1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
/* ../netlib/claesy.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static complex c_b1 =
{
1.f,0.f
}
;
static integer c__2 = 2;
/* > \brief \b CLAESY computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CLAESY + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claesy. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claesy. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claesy. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 ) */
/* .. Scalar Arguments .. */
/* COMPLEX A, B, C, CS1, EVSCAL, RT1, RT2, SN1 */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix */
/* > ( ( A, B );
( B, C ) ) */
/* > provided the norm of the matrix of eigenvectors is larger than */
/* > some threshold value. */
/* > */
/* > RT1 is the eigenvalue of larger absolute value, and RT2 of */
/* > smaller absolute value. If the eigenvectors are computed, then */
/* > on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence */
/* > */
/* > [ CS1 SN1 ] . [ A B ] . [ CS1 -SN1 ] = [ RT1 0 ] */
/* > [ -SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ] */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX */
/* > The ( 1, 1 ) element of input matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is COMPLEX */
/* > The ( 1, 2 ) element of input matrix. The ( 2, 1 ) element */
/* > is also given by B, since the 2-by-2 matrix is symmetric. */
/* > \endverbatim */
/* > */
/* > \param[in] C */
/* > \verbatim */
/* > C is COMPLEX */
/* > The ( 2, 2 ) element of input matrix. */
/* > \endverbatim */
/* > */
/* > \param[out] RT1 */
/* > \verbatim */
/* > RT1 is COMPLEX */
/* > The eigenvalue of larger modulus. */
/* > \endverbatim */
/* > */
/* > \param[out] RT2 */
/* > \verbatim */
/* > RT2 is COMPLEX */
/* > The eigenvalue of smaller modulus. */
/* > \endverbatim */
/* > */
/* > \param[out] EVSCAL */
/* > \verbatim */
/* > EVSCAL is COMPLEX */
/* > The complex value by which the eigenvector matrix was scaled */
/* > to make it orthonormal. If EVSCAL is zero, the eigenvectors */
/* > were not computed. This means one of two things: the 2-by-2 */
/* > matrix could not be diagonalized, or the norm of the matrix */
/* > of eigenvectors before scaling was larger than the threshold */
/* > value THRESH (set below). */
/* > \endverbatim */
/* > */
/* > \param[out] CS1 */
/* > \verbatim */
/* > CS1 is COMPLEX */
/* > \endverbatim */
/* > */
/* > \param[out] SN1 */
/* > \verbatim */
/* > SN1 is COMPLEX */
/* > If EVSCAL .NE. 0, ( CS1, SN1 ) is the unit right eigenvector */
/* > for RT1. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup complexSYauxiliary */
/* ===================================================================== */
/* Subroutine */
int claesy_(complex *a, complex *b, complex *c__, complex * rt1, complex *rt2, complex *evscal, complex *cs1, complex *sn1)
{
/* System generated locals */
real r__1, r__2;
complex q__1, q__2, q__3, q__4, q__5, q__6, q__7;
/* Builtin functions */
double c_abs(complex *);
void pow_ci(complex *, complex *, integer *), c_sqrt(complex *, complex *) , c_div(complex *, complex *, complex *);
/* Local variables */
complex s, t;
real z__;
complex tmp;
real babs, tabs, evnorm;
/* -- LAPACK auxiliary routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Special case: The matrix is actually diagonal. */
/* To avoid divide by zero later, we treat this case separately. */
if (c_abs(b) == 0.f)
{
rt1->r = a->r, rt1->i = a->i;
rt2->r = c__->r, rt2->i = c__->i;
if (c_abs(rt1) < c_abs(rt2))
{
tmp.r = rt1->r;
tmp.i = rt1->i; // , expr subst
rt1->r = rt2->r, rt1->i = rt2->i;
rt2->r = tmp.r, rt2->i = tmp.i;
cs1->r = 0.f, cs1->i = 0.f;
sn1->r = 1.f, sn1->i = 0.f;
}
else
{
cs1->r = 1.f, cs1->i = 0.f;
sn1->r = 0.f, sn1->i = 0.f;
}
}
else
{
/* Compute the eigenvalues and eigenvectors. */
/* The characteristic equation is */
/* lambda **2 - (A+C) lambda + (A*C - B*B) */
/* and we solve it using the quadratic formula. */
q__2.r = a->r + c__->r;
q__2.i = a->i + c__->i; // , expr subst
q__1.r = q__2.r * .5f;
q__1.i = q__2.i * .5f; // , expr subst
s.r = q__1.r;
s.i = q__1.i; // , expr subst
q__2.r = a->r - c__->r;
q__2.i = a->i - c__->i; // , expr subst
q__1.r = q__2.r * .5f;
q__1.i = q__2.i * .5f; // , expr subst
t.r = q__1.r;
t.i = q__1.i; // , expr subst
/* Take the square root carefully to avoid over/under flow. */
babs = c_abs(b);
tabs = c_abs(&t);
z__ = max(babs,tabs);
if (z__ > 0.f)
{
q__5.r = t.r / z__;
q__5.i = t.i / z__; // , expr subst
pow_ci(&q__4, &q__5, &c__2);
q__7.r = b->r / z__;
q__7.i = b->i / z__; // , expr subst
pow_ci(&q__6, &q__7, &c__2);
q__3.r = q__4.r + q__6.r;
q__3.i = q__4.i + q__6.i; // , expr subst
c_sqrt(&q__2, &q__3);
q__1.r = z__ * q__2.r;
q__1.i = z__ * q__2.i; // , expr subst
t.r = q__1.r;
t.i = q__1.i; // , expr subst
}
/* Compute the two eigenvalues. RT1 and RT2 are exchanged */
/* if necessary so that RT1 will have the greater magnitude. */
q__1.r = s.r + t.r;
q__1.i = s.i + t.i; // , expr subst
rt1->r = q__1.r, rt1->i = q__1.i;
q__1.r = s.r - t.r;
q__1.i = s.i - t.i; // , expr subst
rt2->r = q__1.r, rt2->i = q__1.i;
if (c_abs(rt1) < c_abs(rt2))
{
tmp.r = rt1->r;
tmp.i = rt1->i; // , expr subst
rt1->r = rt2->r, rt1->i = rt2->i;
rt2->r = tmp.r, rt2->i = tmp.i;
}
/* Choose CS1 = 1 and SN1 to satisfy the first equation, then */
/* scale the components of this eigenvector so that the matrix */
/* of eigenvectors X satisfies X * X**T = I . (No scaling is */
/* done if the norm of the eigenvalue matrix is less than THRESH.) */
q__2.r = rt1->r - a->r;
q__2.i = rt1->i - a->i; // , expr subst
c_div(&q__1, &q__2, b);
sn1->r = q__1.r, sn1->i = q__1.i;
tabs = c_abs(sn1);
if (tabs > 1.f)
{
/* Computing 2nd power */
r__2 = 1.f / tabs;
r__1 = r__2 * r__2;
q__5.r = sn1->r / tabs;
q__5.i = sn1->i / tabs; // , expr subst
pow_ci(&q__4, &q__5, &c__2);
q__3.r = r__1 + q__4.r;
q__3.i = q__4.i; // , expr subst
c_sqrt(&q__2, &q__3);
q__1.r = tabs * q__2.r;
q__1.i = tabs * q__2.i; // , expr subst
t.r = q__1.r;
t.i = q__1.i; // , expr subst
}
else
{
q__3.r = sn1->r * sn1->r - sn1->i * sn1->i;
q__3.i = sn1->r * sn1->i + sn1->i * sn1->r; // , expr subst
q__2.r = q__3.r + 1.f;
q__2.i = q__3.i + 0.f; // , expr subst
c_sqrt(&q__1, &q__2);
t.r = q__1.r;
t.i = q__1.i; // , expr subst
}
evnorm = c_abs(&t);
if (evnorm >= .1f)
{
c_div(&q__1, &c_b1, &t);
evscal->r = q__1.r, evscal->i = q__1.i;
cs1->r = evscal->r, cs1->i = evscal->i;
q__1.r = sn1->r * evscal->r - sn1->i * evscal->i;
q__1.i = sn1->r * evscal->i + sn1->i * evscal->r; // , expr subst
sn1->r = q__1.r, sn1->i = q__1.i;
}
else
{
evscal->r = 0.f, evscal->i = 0.f;
}
}
return 0;
/* End of CLAESY */
}
/* claesy_ */
|