1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
/* ../netlib/dla_lin_berr.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* > \brief \b DLA_LIN_BERR computes a component-wise relative backward error. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLA_LIN_BERR + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_lin _berr.f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_lin _berr.f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_lin _berr.f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR ) */
/* .. Scalar Arguments .. */
/* INTEGER N, NZ, NRHS */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS ) */
/* DOUBLE PRECISION RES( N, NRHS ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLA_LIN_BERR computes component-wise relative backward error from */
/* > the formula */
/* > max(i) ( f2c_abs(R(i)) / ( f2c_abs(op(A_s))*f2c_abs(Y) + f2c_abs(B_s) )(i) ) */
/* > where f2c_abs(Z) is the component-wise absolute value of the matrix */
/* > or vector Z. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of linear equations, i.e., the order of the */
/* > matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NZ */
/* > \verbatim */
/* > NZ is INTEGER */
/* > We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to */
/* > guard against spuriously zero residuals. Default value is N. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrices AYB, RES, and BERR. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] RES */
/* > \verbatim */
/* > RES is DOUBLE PRECISION array, dimension (N,NRHS) */
/* > The residual matrix, i.e., the matrix R in the relative backward */
/* > error formula above. */
/* > \endverbatim */
/* > */
/* > \param[in] AYB */
/* > \verbatim */
/* > AYB is DOUBLE PRECISION array, dimension (N, NRHS) */
/* > The denominator in the relative backward error formula above, i.e., */
/* > the matrix f2c_abs(op(A_s))*f2c_abs(Y) + f2c_abs(B_s). The matrices A, Y, and B */
/* > are from iterative refinement (see dla_gerfsx_extended.f). */
/* > \endverbatim */
/* > */
/* > \param[out] BERR */
/* > \verbatim */
/* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
/* > The component-wise relative backward error from the formula above. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup doubleOTHERcomputational */
/* ===================================================================== */
/* Subroutine */
int dla_lin_berr_(integer *n, integer *nz, integer *nrhs, doublereal *res, doublereal *ayb, doublereal *berr)
{
/* System generated locals */
integer ayb_dim1, ayb_offset, res_dim1, res_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer i__, j;
doublereal tmp, safe1;
extern doublereal dlamch_(char *);
/* -- LAPACK computational routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Adding SAFE1 to the numerator guards against spuriously zero */
/* residuals. A similar safeguard is in the SLA_yyAMV routine used */
/* to compute AYB. */
/* Parameter adjustments */
--berr;
ayb_dim1 = *n;
ayb_offset = 1 + ayb_dim1;
ayb -= ayb_offset;
res_dim1 = *n;
res_offset = 1 + res_dim1;
res -= res_offset;
/* Function Body */
safe1 = dlamch_("Safe minimum");
safe1 = (*nz + 1) * safe1;
i__1 = *nrhs;
for (j = 1;
j <= i__1;
++j)
{
berr[j] = 0.;
i__2 = *n;
for (i__ = 1;
i__ <= i__2;
++i__)
{
if (ayb[i__ + j * ayb_dim1] != 0.)
{
tmp = (safe1 + (d__1 = res[i__ + j * res_dim1], f2c_abs(d__1))) / ayb[i__ + j * ayb_dim1];
/* Computing MAX */
d__1 = berr[j];
berr[j] = max(d__1,tmp);
}
/* If AYB is exactly 0.0 (and if computed by SLA_yyAMV), then we know */
/* the true residual also must be exactly 0.0. */
}
}
return 0;
}
/* dla_lin_berr__ */
|