1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
/* ../netlib/dhsein.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static logical c_false = FALSE_;
static logical c_true = TRUE_;
/* > \brief \b DHSEIN */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DHSEIN + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhsein. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhsein. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhsein. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, */
/* VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, */
/* IFAILR, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER EIGSRC, INITV, SIDE */
/* INTEGER INFO, LDH, LDVL, LDVR, M, MM, N */
/* .. */
/* .. Array Arguments .. */
/* LOGICAL SELECT( * ) */
/* INTEGER IFAILL( * ), IFAILR( * ) */
/* DOUBLE PRECISION H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), */
/* $ WI( * ), WORK( * ), WR( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DHSEIN uses inverse iteration to find specified right and/or left */
/* > eigenvectors of a real upper Hessenberg matrix H. */
/* > */
/* > The right eigenvector x and the left eigenvector y of the matrix H */
/* > corresponding to an eigenvalue w are defined by: */
/* > */
/* > H * x = w * x, y**h * H = w * y**h */
/* > */
/* > where y**h denotes the conjugate transpose of the vector y. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'R': compute right eigenvectors only;
*/
/* > = 'L': compute left eigenvectors only;
*/
/* > = 'B': compute both right and left eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] EIGSRC */
/* > \verbatim */
/* > EIGSRC is CHARACTER*1 */
/* > Specifies the source of eigenvalues supplied in (WR,WI): */
/* > = 'Q': the eigenvalues were found using DHSEQR;
thus, if */
/* > H has zero subdiagonal elements, and so is */
/* > block-triangular, then the j-th eigenvalue can be */
/* > assumed to be an eigenvalue of the block containing */
/* > the j-th row/column. This property allows DHSEIN to */
/* > perform inverse iteration on just one diagonal block. */
/* > = 'N': no assumptions are made on the correspondence */
/* > between eigenvalues and diagonal blocks. In this */
/* > case, DHSEIN must always perform inverse iteration */
/* > using the whole matrix H. */
/* > \endverbatim */
/* > */
/* > \param[in] INITV */
/* > \verbatim */
/* > INITV is CHARACTER*1 */
/* > = 'N': no initial vectors are supplied;
*/
/* > = 'U': user-supplied initial vectors are stored in the arrays */
/* > VL and/or VR. */
/* > \endverbatim */
/* > */
/* > \param[in,out] SELECT */
/* > \verbatim */
/* > SELECT is LOGICAL array, dimension (N) */
/* > Specifies the eigenvectors to be computed. To select the */
/* > real eigenvector corresponding to a real eigenvalue WR(j), */
/* > SELECT(j) must be set to .TRUE.. To select the complex */
/* > eigenvector corresponding to a complex eigenvalue */
/* > (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)), */
/* > either SELECT(j) or SELECT(j+1) or both must be set to */
/* > .TRUE.;
then on exit SELECT(j) is .TRUE. and SELECT(j+1) is */
/* > .FALSE.. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix H. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] H */
/* > \verbatim */
/* > H is DOUBLE PRECISION array, dimension (LDH,N) */
/* > The upper Hessenberg matrix H. */
/* > If a NaN is detected in H, the routine will return with INFO=-6. */
/* > \endverbatim */
/* > */
/* > \param[in] LDH */
/* > \verbatim */
/* > LDH is INTEGER */
/* > The leading dimension of the array H. LDH >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] WR */
/* > \verbatim */
/* > WR is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[in] WI */
/* > \verbatim */
/* > WI is DOUBLE PRECISION array, dimension (N) */
/* > */
/* > On entry, the real and imaginary parts of the eigenvalues of */
/* > H;
a complex conjugate pair of eigenvalues must be stored in */
/* > consecutive elements of WR and WI. */
/* > On exit, WR may have been altered since close eigenvalues */
/* > are perturbed slightly in searching for independent */
/* > eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in,out] VL */
/* > \verbatim */
/* > VL is DOUBLE PRECISION array, dimension (LDVL,MM) */
/* > On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
/* > contain starting vectors for the inverse iteration for the */
/* > left eigenvectors;
the starting vector for each eigenvector */
/* > must be in the same column(s) in which the eigenvector will */
/* > be stored. */
/* > On exit, if SIDE = 'L' or 'B', the left eigenvectors */
/* > specified by SELECT will be stored consecutively in the */
/* > columns of VL, in the same order as their eigenvalues. A */
/* > complex eigenvector corresponding to a complex eigenvalue is */
/* > stored in two consecutive columns, the first holding the real */
/* > part and the second the imaginary part. */
/* > If SIDE = 'R', VL is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVL */
/* > \verbatim */
/* > LDVL is INTEGER */
/* > The leading dimension of the array VL. */
/* > LDVL >= max(1,N) if SIDE = 'L' or 'B';
LDVL >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[in,out] VR */
/* > \verbatim */
/* > VR is DOUBLE PRECISION array, dimension (LDVR,MM) */
/* > On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
/* > contain starting vectors for the inverse iteration for the */
/* > right eigenvectors;
the starting vector for each eigenvector */
/* > must be in the same column(s) in which the eigenvector will */
/* > be stored. */
/* > On exit, if SIDE = 'R' or 'B', the right eigenvectors */
/* > specified by SELECT will be stored consecutively in the */
/* > columns of VR, in the same order as their eigenvalues. A */
/* > complex eigenvector corresponding to a complex eigenvalue is */
/* > stored in two consecutive columns, the first holding the real */
/* > part and the second the imaginary part. */
/* > If SIDE = 'L', VR is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVR */
/* > \verbatim */
/* > LDVR is INTEGER */
/* > The leading dimension of the array VR. */
/* > LDVR >= max(1,N) if SIDE = 'R' or 'B';
LDVR >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[in] MM */
/* > \verbatim */
/* > MM is INTEGER */
/* > The number of columns in the arrays VL and/or VR. MM >= M. */
/* > \endverbatim */
/* > */
/* > \param[out] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of columns in the arrays VL and/or VR required to */
/* > store the eigenvectors;
each selected real eigenvector */
/* > occupies one column and each selected complex eigenvector */
/* > occupies two columns. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension ((N+2)*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IFAILL */
/* > \verbatim */
/* > IFAILL is INTEGER array, dimension (MM) */
/* > If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
/* > eigenvector in the i-th column of VL (corresponding to the */
/* > eigenvalue w(j)) failed to converge;
IFAILL(i) = 0 if the */
/* > eigenvector converged satisfactorily. If the i-th and (i+1)th */
/* > columns of VL hold a complex eigenvector, then IFAILL(i) and */
/* > IFAILL(i+1) are set to the same value. */
/* > If SIDE = 'R', IFAILL is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[out] IFAILR */
/* > \verbatim */
/* > IFAILR is INTEGER array, dimension (MM) */
/* > If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
/* > eigenvector in the i-th column of VR (corresponding to the */
/* > eigenvalue w(j)) failed to converge;
IFAILR(i) = 0 if the */
/* > eigenvector converged satisfactorily. If the i-th and (i+1)th */
/* > columns of VR hold a complex eigenvector, then IFAILR(i) and */
/* > IFAILR(i+1) are set to the same value. */
/* > If SIDE = 'L', IFAILR is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, i is the number of eigenvectors which */
/* > failed to converge;
see IFAILL and IFAILR for further */
/* > details. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2013 */
/* > \ingroup doubleOTHERcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > Each eigenvector is normalized so that the element of largest */
/* > magnitude has magnitude 1;
here the magnitude of a complex number */
/* > (x,y) is taken to be |x|+|y|. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */
int dhsein_(char *side, char *eigsrc, char *initv, logical * select, integer *n, doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, integer *mm, integer *m, doublereal *work, integer * ifaill, integer *ifailr, integer *info)
{
/* System generated locals */
integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2;
doublereal d__1, d__2;
/* Local variables */
integer i__, k, kl, kr, kln, ksi;
doublereal wki;
integer ksr;
doublereal ulp, wkr, eps3;
logical pair;
doublereal unfl;
extern logical lsame_(char *, char *);
integer iinfo;
logical leftv, bothv;
doublereal hnorm;
extern doublereal dlamch_(char *);
extern /* Subroutine */
int dlaein_(logical *, logical *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal * , doublereal *, doublereal *, integer *);
extern doublereal dlanhs_(char *, integer *, doublereal *, integer *, doublereal *);
extern logical disnan_(doublereal *);
extern /* Subroutine */
int xerbla_(char *, integer *);
doublereal bignum;
logical noinit;
integer ldwork;
logical rightv, fromqr;
doublereal smlnum;
/* -- LAPACK computational routine (version 3.5.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2013 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Decode and test the input parameters. */
/* Parameter adjustments */
--select;
h_dim1 = *ldh;
h_offset = 1 + h_dim1;
h__ -= h_offset;
--wr;
--wi;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1;
vr -= vr_offset;
--work;
--ifaill;
--ifailr;
/* Function Body */
bothv = lsame_(side, "B");
rightv = lsame_(side, "R") || bothv;
leftv = lsame_(side, "L") || bothv;
fromqr = lsame_(eigsrc, "Q");
noinit = lsame_(initv, "N");
/* Set M to the number of columns required to store the selected */
/* eigenvectors, and standardize the array SELECT. */
*m = 0;
pair = FALSE_;
i__1 = *n;
for (k = 1;
k <= i__1;
++k)
{
if (pair)
{
pair = FALSE_;
select[k] = FALSE_;
}
else
{
if (wi[k] == 0.)
{
if (select[k])
{
++(*m);
}
}
else
{
pair = TRUE_;
if (select[k] || select[k + 1])
{
select[k] = TRUE_;
*m += 2;
}
}
}
/* L10: */
}
*info = 0;
if (! rightv && ! leftv)
{
*info = -1;
}
else if (! fromqr && ! lsame_(eigsrc, "N"))
{
*info = -2;
}
else if (! noinit && ! lsame_(initv, "U"))
{
*info = -3;
}
else if (*n < 0)
{
*info = -5;
}
else if (*ldh < max(1,*n))
{
*info = -7;
}
else if (*ldvl < 1 || leftv && *ldvl < *n)
{
*info = -11;
}
else if (*ldvr < 1 || rightv && *ldvr < *n)
{
*info = -13;
}
else if (*mm < *m)
{
*info = -14;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("DHSEIN", &i__1);
return 0;
}
/* Quick return if possible. */
if (*n == 0)
{
return 0;
}
/* Set machine-dependent constants. */
unfl = dlamch_("Safe minimum");
ulp = dlamch_("Precision");
smlnum = unfl * (*n / ulp);
bignum = (1. - ulp) / smlnum;
ldwork = *n + 1;
kl = 1;
kln = 0;
if (fromqr)
{
kr = 0;
}
else
{
kr = *n;
}
ksr = 1;
i__1 = *n;
for (k = 1;
k <= i__1;
++k)
{
if (select[k])
{
/* Compute eigenvector(s) corresponding to W(K). */
if (fromqr)
{
/* If affiliation of eigenvalues is known, check whether */
/* the matrix splits. */
/* Determine KL and KR such that 1 <= KL <= K <= KR <= N */
/* and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
/* KR = N). */
/* Then inverse iteration can be performed with the */
/* submatrix H(KL:N,KL:N) for a left eigenvector, and with */
/* the submatrix H(1:KR,1:KR) for a right eigenvector. */
i__2 = kl + 1;
for (i__ = k;
i__ >= i__2;
--i__)
{
if (h__[i__ + (i__ - 1) * h_dim1] == 0.)
{
goto L30;
}
/* L20: */
}
L30:
kl = i__;
if (k > kr)
{
i__2 = *n - 1;
for (i__ = k;
i__ <= i__2;
++i__)
{
if (h__[i__ + 1 + i__ * h_dim1] == 0.)
{
goto L50;
}
/* L40: */
}
L50:
kr = i__;
}
}
if (kl != kln)
{
kln = kl;
/* Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
/* has not ben computed before. */
i__2 = kr - kl + 1;
hnorm = dlanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, & work[1]);
if (disnan_(&hnorm))
{
*info = -6;
return 0;
}
else if (hnorm > 0.)
{
eps3 = hnorm * ulp;
}
else
{
eps3 = smlnum;
}
}
/* Perturb eigenvalue if it is close to any previous */
/* selected eigenvalues affiliated to the submatrix */
/* H(KL:KR,KL:KR). Close roots are modified by EPS3. */
wkr = wr[k];
wki = wi[k];
L60:
i__2 = kl;
for (i__ = k - 1;
i__ >= i__2;
--i__)
{
if (select[i__] && (d__1 = wr[i__] - wkr, f2c_abs(d__1)) + (d__2 = wi[i__] - wki, f2c_abs(d__2)) < eps3)
{
wkr += eps3;
goto L60;
}
/* L70: */
}
wr[k] = wkr;
pair = wki != 0.;
if (pair)
{
ksi = ksr + 1;
}
else
{
ksi = ksr;
}
if (leftv)
{
/* Compute left eigenvector. */
i__2 = *n - kl + 1;
dlaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh, &wkr, &wki, &vl[kl + ksr * vl_dim1], &vl[kl + ksi * vl_dim1], &work[1], &ldwork, &work[*n * *n + *n + 1], &eps3, &smlnum, &bignum, &iinfo);
if (iinfo > 0)
{
if (pair)
{
*info += 2;
}
else
{
++(*info);
}
ifaill[ksr] = k;
ifaill[ksi] = k;
}
else
{
ifaill[ksr] = 0;
ifaill[ksi] = 0;
}
i__2 = kl - 1;
for (i__ = 1;
i__ <= i__2;
++i__)
{
vl[i__ + ksr * vl_dim1] = 0.;
/* L80: */
}
if (pair)
{
i__2 = kl - 1;
for (i__ = 1;
i__ <= i__2;
++i__)
{
vl[i__ + ksi * vl_dim1] = 0.;
/* L90: */
}
}
}
if (rightv)
{
/* Compute right eigenvector. */
dlaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wkr, & wki, &vr[ksr * vr_dim1 + 1], &vr[ksi * vr_dim1 + 1], & work[1], &ldwork, &work[*n * *n + *n + 1], &eps3, & smlnum, &bignum, &iinfo);
if (iinfo > 0)
{
if (pair)
{
*info += 2;
}
else
{
++(*info);
}
ifailr[ksr] = k;
ifailr[ksi] = k;
}
else
{
ifailr[ksr] = 0;
ifailr[ksi] = 0;
}
i__2 = *n;
for (i__ = kr + 1;
i__ <= i__2;
++i__)
{
vr[i__ + ksr * vr_dim1] = 0.;
/* L100: */
}
if (pair)
{
i__2 = *n;
for (i__ = kr + 1;
i__ <= i__2;
++i__)
{
vr[i__ + ksi * vr_dim1] = 0.;
/* L110: */
}
}
}
if (pair)
{
ksr += 2;
}
else
{
++ksr;
}
}
/* L120: */
}
return 0;
/* End of DHSEIN */
}
/* dhsein_ */
|