File: clartg.c

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (346 lines) | stat: -rw-r--r-- 11,493 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/* ../netlib/clartg.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
 on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* > \brief \b CLARTG generates a plane rotation with real cosine and complex sine. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CLARTG + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clartg. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clartg. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clartg. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CLARTG( F, G, CS, SN, R ) */
/* .. Scalar Arguments .. */
/* REAL CS */
/* COMPLEX F, G, R, SN */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CLARTG generates a plane rotation so that */
/* > */
/* > [ CS SN ] [ F ] [ R ] */
/* > [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1. */
/* > [ -SN CS ] [ G ] [ 0 ] */
/* > */
/* > This is a faster version of the BLAS1 routine CROTG, except for */
/* > the following differences: */
/* > F and G are unchanged on return. */
/* > If G=0, then CS=1 and SN=0. */
/* > If F=0, then CS=0 and SN is chosen so that R is real. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] F */
/* > \verbatim */
/* > F is COMPLEX */
/* > The first component of vector to be rotated. */
/* > \endverbatim */
/* > */
/* > \param[in] G */
/* > \verbatim */
/* > G is COMPLEX */
/* > The second component of vector to be rotated. */
/* > \endverbatim */
/* > */
/* > \param[out] CS */
/* > \verbatim */
/* > CS is REAL */
/* > The cosine of the rotation. */
/* > \endverbatim */
/* > */
/* > \param[out] SN */
/* > \verbatim */
/* > SN is COMPLEX */
/* > The sine of the rotation. */
/* > \endverbatim */
/* > */
/* > \param[out] R */
/* > \verbatim */
/* > R is COMPLEX */
/* > The nonzero component of the rotated vector. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2013 */
/* > \ingroup complexOTHERauxiliary */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > 3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel */
/* > */
/* > This version has a few statements commented out for thread safety */
/* > (machine parameters are computed on each entry). 10 feb 03, SJH. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */
int clartg_(complex *f, complex *g, real *cs, complex *sn, complex *r__)
{
    /* System generated locals */
    integer i__1;
    real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;
    complex q__1, q__2, q__3;
    /* Builtin functions */
    double log(doublereal), pow_ri(real *, integer *), r_imag(complex *), c_abs(complex *), sqrt(doublereal);
    void r_cnjg(complex *, complex *);
    /* Local variables */
    real d__;
    integer i__;
    real f2, g2;
    complex ff;
    real di, dr;
    complex fs, gs;
    real f2s, g2s, eps, scale;
    integer count;
    real safmn2, safmx2;
    extern real slapy2_(real *, real *), slamch_(char *);
    real safmin;
    extern logical sisnan_(real *);
    /* -- LAPACK auxiliary routine (version 3.5.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2013 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* LOGICAL FIRST */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Statement Functions .. */
    /* .. */
    /* .. Statement Function definitions .. */
    /* .. */
    /* .. Executable Statements .. */
    safmin = slamch_("S");
    eps = slamch_("E");
    r__1 = slamch_("B");
    i__1 = (integer) (log(safmin / eps) / log(slamch_("B")) / 2.f);
    safmn2 = pow_ri(&r__1, &i__1);
    safmx2 = 1.f / safmn2;
    /* Computing MAX */
    /* Computing MAX */
    r__7 = (r__1 = f->r, f2c_abs(r__1));
    r__8 = (r__2 = r_imag(f), f2c_abs(r__2)); // , expr subst
    /* Computing MAX */
    r__9 = (r__3 = g->r, f2c_abs(r__3));
    r__10 = (r__4 = r_imag(g), f2c_abs(r__4)); // , expr subst
    r__5 = max(r__7,r__8);
    r__6 = max(r__9,r__10); // , expr subst
    scale = max(r__5,r__6);
    fs.r = f->r;
    fs.i = f->i; // , expr subst
    gs.r = g->r;
    gs.i = g->i; // , expr subst
    count = 0;
    if (scale >= safmx2)
    {
L10:
        ++count;
        q__1.r = safmn2 * fs.r;
        q__1.i = safmn2 * fs.i; // , expr subst
        fs.r = q__1.r;
        fs.i = q__1.i; // , expr subst
        q__1.r = safmn2 * gs.r;
        q__1.i = safmn2 * gs.i; // , expr subst
        gs.r = q__1.r;
        gs.i = q__1.i; // , expr subst
        scale *= safmn2;
        if (scale >= safmx2)
        {
            goto L10;
        }
    }
    else if (scale <= safmn2)
    {
        r__1 = c_abs(g);
        if (g->r == 0.f && g->i == 0.f || sisnan_(&r__1))
        {
            *cs = 1.f;
            sn->r = 0.f, sn->i = 0.f;
            r__->r = f->r, r__->i = f->i;
            return 0;
        }
L20:
        --count;
        q__1.r = safmx2 * fs.r;
        q__1.i = safmx2 * fs.i; // , expr subst
        fs.r = q__1.r;
        fs.i = q__1.i; // , expr subst
        q__1.r = safmx2 * gs.r;
        q__1.i = safmx2 * gs.i; // , expr subst
        gs.r = q__1.r;
        gs.i = q__1.i; // , expr subst
        scale *= safmx2;
        if (scale <= safmn2)
        {
            goto L20;
        }
    }
    /* Computing 2nd power */
    r__1 = fs.r;
    /* Computing 2nd power */
    r__2 = r_imag(&fs);
    f2 = r__1 * r__1 + r__2 * r__2;
    /* Computing 2nd power */
    r__1 = gs.r;
    /* Computing 2nd power */
    r__2 = r_imag(&gs);
    g2 = r__1 * r__1 + r__2 * r__2;
    if (f2 <= max(g2,1.f) * safmin)
    {
        /* This is a rare case: F is very small. */
        if (f->r == 0.f && f->i == 0.f)
        {
            *cs = 0.f;
            r__2 = g->r;
            r__3 = r_imag(g);
            r__1 = slapy2_(&r__2, &r__3);
            r__->r = r__1, r__->i = 0.f;
            /* Do complex/real division explicitly with two real divisions */
            r__1 = gs.r;
            r__2 = r_imag(&gs);
            d__ = slapy2_(&r__1, &r__2);
            r__1 = gs.r / d__;
            r__2 = -r_imag(&gs) / d__;
            q__1.r = r__1;
            q__1.i = r__2; // , expr subst
            sn->r = q__1.r, sn->i = q__1.i;
            return 0;
        }
        r__1 = fs.r;
        r__2 = r_imag(&fs);
        f2s = slapy2_(&r__1, &r__2);
        /* G2 and G2S are accurate */
        /* G2 is at least SAFMIN, and G2S is at least SAFMN2 */
        g2s = sqrt(g2);
        /* Error in CS from underflow in F2S is at most */
        /* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS */
        /* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, */
        /* and so CS .lt. sqrt(SAFMIN) */
        /* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN */
        /* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) */
        /* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S */
        *cs = f2s / g2s;
        /* Make sure f2c_abs(FF) = 1 */
        /* Do complex/real division explicitly with 2 real divisions */
        /* Computing MAX */
        r__3 = (r__1 = f->r, f2c_abs(r__1));
        r__4 = (r__2 = r_imag(f), f2c_abs(r__2)); // , expr subst
        if (max(r__3,r__4) > 1.f)
        {
            r__1 = f->r;
            r__2 = r_imag(f);
            d__ = slapy2_(&r__1, &r__2);
            r__1 = f->r / d__;
            r__2 = r_imag(f) / d__;
            q__1.r = r__1;
            q__1.i = r__2; // , expr subst
            ff.r = q__1.r;
            ff.i = q__1.i; // , expr subst
        }
        else
        {
            dr = safmx2 * f->r;
            di = safmx2 * r_imag(f);
            d__ = slapy2_(&dr, &di);
            r__1 = dr / d__;
            r__2 = di / d__;
            q__1.r = r__1;
            q__1.i = r__2; // , expr subst
            ff.r = q__1.r;
            ff.i = q__1.i; // , expr subst
        }
        r__1 = gs.r / g2s;
        r__2 = -r_imag(&gs) / g2s;
        q__2.r = r__1;
        q__2.i = r__2; // , expr subst
        q__1.r = ff.r * q__2.r - ff.i * q__2.i;
        q__1.i = ff.r * q__2.i + ff.i * q__2.r; // , expr subst
        sn->r = q__1.r, sn->i = q__1.i;
        q__2.r = *cs * f->r;
        q__2.i = *cs * f->i; // , expr subst
        q__3.r = sn->r * g->r - sn->i * g->i;
        q__3.i = sn->r * g->i + sn->i * g->r; // , expr subst
        q__1.r = q__2.r + q__3.r;
        q__1.i = q__2.i + q__3.i; // , expr subst
        r__->r = q__1.r, r__->i = q__1.i;
    }
    else
    {
        /* This is the most common case. */
        /* Neither F2 nor F2/G2 are less than SAFMIN */
        /* F2S cannot overflow, and it is accurate */
        f2s = sqrt(g2 / f2 + 1.f);
        /* Do the F2S(real)*FS(complex) multiply with two real multiplies */
        r__1 = f2s * fs.r;
        r__2 = f2s * r_imag(&fs);
        q__1.r = r__1;
        q__1.i = r__2; // , expr subst
        r__->r = q__1.r, r__->i = q__1.i;
        *cs = 1.f / f2s;
        d__ = f2 + g2;
        /* Do complex/real division explicitly with two real divisions */
        r__1 = r__->r / d__;
        r__2 = r_imag(r__) / d__;
        q__1.r = r__1;
        q__1.i = r__2; // , expr subst
        sn->r = q__1.r, sn->i = q__1.i;
        r_cnjg(&q__2, &gs);
        q__1.r = sn->r * q__2.r - sn->i * q__2.i;
        q__1.i = sn->r * q__2.i + sn->i * q__2.r; // , expr subst
        sn->r = q__1.r, sn->i = q__1.i;
        if (count != 0)
        {
            if (count > 0)
            {
                i__1 = count;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    q__1.r = safmx2 * r__->r;
                    q__1.i = safmx2 * r__->i; // , expr subst
                    r__->r = q__1.r, r__->i = q__1.i;
                    /* L30: */
                }
            }
            else
            {
                i__1 = -count;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    q__1.r = safmn2 * r__->r;
                    q__1.i = safmn2 * r__->i; // , expr subst
                    r__->r = q__1.r, r__->i = q__1.i;
                    /* L40: */
                }
            }
        }
    }
    return 0;
    /* End of CLARTG */
}
/* clartg_ */