File: dla_lin_berr.c

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (153 lines) | stat: -rw-r--r-- 5,762 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/* ../netlib/dla_lin_berr.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
 on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* > \brief \b DLA_LIN_BERR computes a component-wise relative backward error. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLA_LIN_BERR + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_lin _berr.f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_lin _berr.f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_lin _berr.f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR ) */
/* .. Scalar Arguments .. */
/* INTEGER N, NZ, NRHS */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS ) */
/* DOUBLE PRECISION RES( N, NRHS ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLA_LIN_BERR computes component-wise relative backward error from */
/* > the formula */
/* > max(i) ( f2c_abs(R(i)) / ( f2c_abs(op(A_s))*f2c_abs(Y) + f2c_abs(B_s) )(i) ) */
/* > where f2c_abs(Z) is the component-wise absolute value of the matrix */
/* > or vector Z. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of linear equations, i.e., the order of the */
/* > matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NZ */
/* > \verbatim */
/* > NZ is INTEGER */
/* > We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to */
/* > guard against spuriously zero residuals. Default value is N. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrices AYB, RES, and BERR. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] RES */
/* > \verbatim */
/* > RES is DOUBLE PRECISION array, dimension (N,NRHS) */
/* > The residual matrix, i.e., the matrix R in the relative backward */
/* > error formula above. */
/* > \endverbatim */
/* > */
/* > \param[in] AYB */
/* > \verbatim */
/* > AYB is DOUBLE PRECISION array, dimension (N, NRHS) */
/* > The denominator in the relative backward error formula above, i.e., */
/* > the matrix f2c_abs(op(A_s))*f2c_abs(Y) + f2c_abs(B_s). The matrices A, Y, and B */
/* > are from iterative refinement (see dla_gerfsx_extended.f). */
/* > \endverbatim */
/* > */
/* > \param[out] BERR */
/* > \verbatim */
/* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
/* > The component-wise relative backward error from the formula above. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup doubleOTHERcomputational */
/* ===================================================================== */
/* Subroutine */
int dla_lin_berr_(integer *n, integer *nz, integer *nrhs, doublereal *res, doublereal *ayb, doublereal *berr)
{
    /* System generated locals */
    integer ayb_dim1, ayb_offset, res_dim1, res_offset, i__1, i__2;
    doublereal d__1;
    /* Local variables */
    integer i__, j;
    doublereal tmp, safe1;
    extern doublereal dlamch_(char *);
    /* -- LAPACK computational routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Adding SAFE1 to the numerator guards against spuriously zero */
    /* residuals. A similar safeguard is in the SLA_yyAMV routine used */
    /* to compute AYB. */
    /* Parameter adjustments */
    --berr;
    ayb_dim1 = *n;
    ayb_offset = 1 + ayb_dim1;
    ayb -= ayb_offset;
    res_dim1 = *n;
    res_offset = 1 + res_dim1;
    res -= res_offset;
    /* Function Body */
    safe1 = dlamch_("Safe minimum");
    safe1 = (*nz + 1) * safe1;
    i__1 = *nrhs;
    for (j = 1;
            j <= i__1;
            ++j)
    {
        berr[j] = 0.;
        i__2 = *n;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            if (ayb[i__ + j * ayb_dim1] != 0.)
            {
                tmp = (safe1 + (d__1 = res[i__ + j * res_dim1], f2c_abs(d__1))) / ayb[i__ + j * ayb_dim1];
                /* Computing MAX */
                d__1 = berr[j];
                berr[j] = max(d__1,tmp);
            }
            /* If AYB is exactly 0.0 (and if computed by SLA_yyAMV), then we know */
            /* the true residual also must be exactly 0.0. */
        }
    }
    return 0;
}
/* dla_lin_berr__ */