File: claesy.c

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (266 lines) | stat: -rw-r--r-- 9,604 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/* ../netlib/claesy.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
 on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static complex c_b1 =
{
    1.f,0.f
}
;
static integer c__2 = 2;
/* > \brief \b CLAESY computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CLAESY + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claesy. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claesy. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claesy. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 ) */
/* .. Scalar Arguments .. */
/* COMPLEX A, B, C, CS1, EVSCAL, RT1, RT2, SN1 */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix */
/* > ( ( A, B );
( B, C ) ) */
/* > provided the norm of the matrix of eigenvectors is larger than */
/* > some threshold value. */
/* > */
/* > RT1 is the eigenvalue of larger absolute value, and RT2 of */
/* > smaller absolute value. If the eigenvectors are computed, then */
/* > on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence */
/* > */
/* > [ CS1 SN1 ] . [ A B ] . [ CS1 -SN1 ] = [ RT1 0 ] */
/* > [ -SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ] */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX */
/* > The ( 1, 1 ) element of input matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is COMPLEX */
/* > The ( 1, 2 ) element of input matrix. The ( 2, 1 ) element */
/* > is also given by B, since the 2-by-2 matrix is symmetric. */
/* > \endverbatim */
/* > */
/* > \param[in] C */
/* > \verbatim */
/* > C is COMPLEX */
/* > The ( 2, 2 ) element of input matrix. */
/* > \endverbatim */
/* > */
/* > \param[out] RT1 */
/* > \verbatim */
/* > RT1 is COMPLEX */
/* > The eigenvalue of larger modulus. */
/* > \endverbatim */
/* > */
/* > \param[out] RT2 */
/* > \verbatim */
/* > RT2 is COMPLEX */
/* > The eigenvalue of smaller modulus. */
/* > \endverbatim */
/* > */
/* > \param[out] EVSCAL */
/* > \verbatim */
/* > EVSCAL is COMPLEX */
/* > The complex value by which the eigenvector matrix was scaled */
/* > to make it orthonormal. If EVSCAL is zero, the eigenvectors */
/* > were not computed. This means one of two things: the 2-by-2 */
/* > matrix could not be diagonalized, or the norm of the matrix */
/* > of eigenvectors before scaling was larger than the threshold */
/* > value THRESH (set below). */
/* > \endverbatim */
/* > */
/* > \param[out] CS1 */
/* > \verbatim */
/* > CS1 is COMPLEX */
/* > \endverbatim */
/* > */
/* > \param[out] SN1 */
/* > \verbatim */
/* > SN1 is COMPLEX */
/* > If EVSCAL .NE. 0, ( CS1, SN1 ) is the unit right eigenvector */
/* > for RT1. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup complexSYauxiliary */
/* ===================================================================== */
/* Subroutine */
int claesy_(complex *a, complex *b, complex *c__, complex * rt1, complex *rt2, complex *evscal, complex *cs1, complex *sn1)
{
    /* System generated locals */
    real r__1, r__2;
    complex q__1, q__2, q__3, q__4, q__5, q__6, q__7;
    /* Builtin functions */
    double c_abs(complex *);
    void pow_ci(complex *, complex *, integer *), c_sqrt(complex *, complex *) , c_div(complex *, complex *, complex *);
    /* Local variables */
    complex s, t;
    real z__;
    complex tmp;
    real babs, tabs, evnorm;
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Special case: The matrix is actually diagonal. */
    /* To avoid divide by zero later, we treat this case separately. */
    if (c_abs(b) == 0.f)
    {
        rt1->r = a->r, rt1->i = a->i;
        rt2->r = c__->r, rt2->i = c__->i;
        if (c_abs(rt1) < c_abs(rt2))
        {
            tmp.r = rt1->r;
            tmp.i = rt1->i; // , expr subst
            rt1->r = rt2->r, rt1->i = rt2->i;
            rt2->r = tmp.r, rt2->i = tmp.i;
            cs1->r = 0.f, cs1->i = 0.f;
            sn1->r = 1.f, sn1->i = 0.f;
        }
        else
        {
            cs1->r = 1.f, cs1->i = 0.f;
            sn1->r = 0.f, sn1->i = 0.f;
        }
    }
    else
    {
        /* Compute the eigenvalues and eigenvectors. */
        /* The characteristic equation is */
        /* lambda **2 - (A+C) lambda + (A*C - B*B) */
        /* and we solve it using the quadratic formula. */
        q__2.r = a->r + c__->r;
        q__2.i = a->i + c__->i; // , expr subst
        q__1.r = q__2.r * .5f;
        q__1.i = q__2.i * .5f; // , expr subst
        s.r = q__1.r;
        s.i = q__1.i; // , expr subst
        q__2.r = a->r - c__->r;
        q__2.i = a->i - c__->i; // , expr subst
        q__1.r = q__2.r * .5f;
        q__1.i = q__2.i * .5f; // , expr subst
        t.r = q__1.r;
        t.i = q__1.i; // , expr subst
        /* Take the square root carefully to avoid over/under flow. */
        babs = c_abs(b);
        tabs = c_abs(&t);
        z__ = max(babs,tabs);
        if (z__ > 0.f)
        {
            q__5.r = t.r / z__;
            q__5.i = t.i / z__; // , expr subst
            pow_ci(&q__4, &q__5, &c__2);
            q__7.r = b->r / z__;
            q__7.i = b->i / z__; // , expr subst
            pow_ci(&q__6, &q__7, &c__2);
            q__3.r = q__4.r + q__6.r;
            q__3.i = q__4.i + q__6.i; // , expr subst
            c_sqrt(&q__2, &q__3);
            q__1.r = z__ * q__2.r;
            q__1.i = z__ * q__2.i; // , expr subst
            t.r = q__1.r;
            t.i = q__1.i; // , expr subst
        }
        /* Compute the two eigenvalues. RT1 and RT2 are exchanged */
        /* if necessary so that RT1 will have the greater magnitude. */
        q__1.r = s.r + t.r;
        q__1.i = s.i + t.i; // , expr subst
        rt1->r = q__1.r, rt1->i = q__1.i;
        q__1.r = s.r - t.r;
        q__1.i = s.i - t.i; // , expr subst
        rt2->r = q__1.r, rt2->i = q__1.i;
        if (c_abs(rt1) < c_abs(rt2))
        {
            tmp.r = rt1->r;
            tmp.i = rt1->i; // , expr subst
            rt1->r = rt2->r, rt1->i = rt2->i;
            rt2->r = tmp.r, rt2->i = tmp.i;
        }
        /* Choose CS1 = 1 and SN1 to satisfy the first equation, then */
        /* scale the components of this eigenvector so that the matrix */
        /* of eigenvectors X satisfies X * X**T = I . (No scaling is */
        /* done if the norm of the eigenvalue matrix is less than THRESH.) */
        q__2.r = rt1->r - a->r;
        q__2.i = rt1->i - a->i; // , expr subst
        c_div(&q__1, &q__2, b);
        sn1->r = q__1.r, sn1->i = q__1.i;
        tabs = c_abs(sn1);
        if (tabs > 1.f)
        {
            /* Computing 2nd power */
            r__2 = 1.f / tabs;
            r__1 = r__2 * r__2;
            q__5.r = sn1->r / tabs;
            q__5.i = sn1->i / tabs; // , expr subst
            pow_ci(&q__4, &q__5, &c__2);
            q__3.r = r__1 + q__4.r;
            q__3.i = q__4.i; // , expr subst
            c_sqrt(&q__2, &q__3);
            q__1.r = tabs * q__2.r;
            q__1.i = tabs * q__2.i; // , expr subst
            t.r = q__1.r;
            t.i = q__1.i; // , expr subst
        }
        else
        {
            q__3.r = sn1->r * sn1->r - sn1->i * sn1->i;
            q__3.i = sn1->r * sn1->i + sn1->i * sn1->r; // , expr subst
            q__2.r = q__3.r + 1.f;
            q__2.i = q__3.i + 0.f; // , expr subst
            c_sqrt(&q__1, &q__2);
            t.r = q__1.r;
            t.i = q__1.i; // , expr subst
        }
        evnorm = c_abs(&t);
        if (evnorm >= .1f)
        {
            c_div(&q__1, &c_b1, &t);
            evscal->r = q__1.r, evscal->i = q__1.i;
            cs1->r = evscal->r, cs1->i = evscal->i;
            q__1.r = sn1->r * evscal->r - sn1->i * evscal->i;
            q__1.i = sn1->r * evscal->i + sn1->i * evscal->r; // , expr subst
            sn1->r = q__1.r, sn1->i = q__1.i;
        }
        else
        {
            evscal->r = 0.f, evscal->i = 0.f;
        }
    }
    return 0;
    /* End of CLAESY */
}
/* claesy_ */