f,0.f
}
;
static integer c__1 = 1;
/* > \brief \b CHPTRS */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CHPTRS + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chptrs. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chptrs. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chptrs. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER UPLO */
/* INTEGER INFO, LDB, N, NRHS */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IPIV( * ) */
/* COMPLEX AP( * ), B( LDB, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CHPTRS solves a system of linear equations A*X = B with a complex */
/* > Hermitian matrix A stored in packed format using the factorization */
/* > A = U*D*U**H or A = L*D*L**H computed by CHPTRF. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > Specifies whether the details of the factorization are stored */
/* > as an upper or lower triangular matrix. */
/* > = 'U': Upper triangular, form is A = U*D*U**H;
*/
/* > = 'L': Lower triangular, form is A = L*D*L**H. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrix B. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AP */
/* > \verbatim */
/* > AP is COMPLEX array, dimension (N*(N+1)/2) */
/* > The block diagonal matrix D and the multipliers used to */
/* > obtain the factor U or L as computed by CHPTRF, stored as a */
/* > packed triangular matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > Details of the interchanges and the block structure of D */
/* > as determined by CHPTRF. */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,NRHS) */
/* > On entry, the right hand side matrix B. */
/* > On exit, the solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2011 */
/* > \ingroup complexOTHERcomputational */
/* ===================================================================== */
/* Subroutine */
int chptrs_(char *uplo, integer *n, integer *nrhs, complex * ap, integer *ipiv, complex *b, integer *ldb, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1, i__2;
    complex q__1, q__2, q__3;
    /* Builtin functions */
    void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *);
    /* Local variables */
    integer j, k;
    real s;
    complex ak, bk;
    integer kc, kp;
    complex akm1, bkm1, akm1k;
    extern logical lsame_(char *, char *);
    complex denom;
    extern /* Subroutine */
    int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *), cgeru_(integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *), cswap_(integer *, complex *, integer *, complex *, integer *);
    logical upper;
    extern /* Subroutine */
    int clacgv_(integer *, complex *, integer *), csscal_(integer *, real *, complex *, integer *), xerbla_(char *, integer *);
    /* -- LAPACK computational routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    --ap;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L"))
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*nrhs < 0)
    {
        *info = -3;
    }
    else if (*ldb < max(1,*n))
    {
        *info = -7;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CHPTRS", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0 || *nrhs == 0)
    {
        return 0;
    }
    if (upper)
    {
        /* Solve A*X = B, where A = U*D*U**H. */
        /* First solve U*D*X = B, overwriting B with X. */
        /* K is the main loop index, decreasing from N to 1 in steps of */
        /* 1 or 2, depending on the size of the diagonal blocks. */
        k = *n;
        kc = *n * (*n + 1) / 2 + 1;
L10: /* If K < 1, exit from loop. */
        if (k < 1)
        {
            goto L30;
        }
        kc -= k;
        if (ipiv[k] > 0)
        {
            /* 1 x 1 diagonal block */
            /* Interchange rows K and IPIV(K). */
            kp = ipiv[k];
            if (kp != k)
            {
                cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
            }
            /* Multiply by inv(U(K)), where U(K) is the transformation */
            /* stored in column K of A. */
            i__1 = k - 1;
            q__1.r = -1.f;
            q__1.i = -0.f; // , expr subst
            cgeru_(&i__1, nrhs, &q__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, & b[b_dim1 + 1], ldb);
            /* Multiply by the inverse of the diagonal block. */
            i__1 = kc + k - 1;
            s = 1.f / ap[i__1].r;
            csscal_(nrhs, &s, &b[k + b_dim1], ldb);
            --k;
        }
        else
        {
            /* 2 x 2 diagonal block */
            /* Interchange rows K-1 and -IPIV(K). */
            kp = -ipiv[k];
            if (kp != k - 1)
            {
                cswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
            }
            /* Multiply by inv(U(K)), where U(K) is the transformation */
            /* stored in columns K-1 and K of A. */
            i__1 = k - 2;
            q__1.r = -1.f;
            q__1.i = -0.f; // , expr subst
            cgeru_(&i__1, nrhs, &q__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, & b[b_dim1 + 1], ldb);
            i__1 = k - 2;
            q__1.r = -1.f;
            q__1.i = -0.f; // , expr subst
            cgeru_(&i__1, nrhs, &q__1, &ap[kc - (k - 1)], &c__1, &b[k - 1 + b_dim1], ldb, &b[b_dim1 + 1], ldb);
            /* Multiply by the inverse of the diagonal block. */
            i__1 = kc + k - 2;
            akm1k.r = ap[i__1].r;
            akm1k.i = ap[i__1].i; // , expr subst
            c_div(&q__1, &ap[kc - 1], &akm1k);
            akm1.r = q__1.r;
            akm1.i = q__1.i; // , expr subst
            r_cnjg(&q__2, &akm1k);
            c_div(&q__1, &ap[kc + k - 1], &q__2);
            ak.r = q__1.r;
            ak.i = q__1.i; // , expr subst
            q__2.r = akm1.r * ak.r - akm1.i * ak.i;
            q__2.i = akm1.r * ak.i + akm1.i * ak.r; // , expr subst
            q__1.r = q__2.r - 1.f;
            q__1.i = q__2.i - 0.f; // , expr subst
            denom.r = q__1.r;
            denom.i = q__1.i; // , expr subst
            i__1 = *nrhs;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                c_div(&q__1, &b[k - 1 + j * b_dim1], &akm1k);
                bkm1.r = q__1.r;
                bkm1.i = q__1.i; // , expr subst
                r_cnjg(&q__2, &akm1k);
                c_div(&q__1, &b[k + j * b_dim1], &q__2);
                bk.r = q__1.r;
                bk.i = q__1.i; // , expr subst
                i__2 = k - 1 + j * b_dim1;
                q__3.r = ak.r * bkm1.r - ak.i * bkm1.i;
                q__3.i = ak.r * bkm1.i + ak.i * bkm1.r; // , expr subst
                q__2.r = q__3.r - bk.r;
                q__2.i = q__3.i - bk.i; // , expr subst
                c_div(&q__1, &q__2, &denom);
                b[i__2].r = q__1.r;
                b[i__2].i = q__1.i; // , expr subst
                i__2 = k + j * b_dim1;
                q__3.r = akm1.r * bk.r - akm1.i * bk.i;
                q__3.i = akm1.r * bk.i + akm1.i * bk.r; // , expr subst
                q__2.r = q__3.r - bkm1.r;
                q__2.i = q__3.i - bkm1.i; // , expr subst
                c_div(&q__1, &q__2, &denom);
                b[i__2].r = q__1.r;
                b[i__2].i = q__1.i; // , expr subst
                /* L20: */
            }
            kc = kc - k + 1;
            k += -2;
        }
        goto L10;
L30: /* Next solve U**H *X = B, overwriting B with X. */
        /* K is the main loop index, increasing from 1 to N in steps of */
        /* 1 or 2, depending on the size of the diagonal blocks. */
        k = 1;
        kc = 1;
L40: /* If K > N, exit from loop. */
        if (k > *n)
        {
            goto L50;
        }
        if (ipiv[k] > 0)
        {
            /* 1 x 1 diagonal block */
            /* Multiply by inv(U**H(K)), where U(K) is the transformation */
            /* stored in column K of A. */
            if (k > 1)
            {
                clacgv_(nrhs, &b[k + b_dim1], ldb);
                i__1 = k - 1;
                q__1.r = -1.f;
                q__1.i = -0.f; // , expr subst
                cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[b_offset] , ldb, &ap[kc], &c__1, &c_b1, &b[k + b_dim1], ldb);
                clacgv_(nrhs, &b[k + b_dim1], ldb);
            }
            /* Interchange rows K and IPIV(K). */
            kp = ipiv[k];
            if (kp != k)
            {
                cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
            }
            kc += k;
            ++k;
        }
        else
        {
            /* 2 x 2 diagonal block */
            /* Multiply by inv(U**H(K+1)), where U(K+1) is the transformation */
            /* stored in columns K and K+1 of A. */
            if (k > 1)
            {
                clacgv_(nrhs, &b[k + b_dim1], ldb);
                i__1 = k - 1;
                q__1.r = -1.f;
                q__1.i = -0.f; // , expr subst
                cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[b_offset] , ldb, &ap[kc], &c__1, &c_b1, &b[k + b_dim1], ldb);
                clacgv_(nrhs, &b[k + b_dim1], ldb);
                clacgv_(nrhs, &b[k + 1 + b_dim1], ldb);
                i__1 = k - 1;
                q__1.r = -1.f;
                q__1.i = -0.f; // , expr subst
                cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[b_offset] , ldb, &ap[kc + k], &c__1, &c_b1, &b[k + 1 + b_dim1], ldb);
                clacgv_(nrhs, &b[k + 1 + b_dim1], ldb);
            }
            /* Interchange rows K and -IPIV(K). */
            kp = -ipiv[k];
            if (kp != k)
            {
                cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
            }
            kc = kc + (k << 1) + 1;
            k += 2;
        }
        goto L40;
L50:
        ;
    }
    else
    {
        /* Solve A*X = B, where A = L*D*L**H. */
        /* First solve L*D*X = B, overwriting B with X. */
        /* K is the main loop index, increasing from 1 to N in steps of */
        /* 1 or 2, depending on the size of the diagonal blocks. */
        k = 1;
        kc = 1;
L60: /* If K > N, exit from loop. */
        if (k > *n)
        {
            goto L80;
        }
        if (ipiv[k] > 0)
        {
            /* 1 x 1 diagonal block */
            /* Interchange rows K and IPIV(K). */
            kp = ipiv[k];
            if (kp != k)
            {
                cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
            }
            /* Multiply by inv(L(K)), where L(K) is the transformation */
            /* stored in column K of A. */
            if (k < *n)
            {
                i__1 = *n - k;
                q__1.r = -1.f;
                q__1.i = -0.f; // , expr subst
                cgeru_(&i__1, nrhs, &q__1, &ap[kc + 1], &c__1, &b[k + b_dim1], ldb, &b[k + 1 + b_dim1], ldb);
            }
            /* Multiply by the inverse of the diagonal block. */
            i__1 = kc;
            s = 1.f / ap[i__1].r;
            csscal_(nrhs, &s, &b[k + b_dim1], ldb);
            kc = kc + *n - k + 1;
            ++k;
        }
        else
        {
            /* 2 x 2 diagonal block */
            /* Interchange rows K+1 and -IPIV(K). */
            kp = -ipiv[k];
            if (kp != k + 1)
            {
                cswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
            }
            /* Multiply by inv(L(K)), where L(K) is the transformation */
            /* stored in columns K and K+1 of A. */
            if (k < *n - 1)
            {
                i__1 = *n - k - 1;
                q__1.r = -1.f;
                q__1.i = -0.f; // , expr subst
                cgeru_(&i__1, nrhs, &q__1, &ap[kc + 2], &c__1, &b[k + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
                i__1 = *n - k - 1;
                q__1.r = -1.f;
                q__1.i = -0.f; // , expr subst
                cgeru_(&i__1, nrhs, &q__1, &ap[kc + *n - k + 2], &c__1, &b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
            }
            /* Multiply by the inverse of the diagonal block. */
            i__1 = kc + 1;
            akm1k.r = ap[i__1].r;
            akm1k.i = ap[i__1].i; // , expr subst
            r_cnjg(&q__2, &akm1k);
            c_div(&q__1, &ap[kc], &q__2);
            akm1.r = q__1.r;
            akm1.i = q__1.i; // , expr subst
            c_div(&q__1, &ap[kc + *n - k + 1], &akm1k);
            ak.r = q__1.r;
            ak.i = q__1.i; // , expr subst
            q__2.r = akm1.r * ak.r - akm1.i * ak.i;
            q__2.i = akm1.r * ak.i + akm1.i * ak.r; // , expr subst
            q__1.r = q__2.r - 1.f;
            q__1.i = q__2.i - 0.f; // , expr subst
            denom.r = q__1.r;
            denom.i = q__1.i; // , expr subst
            i__1 = *nrhs;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                r_cnjg(&q__2, &akm1k);
                c_div(&q__1, &b[k + j * b_dim1], &q__2);
                bkm1.r = q__1.r;
                bkm1.i = q__1.i; // , expr subst
                c_div(&q__1, &b[k + 1 + j * b_dim1], &akm1k);
                bk.r = q__1.r;
                bk.i = q__1.i; // , expr subst
                i__2 = k + j * b_dim1;
                q__3.r = ak.r * bkm1.r - ak.i * bkm1.i;
                q__3.i = ak.r * bkm1.i + ak.i * bkm1.r; // , expr subst
                q__2.r = q__3.r - bk.r;
                q__2.i = q__3.i - bk.i; // , expr subst
                c_div(&q__1, &q__2, &denom);
                b[i__2].r = q__1.r;
                b[i__2].i = q__1.i; // , expr subst
                i__2 = k + 1 + j * b_dim1;
                q__3.r = akm1.r * bk.r - akm1.i * bk.i;
                q__3.i = akm1.r * bk.i + akm1.i * bk.r; // , expr subst
                q__2.r = q__3.r - bkm1.r;
                q__2.i = q__3.i - bkm1.i; // , expr subst
                c_div(&q__1, &q__2, &denom);
                b[i__2].r = q__1.r;
                b[i__2].i = q__1.i; // , expr subst
                /* L70: */
            }
            kc = kc + (*n - k << 1) + 1;
            k += 2;
        }
        goto L60;
L80: /* Next solve L**H *X = B, overwriting B with X. */
        /* K is the main loop index, decreasing from N to 1 in steps of */
        /* 1 or 2, depending on the size of the diagonal blocks. */
        k = *n;
        kc = *n * (*n + 1) / 2 + 1;
L90: /* If K < 1, exit from loop. */
        if (k < 1)
        {
            goto L100;
        }
        kc -= *n - k + 1;
        if (ipiv[k] > 0)
        {
            /* 1 x 1 diagonal block */
            /* Multiply by inv(L**H(K)), where L(K) is the transformation */
            /* stored in column K of A. */
            if (k < *n)
            {
                clacgv_(nrhs, &b[k + b_dim1], ldb);
                i__1 = *n - k;
                q__1.r = -1.f;
                q__1.i = -0.f; // , expr subst
                cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[k + 1 + b_dim1], ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + b_dim1], ldb);
                clacgv_(nrhs, &b[k + b_dim1], ldb);
            }
            /* Interchange rows K and IPIV(K). */
            kp = ipiv[k];
            if (kp != k)
            {
                cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
            }
            --k;
        }
        else
        {
            /* 2 x 2 diagonal block */
            /* Multiply by inv(L**H(K-1)), where L(K-1) is the transformation */
            /* stored in columns K-1 and K of A. */
            if (k < *n)
            {
                clacgv_(nrhs, &b[k + b_dim1], ldb);
                i__1 = *n - k;
                q__1.r = -1.f;
                q__1.i = -0.f; // , expr subst
                cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[k + 1 + b_dim1], ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + b_dim1], ldb);
                clacgv_(nrhs, &b[k + b_dim1], ldb);
                clacgv_(nrhs, &b[k - 1 + b_dim1], ldb);
                i__1 = *n - k;
                q__1.r = -1.f;
                q__1.i = -0.f; // , expr subst
                cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[k + 1 + b_dim1], ldb, &ap[kc - (*n - k)], &c__1, &c_b1, &b[k - 1 + b_dim1], ldb);
                clacgv_(nrhs, &b[k - 1 + b_dim1], ldb);
            }
            /* Interchange rows K and -IPIV(K). */
            kp = -ipiv[k];
            if (kp != k)
            {
                cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
            }
            kc -= *n - k + 2;
            k += -2;
        }
        goto L90;
L100:
        ;
    }
    return 0;
    /* End of CHPTRS */
}
/* chptrs_ */