1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/* ../netlib/clangt.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
/* > \brief \b CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CLANGT + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clangt. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clangt. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clangt. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* REAL FUNCTION CLANGT( NORM, N, DL, D, DU ) */
/* .. Scalar Arguments .. */
/* CHARACTER NORM */
/* INTEGER N */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX D( * ), DL( * ), DU( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CLANGT returns the value of the one norm, or the Frobenius norm, or */
/* > the infinity norm, or the element of largest absolute value of a */
/* > complex tridiagonal matrix A. */
/* > \endverbatim */
/* > */
/* > \return CLANGT */
/* > \verbatim */
/* > */
/* > CLANGT = ( max(f2c_abs(A(i,j))), NORM = 'M' or 'm' */
/* > ( */
/* > ( norm1(A), NORM = '1', 'O' or 'o' */
/* > ( */
/* > ( normI(A), NORM = 'I' or 'i' */
/* > ( */
/* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
/* > */
/* > where norm1 denotes the one norm of a matrix (maximum column sum), */
/* > normI denotes the infinity norm of a matrix (maximum row sum) and */
/* > normF denotes the Frobenius norm of a matrix (square root of sum of */
/* > squares). Note that max(f2c_abs(A(i,j))) is not a consistent matrix norm. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] NORM */
/* > \verbatim */
/* > NORM is CHARACTER*1 */
/* > Specifies the value to be returned in CLANGT as described */
/* > above. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. When N = 0, CLANGT is */
/* > set to zero. */
/* > \endverbatim */
/* > */
/* > \param[in] DL */
/* > \verbatim */
/* > DL is COMPLEX array, dimension (N-1) */
/* > The (n-1) sub-diagonal elements of A. */
/* > \endverbatim */
/* > */
/* > \param[in] D */
/* > \verbatim */
/* > D is COMPLEX array, dimension (N) */
/* > The diagonal elements of A. */
/* > \endverbatim */
/* > */
/* > \param[in] DU */
/* > \verbatim */
/* > DU is COMPLEX array, dimension (N-1) */
/* > The (n-1) super-diagonal elements of A. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup complexOTHERauxiliary */
/* ===================================================================== */
real clangt_(char *norm, integer *n, complex *dl, complex *d__, complex *du)
{
/* System generated locals */
integer i__1;
real ret_val, r__1;
/* Builtin functions */
double c_abs(complex *), sqrt(doublereal);
/* Local variables */
integer i__;
real sum, temp, scale;
extern logical lsame_(char *, char *);
real anorm;
extern /* Subroutine */
int classq_(integer *, complex *, integer *, real *, real *);
extern logical sisnan_(real *);
/* -- LAPACK auxiliary routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--du;
--d__;
--dl;
/* Function Body */
if (*n <= 0)
{
anorm = 0.f;
}
else if (lsame_(norm, "M"))
{
/* Find max(f2c_abs(A(i,j))). */
anorm = c_abs(&d__[*n]);
i__1 = *n - 1;
for (i__ = 1;
i__ <= i__1;
++i__)
{
r__1 = c_abs(&dl[i__]);
if (anorm < c_abs(&dl[i__]) || sisnan_(&r__1))
{
anorm = c_abs(&dl[i__]);
}
r__1 = c_abs(&d__[i__]);
if (anorm < c_abs(&d__[i__]) || sisnan_(&r__1))
{
anorm = c_abs(&d__[i__]);
}
r__1 = c_abs(&du[i__]);
if (anorm < c_abs(&du[i__]) || sisnan_(&r__1))
{
anorm = c_abs(&du[i__]);
}
/* L10: */
}
}
else if (lsame_(norm, "O") || *(unsigned char *) norm == '1')
{
/* Find norm1(A). */
if (*n == 1)
{
anorm = c_abs(&d__[1]);
}
else
{
anorm = c_abs(&d__[1]) + c_abs(&dl[1]);
temp = c_abs(&d__[*n]) + c_abs(&du[*n - 1]);
if (anorm < temp || sisnan_(&temp))
{
anorm = temp;
}
i__1 = *n - 1;
for (i__ = 2;
i__ <= i__1;
++i__)
{
temp = c_abs(&d__[i__]) + c_abs(&dl[i__]) + c_abs(&du[i__ - 1] );
if (anorm < temp || sisnan_(&temp))
{
anorm = temp;
}
/* L20: */
}
}
}
else if (lsame_(norm, "I"))
{
/* Find normI(A). */
if (*n == 1)
{
anorm = c_abs(&d__[1]);
}
else
{
anorm = c_abs(&d__[1]) + c_abs(&du[1]);
temp = c_abs(&d__[*n]) + c_abs(&dl[*n - 1]);
if (anorm < temp || sisnan_(&temp))
{
anorm = temp;
}
i__1 = *n - 1;
for (i__ = 2;
i__ <= i__1;
++i__)
{
temp = c_abs(&d__[i__]) + c_abs(&du[i__]) + c_abs(&dl[i__ - 1] );
if (anorm < temp || sisnan_(&temp))
{
anorm = temp;
}
/* L30: */
}
}
}
else if (lsame_(norm, "F") || lsame_(norm, "E"))
{
/* Find normF(A). */
scale = 0.f;
sum = 1.f;
classq_(n, &d__[1], &c__1, &scale, &sum);
if (*n > 1)
{
i__1 = *n - 1;
classq_(&i__1, &dl[1], &c__1, &scale, &sum);
i__1 = *n - 1;
classq_(&i__1, &du[1], &c__1, &scale, &sum);
}
anorm = scale * sqrt(sum);
}
ret_val = anorm;
return ret_val;
/* End of CLANGT */
}
/* clangt_ */
|