1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
/* ../netlib/clartg.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* > \brief \b CLARTG generates a plane rotation with real cosine and complex sine. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CLARTG + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clartg. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clartg. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clartg. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CLARTG( F, G, CS, SN, R ) */
/* .. Scalar Arguments .. */
/* REAL CS */
/* COMPLEX F, G, R, SN */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CLARTG generates a plane rotation so that */
/* > */
/* > [ CS SN ] [ F ] [ R ] */
/* > [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1. */
/* > [ -SN CS ] [ G ] [ 0 ] */
/* > */
/* > This is a faster version of the BLAS1 routine CROTG, except for */
/* > the following differences: */
/* > F and G are unchanged on return. */
/* > If G=0, then CS=1 and SN=0. */
/* > If F=0, then CS=0 and SN is chosen so that R is real. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] F */
/* > \verbatim */
/* > F is COMPLEX */
/* > The first component of vector to be rotated. */
/* > \endverbatim */
/* > */
/* > \param[in] G */
/* > \verbatim */
/* > G is COMPLEX */
/* > The second component of vector to be rotated. */
/* > \endverbatim */
/* > */
/* > \param[out] CS */
/* > \verbatim */
/* > CS is REAL */
/* > The cosine of the rotation. */
/* > \endverbatim */
/* > */
/* > \param[out] SN */
/* > \verbatim */
/* > SN is COMPLEX */
/* > The sine of the rotation. */
/* > \endverbatim */
/* > */
/* > \param[out] R */
/* > \verbatim */
/* > R is COMPLEX */
/* > The nonzero component of the rotated vector. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2013 */
/* > \ingroup complexOTHERauxiliary */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > 3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel */
/* > */
/* > This version has a few statements commented out for thread safety */
/* > (machine parameters are computed on each entry). 10 feb 03, SJH. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */
int clartg_(complex *f, complex *g, real *cs, complex *sn, complex *r__)
{
/* System generated locals */
integer i__1;
real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;
complex q__1, q__2, q__3;
/* Builtin functions */
double log(doublereal), pow_ri(real *, integer *), r_imag(complex *), c_abs(complex *), sqrt(doublereal);
void r_cnjg(complex *, complex *);
/* Local variables */
real d__;
integer i__;
real f2, g2;
complex ff;
real di, dr;
complex fs, gs;
real f2s, g2s, eps, scale;
integer count;
real safmn2, safmx2;
extern real slapy2_(real *, real *), slamch_(char *);
real safmin;
extern logical sisnan_(real *);
/* -- LAPACK auxiliary routine (version 3.5.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2013 */
/* .. Scalar Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* LOGICAL FIRST */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Statement Functions .. */
/* .. */
/* .. Statement Function definitions .. */
/* .. */
/* .. Executable Statements .. */
safmin = slamch_("S");
eps = slamch_("E");
r__1 = slamch_("B");
i__1 = (integer) (log(safmin / eps) / log(slamch_("B")) / 2.f);
safmn2 = pow_ri(&r__1, &i__1);
safmx2 = 1.f / safmn2;
/* Computing MAX */
/* Computing MAX */
r__7 = (r__1 = f->r, f2c_abs(r__1));
r__8 = (r__2 = r_imag(f), f2c_abs(r__2)); // , expr subst
/* Computing MAX */
r__9 = (r__3 = g->r, f2c_abs(r__3));
r__10 = (r__4 = r_imag(g), f2c_abs(r__4)); // , expr subst
r__5 = max(r__7,r__8);
r__6 = max(r__9,r__10); // , expr subst
scale = max(r__5,r__6);
fs.r = f->r;
fs.i = f->i; // , expr subst
gs.r = g->r;
gs.i = g->i; // , expr subst
count = 0;
if (scale >= safmx2)
{
L10:
++count;
q__1.r = safmn2 * fs.r;
q__1.i = safmn2 * fs.i; // , expr subst
fs.r = q__1.r;
fs.i = q__1.i; // , expr subst
q__1.r = safmn2 * gs.r;
q__1.i = safmn2 * gs.i; // , expr subst
gs.r = q__1.r;
gs.i = q__1.i; // , expr subst
scale *= safmn2;
if (scale >= safmx2)
{
goto L10;
}
}
else if (scale <= safmn2)
{
r__1 = c_abs(g);
if (g->r == 0.f && g->i == 0.f || sisnan_(&r__1))
{
*cs = 1.f;
sn->r = 0.f, sn->i = 0.f;
r__->r = f->r, r__->i = f->i;
return 0;
}
L20:
--count;
q__1.r = safmx2 * fs.r;
q__1.i = safmx2 * fs.i; // , expr subst
fs.r = q__1.r;
fs.i = q__1.i; // , expr subst
q__1.r = safmx2 * gs.r;
q__1.i = safmx2 * gs.i; // , expr subst
gs.r = q__1.r;
gs.i = q__1.i; // , expr subst
scale *= safmx2;
if (scale <= safmn2)
{
goto L20;
}
}
/* Computing 2nd power */
r__1 = fs.r;
/* Computing 2nd power */
r__2 = r_imag(&fs);
f2 = r__1 * r__1 + r__2 * r__2;
/* Computing 2nd power */
r__1 = gs.r;
/* Computing 2nd power */
r__2 = r_imag(&gs);
g2 = r__1 * r__1 + r__2 * r__2;
if (f2 <= max(g2,1.f) * safmin)
{
/* This is a rare case: F is very small. */
if (f->r == 0.f && f->i == 0.f)
{
*cs = 0.f;
r__2 = g->r;
r__3 = r_imag(g);
r__1 = slapy2_(&r__2, &r__3);
r__->r = r__1, r__->i = 0.f;
/* Do complex/real division explicitly with two real divisions */
r__1 = gs.r;
r__2 = r_imag(&gs);
d__ = slapy2_(&r__1, &r__2);
r__1 = gs.r / d__;
r__2 = -r_imag(&gs) / d__;
q__1.r = r__1;
q__1.i = r__2; // , expr subst
sn->r = q__1.r, sn->i = q__1.i;
return 0;
}
r__1 = fs.r;
r__2 = r_imag(&fs);
f2s = slapy2_(&r__1, &r__2);
/* G2 and G2S are accurate */
/* G2 is at least SAFMIN, and G2S is at least SAFMN2 */
g2s = sqrt(g2);
/* Error in CS from underflow in F2S is at most */
/* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS */
/* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, */
/* and so CS .lt. sqrt(SAFMIN) */
/* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN */
/* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) */
/* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S */
*cs = f2s / g2s;
/* Make sure f2c_abs(FF) = 1 */
/* Do complex/real division explicitly with 2 real divisions */
/* Computing MAX */
r__3 = (r__1 = f->r, f2c_abs(r__1));
r__4 = (r__2 = r_imag(f), f2c_abs(r__2)); // , expr subst
if (max(r__3,r__4) > 1.f)
{
r__1 = f->r;
r__2 = r_imag(f);
d__ = slapy2_(&r__1, &r__2);
r__1 = f->r / d__;
r__2 = r_imag(f) / d__;
q__1.r = r__1;
q__1.i = r__2; // , expr subst
ff.r = q__1.r;
ff.i = q__1.i; // , expr subst
}
else
{
dr = safmx2 * f->r;
di = safmx2 * r_imag(f);
d__ = slapy2_(&dr, &di);
r__1 = dr / d__;
r__2 = di / d__;
q__1.r = r__1;
q__1.i = r__2; // , expr subst
ff.r = q__1.r;
ff.i = q__1.i; // , expr subst
}
r__1 = gs.r / g2s;
r__2 = -r_imag(&gs) / g2s;
q__2.r = r__1;
q__2.i = r__2; // , expr subst
q__1.r = ff.r * q__2.r - ff.i * q__2.i;
q__1.i = ff.r * q__2.i + ff.i * q__2.r; // , expr subst
sn->r = q__1.r, sn->i = q__1.i;
q__2.r = *cs * f->r;
q__2.i = *cs * f->i; // , expr subst
q__3.r = sn->r * g->r - sn->i * g->i;
q__3.i = sn->r * g->i + sn->i * g->r; // , expr subst
q__1.r = q__2.r + q__3.r;
q__1.i = q__2.i + q__3.i; // , expr subst
r__->r = q__1.r, r__->i = q__1.i;
}
else
{
/* This is the most common case. */
/* Neither F2 nor F2/G2 are less than SAFMIN */
/* F2S cannot overflow, and it is accurate */
f2s = sqrt(g2 / f2 + 1.f);
/* Do the F2S(real)*FS(complex) multiply with two real multiplies */
r__1 = f2s * fs.r;
r__2 = f2s * r_imag(&fs);
q__1.r = r__1;
q__1.i = r__2; // , expr subst
r__->r = q__1.r, r__->i = q__1.i;
*cs = 1.f / f2s;
d__ = f2 + g2;
/* Do complex/real division explicitly with two real divisions */
r__1 = r__->r / d__;
r__2 = r_imag(r__) / d__;
q__1.r = r__1;
q__1.i = r__2; // , expr subst
sn->r = q__1.r, sn->i = q__1.i;
r_cnjg(&q__2, &gs);
q__1.r = sn->r * q__2.r - sn->i * q__2.i;
q__1.i = sn->r * q__2.i + sn->i * q__2.r; // , expr subst
sn->r = q__1.r, sn->i = q__1.i;
if (count != 0)
{
if (count > 0)
{
i__1 = count;
for (i__ = 1;
i__ <= i__1;
++i__)
{
q__1.r = safmx2 * r__->r;
q__1.i = safmx2 * r__->i; // , expr subst
r__->r = q__1.r, r__->i = q__1.i;
/* L30: */
}
}
else
{
i__1 = -count;
for (i__ = 1;
i__ <= i__1;
++i__)
{
q__1.r = safmn2 * r__->r;
q__1.i = safmn2 * r__->i; // , expr subst
r__->r = q__1.r, r__->i = q__1.i;
/* L40: */
}
}
}
}
return 0;
/* End of CLARTG */
}
/* clartg_ */
|