File: ctpttf.c

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (700 lines) | stat: -rw-r--r-- 22,691 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/* ../netlib/ctpttf.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
 on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* > \brief \b CTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF). */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CTPTTF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctpttf. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctpttf. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctpttf. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CTPTTF( TRANSR, UPLO, N, AP, ARF, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER TRANSR, UPLO */
/* INTEGER INFO, N */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX AP( 0: * ), ARF( 0: * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CTPTTF copies a triangular matrix A from standard packed format (TP) */
/* > to rectangular full packed format (TF). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] TRANSR */
/* > \verbatim */
/* > TRANSR is CHARACTER*1 */
/* > = 'N': ARF in Normal format is wanted;
*/
/* > = 'C': ARF in Conjugate-transpose format is wanted. */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': A is upper triangular;
*/
/* > = 'L': A is lower triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AP */
/* > \verbatim */
/* > AP is COMPLEX array, dimension ( N*(N+1)/2 ), */
/* > On entry, the upper or lower triangular matrix A, packed */
/* > columnwise in a linear array. The j-th column of A is stored */
/* > in the array AP as follows: */
/* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*/
/* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/* > \endverbatim */
/* > */
/* > \param[out] ARF */
/* > \verbatim */
/* > ARF is COMPLEX array, dimension ( N*(N+1)/2 ), */
/* > On exit, the upper or lower triangular matrix A stored in */
/* > RFP format. For a further discussion see Notes below. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup complexOTHERcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > We first consider Standard Packed Format when N is even. */
/* > We give an example where N = 6. */
/* > */
/* > AP is Upper AP is Lower */
/* > */
/* > 00 01 02 03 04 05 00 */
/* > 11 12 13 14 15 10 11 */
/* > 22 23 24 25 20 21 22 */
/* > 33 34 35 30 31 32 33 */
/* > 44 45 40 41 42 43 44 */
/* > 55 50 51 52 53 54 55 */
/* > */
/* > */
/* > Let TRANSR = 'N'. RFP holds AP as follows: */
/* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
/* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
/* > conjugate-transpose of the first three columns of AP upper. */
/* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
/* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
/* > conjugate-transpose of the last three columns of AP lower. */
/* > To denote conjugate we place -- above the element. This covers the */
/* > case N even and TRANSR = 'N'. */
/* > */
/* > RFP A RFP A */
/* > */
/* > -- -- -- */
/* > 03 04 05 33 43 53 */
/* > -- -- */
/* > 13 14 15 00 44 54 */
/* > -- */
/* > 23 24 25 10 11 55 */
/* > */
/* > 33 34 35 20 21 22 */
/* > -- */
/* > 00 44 45 30 31 32 */
/* > -- -- */
/* > 01 11 55 40 41 42 */
/* > -- -- -- */
/* > 02 12 22 50 51 52 */
/* > */
/* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
/* > transpose of RFP A above. One therefore gets: */
/* > */
/* > */
/* > RFP A RFP A */
/* > */
/* > -- -- -- -- -- -- -- -- -- -- */
/* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
/* > -- -- -- -- -- -- -- -- -- -- */
/* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
/* > -- -- -- -- -- -- -- -- -- -- */
/* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
/* > */
/* > */
/* > We next consider Standard Packed Format when N is odd. */
/* > We give an example where N = 5. */
/* > */
/* > AP is Upper AP is Lower */
/* > */
/* > 00 01 02 03 04 00 */
/* > 11 12 13 14 10 11 */
/* > 22 23 24 20 21 22 */
/* > 33 34 30 31 32 33 */
/* > 44 40 41 42 43 44 */
/* > */
/* > */
/* > Let TRANSR = 'N'. RFP holds AP as follows: */
/* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
/* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
/* > conjugate-transpose of the first two columns of AP upper. */
/* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
/* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
/* > conjugate-transpose of the last two columns of AP lower. */
/* > To denote conjugate we place -- above the element. This covers the */
/* > case N odd and TRANSR = 'N'. */
/* > */
/* > RFP A RFP A */
/* > */
/* > -- -- */
/* > 02 03 04 00 33 43 */
/* > -- */
/* > 12 13 14 10 11 44 */
/* > */
/* > 22 23 24 20 21 22 */
/* > -- */
/* > 00 33 34 30 31 32 */
/* > -- -- */
/* > 01 11 44 40 41 42 */
/* > */
/* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
/* > transpose of RFP A above. One therefore gets: */
/* > */
/* > */
/* > RFP A RFP A */
/* > */
/* > -- -- -- -- -- -- -- -- -- */
/* > 02 12 22 00 01 00 10 20 30 40 50 */
/* > -- -- -- -- -- -- -- -- -- */
/* > 03 13 23 33 11 33 11 21 31 41 51 */
/* > -- -- -- -- -- -- -- -- -- */
/* > 04 14 24 34 44 43 44 22 32 42 52 */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */
int ctpttf_(char *transr, char *uplo, integer *n, complex * ap, complex *arf, integer *info)
{
    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    complex q__1;
    /* Builtin functions */
    void r_cnjg(complex *, complex *);
    /* Local variables */
    integer i__, j, k, n1, n2, ij, jp, js, nt, lda, ijp;
    logical normaltransr;
    extern logical lsame_(char *, char *);
    logical lower;
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    logical nisodd;
    /* -- LAPACK computational routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    *info = 0;
    normaltransr = lsame_(transr, "N");
    lower = lsame_(uplo, "L");
    if (! normaltransr && ! lsame_(transr, "C"))
    {
        *info = -1;
    }
    else if (! lower && ! lsame_(uplo, "U"))
    {
        *info = -2;
    }
    else if (*n < 0)
    {
        *info = -3;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CTPTTF", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    if (*n == 1)
    {
        if (normaltransr)
        {
            arf[0].r = ap[0].r;
            arf[0].i = ap[0].i; // , expr subst
        }
        else
        {
            r_cnjg(&q__1, ap);
            arf[0].r = q__1.r;
            arf[0].i = q__1.i; // , expr subst
        }
        return 0;
    }
    /* Size of array ARF(0:NT-1) */
    nt = *n * (*n + 1) / 2;
    /* Set N1 and N2 depending on LOWER */
    if (lower)
    {
        n2 = *n / 2;
        n1 = *n - n2;
    }
    else
    {
        n1 = *n / 2;
        n2 = *n - n1;
    }
    /* If N is odd, set NISODD = .TRUE. */
    /* If N is even, set K = N/2 and NISODD = .FALSE. */
    /* set lda of ARF^C;
    ARF^C is (0:(N+1)/2-1,0:N-noe) */
    /* where noe = 0 if n is even, noe = 1 if n is odd */
    if (*n % 2 == 0)
    {
        k = *n / 2;
        nisodd = FALSE_;
        lda = *n + 1;
    }
    else
    {
        nisodd = TRUE_;
        lda = *n;
    }
    /* ARF^C has lda rows and n+1-noe cols */
    if (! normaltransr)
    {
        lda = (*n + 1) / 2;
    }
    /* start execution: there are eight cases */
    if (nisodd)
    {
        /* N is odd */
        if (normaltransr)
        {
            /* N is odd and TRANSR = 'N' */
            if (lower)
            {
                /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
                /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
                /* T1 -> a(0), T2 -> a(n), S -> a(n1);
                lda = n */
                ijp = 0;
                jp = 0;
                i__1 = n2;
                for (j = 0;
                        j <= i__1;
                        ++j)
                {
                    i__2 = *n - 1;
                    for (i__ = j;
                            i__ <= i__2;
                            ++i__)
                    {
                        ij = i__ + jp;
                        i__3 = ij;
                        i__4 = ijp;
                        arf[i__3].r = ap[i__4].r;
                        arf[i__3].i = ap[i__4].i; // , expr subst
                        ++ijp;
                    }
                    jp += lda;
                }
                i__1 = n2 - 1;
                for (i__ = 0;
                        i__ <= i__1;
                        ++i__)
                {
                    i__2 = n2;
                    for (j = i__ + 1;
                            j <= i__2;
                            ++j)
                    {
                        ij = i__ + j * lda;
                        i__3 = ij;
                        r_cnjg(&q__1, &ap[ijp]);
                        arf[i__3].r = q__1.r;
                        arf[i__3].i = q__1.i; // , expr subst
                        ++ijp;
                    }
                }
            }
            else
            {
                /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
                /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
                /* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
                ijp = 0;
                i__1 = n1 - 1;
                for (j = 0;
                        j <= i__1;
                        ++j)
                {
                    ij = n2 + j;
                    i__2 = j;
                    for (i__ = 0;
                            i__ <= i__2;
                            ++i__)
                    {
                        i__3 = ij;
                        r_cnjg(&q__1, &ap[ijp]);
                        arf[i__3].r = q__1.r;
                        arf[i__3].i = q__1.i; // , expr subst
                        ++ijp;
                        ij += lda;
                    }
                }
                js = 0;
                i__1 = *n - 1;
                for (j = n1;
                        j <= i__1;
                        ++j)
                {
                    ij = js;
                    i__2 = js + j;
                    for (ij = js;
                            ij <= i__2;
                            ++ij)
                    {
                        i__3 = ij;
                        i__4 = ijp;
                        arf[i__3].r = ap[i__4].r;
                        arf[i__3].i = ap[i__4].i; // , expr subst
                        ++ijp;
                    }
                    js += lda;
                }
            }
        }
        else
        {
            /* N is odd and TRANSR = 'C' */
            if (lower)
            {
                /* SRPA for LOWER, TRANSPOSE and N is odd */
                /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
                /* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1);
                lda=n1 */
                ijp = 0;
                i__1 = n2;
                for (i__ = 0;
                        i__ <= i__1;
                        ++i__)
                {
                    i__2 = *n * lda - 1;
                    i__3 = lda;
                    for (ij = i__ * (lda + 1);
                            i__3 < 0 ? ij >= i__2 : ij <= i__2;
                            ij += i__3)
                    {
                        i__4 = ij;
                        r_cnjg(&q__1, &ap[ijp]);
                        arf[i__4].r = q__1.r;
                        arf[i__4].i = q__1.i; // , expr subst
                        ++ijp;
                    }
                }
                js = 1;
                i__1 = n2 - 1;
                for (j = 0;
                        j <= i__1;
                        ++j)
                {
                    i__3 = js + n2 - j - 1;
                    for (ij = js;
                            ij <= i__3;
                            ++ij)
                    {
                        i__2 = ij;
                        i__4 = ijp;
                        arf[i__2].r = ap[i__4].r;
                        arf[i__2].i = ap[i__4].i; // , expr subst
                        ++ijp;
                    }
                    js = js + lda + 1;
                }
            }
            else
            {
                /* SRPA for UPPER, TRANSPOSE and N is odd */
                /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
                /* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0);
                lda = n2 */
                ijp = 0;
                js = n2 * lda;
                i__1 = n1 - 1;
                for (j = 0;
                        j <= i__1;
                        ++j)
                {
                    i__3 = js + j;
                    for (ij = js;
                            ij <= i__3;
                            ++ij)
                    {
                        i__2 = ij;
                        i__4 = ijp;
                        arf[i__2].r = ap[i__4].r;
                        arf[i__2].i = ap[i__4].i; // , expr subst
                        ++ijp;
                    }
                    js += lda;
                }
                i__1 = n1;
                for (i__ = 0;
                        i__ <= i__1;
                        ++i__)
                {
                    i__3 = i__ + (n1 + i__) * lda;
                    i__2 = lda;
                    for (ij = i__;
                            i__2 < 0 ? ij >= i__3 : ij <= i__3;
                            ij += i__2)
                    {
                        i__4 = ij;
                        r_cnjg(&q__1, &ap[ijp]);
                        arf[i__4].r = q__1.r;
                        arf[i__4].i = q__1.i; // , expr subst
                        ++ijp;
                    }
                }
            }
        }
    }
    else
    {
        /* N is even */
        if (normaltransr)
        {
            /* N is even and TRANSR = 'N' */
            if (lower)
            {
                /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
                /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
                /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
                ijp = 0;
                jp = 0;
                i__1 = k - 1;
                for (j = 0;
                        j <= i__1;
                        ++j)
                {
                    i__2 = *n - 1;
                    for (i__ = j;
                            i__ <= i__2;
                            ++i__)
                    {
                        ij = i__ + 1 + jp;
                        i__3 = ij;
                        i__4 = ijp;
                        arf[i__3].r = ap[i__4].r;
                        arf[i__3].i = ap[i__4].i; // , expr subst
                        ++ijp;
                    }
                    jp += lda;
                }
                i__1 = k - 1;
                for (i__ = 0;
                        i__ <= i__1;
                        ++i__)
                {
                    i__2 = k - 1;
                    for (j = i__;
                            j <= i__2;
                            ++j)
                    {
                        ij = i__ + j * lda;
                        i__3 = ij;
                        r_cnjg(&q__1, &ap[ijp]);
                        arf[i__3].r = q__1.r;
                        arf[i__3].i = q__1.i; // , expr subst
                        ++ijp;
                    }
                }
            }
            else
            {
                /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
                /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
                /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
                ijp = 0;
                i__1 = k - 1;
                for (j = 0;
                        j <= i__1;
                        ++j)
                {
                    ij = k + 1 + j;
                    i__2 = j;
                    for (i__ = 0;
                            i__ <= i__2;
                            ++i__)
                    {
                        i__3 = ij;
                        r_cnjg(&q__1, &ap[ijp]);
                        arf[i__3].r = q__1.r;
                        arf[i__3].i = q__1.i; // , expr subst
                        ++ijp;
                        ij += lda;
                    }
                }
                js = 0;
                i__1 = *n - 1;
                for (j = k;
                        j <= i__1;
                        ++j)
                {
                    ij = js;
                    i__2 = js + j;
                    for (ij = js;
                            ij <= i__2;
                            ++ij)
                    {
                        i__3 = ij;
                        i__4 = ijp;
                        arf[i__3].r = ap[i__4].r;
                        arf[i__3].i = ap[i__4].i; // , expr subst
                        ++ijp;
                    }
                    js += lda;
                }
            }
        }
        else
        {
            /* N is even and TRANSR = 'C' */
            if (lower)
            {
                /* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
                /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
                /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1));
                lda=k */
                ijp = 0;
                i__1 = k - 1;
                for (i__ = 0;
                        i__ <= i__1;
                        ++i__)
                {
                    i__2 = (*n + 1) * lda - 1;
                    i__3 = lda;
                    for (ij = i__ + (i__ + 1) * lda;
                            i__3 < 0 ? ij >= i__2 : ij <= i__2;
                            ij += i__3)
                    {
                        i__4 = ij;
                        r_cnjg(&q__1, &ap[ijp]);
                        arf[i__4].r = q__1.r;
                        arf[i__4].i = q__1.i; // , expr subst
                        ++ijp;
                    }
                }
                js = 0;
                i__1 = k - 1;
                for (j = 0;
                        j <= i__1;
                        ++j)
                {
                    i__3 = js + k - j - 1;
                    for (ij = js;
                            ij <= i__3;
                            ++ij)
                    {
                        i__2 = ij;
                        i__4 = ijp;
                        arf[i__2].r = ap[i__4].r;
                        arf[i__2].i = ap[i__4].i; // , expr subst
                        ++ijp;
                    }
                    js = js + lda + 1;
                }
            }
            else
            {
                /* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
                /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
                /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0));
                lda=k */
                ijp = 0;
                js = (k + 1) * lda;
                i__1 = k - 1;
                for (j = 0;
                        j <= i__1;
                        ++j)
                {
                    i__3 = js + j;
                    for (ij = js;
                            ij <= i__3;
                            ++ij)
                    {
                        i__2 = ij;
                        i__4 = ijp;
                        arf[i__2].r = ap[i__4].r;
                        arf[i__2].i = ap[i__4].i; // , expr subst
                        ++ijp;
                    }
                    js += lda;
                }
                i__1 = k - 1;
                for (i__ = 0;
                        i__ <= i__1;
                        ++i__)
                {
                    i__3 = i__ + (k + i__) * lda;
                    i__2 = lda;
                    for (ij = i__;
                            i__2 < 0 ? ij >= i__3 : ij <= i__3;
                            ij += i__2)
                    {
                        i__4 = ij;
                        r_cnjg(&q__1, &ap[ijp]);
                        arf[i__4].r = q__1.r;
                        arf[i__4].i = q__1.i; // , expr subst
                        ++ijp;
                    }
                }
            }
        }
    }
    return 0;
    /* End of CTPTTF */
}
/* ctpttf_ */