1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/* ../netlib/cla_gercond_x.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
/* > \brief \b CLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices . */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CLA_GERCOND_X + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_ger cond_x.f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_ger cond_x.f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_ger cond_x.f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* REAL FUNCTION CLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF, IPIV, X, */
/* INFO, WORK, RWORK ) */
/* .. Scalar Arguments .. */
/* CHARACTER TRANS */
/* INTEGER N, LDA, LDAF, INFO */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IPIV( * ) */
/* COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * ) */
/* REAL RWORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > */
/* > CLA_GERCOND_X computes the infinity norm condition number of */
/* > op(A) * diag(X) where X is a COMPLEX vector. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > Specifies the form of the system of equations: */
/* > = 'N': A * X = B (No transpose) */
/* > = 'T': A**T * X = B (Transpose) */
/* > = 'C': A**H * X = B (Conjugate Transpose = Transpose) */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of linear equations, i.e., the order of the */
/* > matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the N-by-N matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] AF */
/* > \verbatim */
/* > AF is COMPLEX array, dimension (LDAF,N) */
/* > The factors L and U from the factorization */
/* > A = P*L*U as computed by CGETRF. */
/* > \endverbatim */
/* > */
/* > \param[in] LDAF */
/* > \verbatim */
/* > LDAF is INTEGER */
/* > The leading dimension of the array AF. LDAF >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > The pivot indices from the factorization A = P*L*U */
/* > as computed by CGETRF;
row i of the matrix was interchanged */
/* > with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[in] X */
/* > \verbatim */
/* > X is COMPLEX array, dimension (N) */
/* > The vector X in the formula op(A) * diag(X). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: Successful exit. */
/* > i > 0: The ith argument is invalid. */
/* > \endverbatim */
/* > */
/* > \param[in] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (2*N). */
/* > Workspace. */
/* > \endverbatim */
/* > */
/* > \param[in] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (N). */
/* > Workspace. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup complexGEcomputational */
/* ===================================================================== */
real cla_gercond_x_(char *trans, integer *n, complex *a, integer *lda, complex *af, integer *ldaf, integer *ipiv, complex *x, integer *info, complex *work, real *rwork)
{
/* System generated locals */
integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3, i__4;
real ret_val, r__1, r__2;
complex q__1, q__2;
/* Builtin functions */
double r_imag(complex *);
void c_div(complex *, complex *, complex *);
/* Local variables */
integer i__, j;
real tmp;
integer kase;
extern logical lsame_(char *, char *);
integer isave[3];
real anorm;
extern /* Subroutine */
int clacn2_(integer *, complex *, complex *, real *, integer *, integer *), xerbla_(char *, integer *), cgetrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *);
real ainvnm;
logical notrans;
/* -- LAPACK computational routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Statement Functions .. */
/* .. */
/* .. Statement Function Definitions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
af_dim1 = *ldaf;
af_offset = 1 + af_dim1;
af -= af_offset;
--ipiv;
--x;
--work;
--rwork;
/* Function Body */
ret_val = 0.f;
*info = 0;
notrans = lsame_(trans, "N");
if (! notrans && ! lsame_(trans, "T") && ! lsame_( trans, "C"))
{
*info = -1;
}
else if (*n < 0)
{
*info = -2;
}
else if (*lda < max(1,*n))
{
*info = -4;
}
else if (*ldaf < max(1,*n))
{
*info = -6;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("CLA_GERCOND_X", &i__1);
return ret_val;
}
/* Compute norm of op(A)*op2(C). */
anorm = 0.f;
if (notrans)
{
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
tmp = 0.f;
i__2 = *n;
for (j = 1;
j <= i__2;
++j)
{
i__3 = i__ + j * a_dim1;
i__4 = j;
q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4].i;
q__2.i = a[i__3].r * x[i__4].i + a[i__3].i * x[i__4] .r; // , expr subst
q__1.r = q__2.r;
q__1.i = q__2.i; // , expr subst
tmp += (r__1 = q__1.r, f2c_abs(r__1)) + (r__2 = r_imag(&q__1), f2c_abs(r__2));
}
rwork[i__] = tmp;
anorm = max(anorm,tmp);
}
}
else
{
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
tmp = 0.f;
i__2 = *n;
for (j = 1;
j <= i__2;
++j)
{
i__3 = j + i__ * a_dim1;
i__4 = j;
q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4].i;
q__2.i = a[i__3].r * x[i__4].i + a[i__3].i * x[i__4] .r; // , expr subst
q__1.r = q__2.r;
q__1.i = q__2.i; // , expr subst
tmp += (r__1 = q__1.r, f2c_abs(r__1)) + (r__2 = r_imag(&q__1), f2c_abs(r__2));
}
rwork[i__] = tmp;
anorm = max(anorm,tmp);
}
}
/* Quick return if possible. */
if (*n == 0)
{
ret_val = 1.f;
return ret_val;
}
else if (anorm == 0.f)
{
return ret_val;
}
/* Estimate the norm of inv(op(A)). */
ainvnm = 0.f;
kase = 0;
L10:
clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
if (kase != 0)
{
if (kase == 2)
{
/* Multiply by R. */
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
i__2 = i__;
i__3 = i__;
i__4 = i__;
q__1.r = rwork[i__4] * work[i__3].r;
q__1.i = rwork[i__4] * work[i__3].i; // , expr subst
work[i__2].r = q__1.r;
work[i__2].i = q__1.i; // , expr subst
}
if (notrans)
{
cgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info);
}
else
{
cgetrs_("Conjugate transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info);
}
/* Multiply by inv(X). */
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
i__2 = i__;
c_div(&q__1, &work[i__], &x[i__]);
work[i__2].r = q__1.r;
work[i__2].i = q__1.i; // , expr subst
}
}
else
{
/* Multiply by inv(X**H). */
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
i__2 = i__;
c_div(&q__1, &work[i__], &x[i__]);
work[i__2].r = q__1.r;
work[i__2].i = q__1.i; // , expr subst
}
if (notrans)
{
cgetrs_("Conjugate transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info);
}
else
{
cgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info);
}
/* Multiply by R. */
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
i__2 = i__;
i__3 = i__;
i__4 = i__;
q__1.r = rwork[i__4] * work[i__3].r;
q__1.i = rwork[i__4] * work[i__3].i; // , expr subst
work[i__2].r = q__1.r;
work[i__2].i = q__1.i; // , expr subst
}
}
goto L10;
}
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.f)
{
ret_val = 1.f / ainvnm;
}
return ret_val;
}
/* cla_gercond_x__ */
|