1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/* ../netlib/dlags2.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* > \brief \b DLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B su ch that the rows of the transformed A and B are parallel. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLAGS2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlags2. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlags2. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlags2. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, */
/* SNV, CSQ, SNQ ) */
/* .. Scalar Arguments .. */
/* LOGICAL UPPER */
/* DOUBLE PRECISION A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, */
/* $ SNU, SNV */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such */
/* > that if ( UPPER ) then */
/* > */
/* > U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 ) */
/* > ( 0 A3 ) ( x x ) */
/* > and */
/* > V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 ) */
/* > ( 0 B3 ) ( x x ) */
/* > */
/* > or if ( .NOT.UPPER ) then */
/* > */
/* > U**T *A*Q = U**T *( A1 0 )*Q = ( x x ) */
/* > ( A2 A3 ) ( 0 x ) */
/* > and */
/* > V**T*B*Q = V**T*( B1 0 )*Q = ( x x ) */
/* > ( B2 B3 ) ( 0 x ) */
/* > */
/* > The rows of the transformed A and B are parallel, where */
/* > */
/* > U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) */
/* > ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) */
/* > */
/* > Z**T denotes the transpose of Z. */
/* > */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPPER */
/* > \verbatim */
/* > UPPER is LOGICAL */
/* > = .TRUE.: the input matrices A and B are upper triangular. */
/* > = .FALSE.: the input matrices A and B are lower triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] A1 */
/* > \verbatim */
/* > A1 is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[in] A2 */
/* > \verbatim */
/* > A2 is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[in] A3 */
/* > \verbatim */
/* > A3 is DOUBLE PRECISION */
/* > On entry, A1, A2 and A3 are elements of the input 2-by-2 */
/* > upper (lower) triangular matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] B1 */
/* > \verbatim */
/* > B1 is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[in] B2 */
/* > \verbatim */
/* > B2 is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[in] B3 */
/* > \verbatim */
/* > B3 is DOUBLE PRECISION */
/* > On entry, B1, B2 and B3 are elements of the input 2-by-2 */
/* > upper (lower) triangular matrix B. */
/* > \endverbatim */
/* > */
/* > \param[out] CSU */
/* > \verbatim */
/* > CSU is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[out] SNU */
/* > \verbatim */
/* > SNU is DOUBLE PRECISION */
/* > The desired orthogonal matrix U. */
/* > \endverbatim */
/* > */
/* > \param[out] CSV */
/* > \verbatim */
/* > CSV is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[out] SNV */
/* > \verbatim */
/* > SNV is DOUBLE PRECISION */
/* > The desired orthogonal matrix V. */
/* > \endverbatim */
/* > */
/* > \param[out] CSQ */
/* > \verbatim */
/* > CSQ is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[out] SNQ */
/* > \verbatim */
/* > SNQ is DOUBLE PRECISION */
/* > The desired orthogonal matrix Q. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup doubleOTHERauxiliary */
/* ===================================================================== */
/* Subroutine */
int dlags2_(logical *upper, doublereal *a1, doublereal *a2, doublereal *a3, doublereal *b1, doublereal *b2, doublereal *b3, doublereal *csu, doublereal *snu, doublereal *csv, doublereal *snv, doublereal *csq, doublereal *snq)
{
/* System generated locals */
doublereal d__1;
/* Local variables */
doublereal a, b, c__, d__, r__, s1, s2, ua11, ua12, ua21, ua22, vb11, vb12, vb21, vb22, csl, csr, snl, snr, aua11, aua12, aua21, aua22, avb11, avb12, avb21, avb22, ua11r, ua22r, vb11r, vb22r;
extern /* Subroutine */
int dlasv2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *);
/* -- LAPACK auxiliary routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
if (*upper)
{
/* Input matrices A and B are upper triangular matrices */
/* Form matrix C = A*adj(B) = ( a b ) */
/* ( 0 d ) */
a = *a1 * *b3;
d__ = *a3 * *b1;
b = *a2 * *b1 - *a1 * *b2;
/* The SVD of real 2-by-2 triangular C */
/* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) */
/* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) */
dlasv2_(&a, &b, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
if (f2c_abs(csl) >= f2c_abs(snl) || f2c_abs(csr) >= f2c_abs(snr))
{
/* Compute the (1,1) and (1,2) elements of U**T *A and V**T *B, */
/* and (1,2) element of |U|**T *|A| and |V|**T *|B|. */
ua11r = csl * *a1;
ua12 = csl * *a2 + snl * *a3;
vb11r = csr * *b1;
vb12 = csr * *b2 + snr * *b3;
aua12 = f2c_abs(csl) * f2c_abs(*a2) + f2c_abs(snl) * f2c_abs(*a3);
avb12 = f2c_abs(csr) * f2c_abs(*b2) + f2c_abs(snr) * f2c_abs(*b3);
/* zero (1,2) elements of U**T *A and V**T *B */
if (f2c_abs(ua11r) + f2c_abs(ua12) != 0.)
{
if (aua12 / (f2c_abs(ua11r) + f2c_abs(ua12)) <= avb12 / (f2c_abs(vb11r) + f2c_abs(vb12)))
{
d__1 = -ua11r;
dlartg_(&d__1, &ua12, csq, snq, &r__);
}
else
{
d__1 = -vb11r;
dlartg_(&d__1, &vb12, csq, snq, &r__);
}
}
else
{
d__1 = -vb11r;
dlartg_(&d__1, &vb12, csq, snq, &r__);
}
*csu = csl;
*snu = -snl;
*csv = csr;
*snv = -snr;
}
else
{
/* Compute the (2,1) and (2,2) elements of U**T *A and V**T *B, */
/* and (2,2) element of |U|**T *|A| and |V|**T *|B|. */
ua21 = -snl * *a1;
ua22 = -snl * *a2 + csl * *a3;
vb21 = -snr * *b1;
vb22 = -snr * *b2 + csr * *b3;
aua22 = f2c_abs(snl) * f2c_abs(*a2) + f2c_abs(csl) * f2c_abs(*a3);
avb22 = f2c_abs(snr) * f2c_abs(*b2) + f2c_abs(csr) * f2c_abs(*b3);
/* zero (2,2) elements of U**T*A and V**T*B, and then swap. */
if (f2c_abs(ua21) + f2c_abs(ua22) != 0.)
{
if (aua22 / (f2c_abs(ua21) + f2c_abs(ua22)) <= avb22 / (f2c_abs(vb21) + f2c_abs(vb22)))
{
d__1 = -ua21;
dlartg_(&d__1, &ua22, csq, snq, &r__);
}
else
{
d__1 = -vb21;
dlartg_(&d__1, &vb22, csq, snq, &r__);
}
}
else
{
d__1 = -vb21;
dlartg_(&d__1, &vb22, csq, snq, &r__);
}
*csu = snl;
*snu = csl;
*csv = snr;
*snv = csr;
}
}
else
{
/* Input matrices A and B are lower triangular matrices */
/* Form matrix C = A*adj(B) = ( a 0 ) */
/* ( c d ) */
a = *a1 * *b3;
d__ = *a3 * *b1;
c__ = *a2 * *b3 - *a3 * *b2;
/* The SVD of real 2-by-2 triangular C */
/* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) */
/* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) */
dlasv2_(&a, &c__, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
if (f2c_abs(csr) >= f2c_abs(snr) || f2c_abs(csl) >= f2c_abs(snl))
{
/* Compute the (2,1) and (2,2) elements of U**T *A and V**T *B, */
/* and (2,1) element of |U|**T *|A| and |V|**T *|B|. */
ua21 = -snr * *a1 + csr * *a2;
ua22r = csr * *a3;
vb21 = -snl * *b1 + csl * *b2;
vb22r = csl * *b3;
aua21 = f2c_abs(snr) * f2c_abs(*a1) + f2c_abs(csr) * f2c_abs(*a2);
avb21 = f2c_abs(snl) * f2c_abs(*b1) + f2c_abs(csl) * f2c_abs(*b2);
/* zero (2,1) elements of U**T *A and V**T *B. */
if (f2c_abs(ua21) + f2c_abs(ua22r) != 0.)
{
if (aua21 / (f2c_abs(ua21) + f2c_abs(ua22r)) <= avb21 / (f2c_abs(vb21) + f2c_abs(vb22r)))
{
dlartg_(&ua22r, &ua21, csq, snq, &r__);
}
else
{
dlartg_(&vb22r, &vb21, csq, snq, &r__);
}
}
else
{
dlartg_(&vb22r, &vb21, csq, snq, &r__);
}
*csu = csr;
*snu = -snr;
*csv = csl;
*snv = -snl;
}
else
{
/* Compute the (1,1) and (1,2) elements of U**T *A and V**T *B, */
/* and (1,1) element of |U|**T *|A| and |V|**T *|B|. */
ua11 = csr * *a1 + snr * *a2;
ua12 = snr * *a3;
vb11 = csl * *b1 + snl * *b2;
vb12 = snl * *b3;
aua11 = f2c_abs(csr) * f2c_abs(*a1) + f2c_abs(snr) * f2c_abs(*a2);
avb11 = f2c_abs(csl) * f2c_abs(*b1) + f2c_abs(snl) * f2c_abs(*b2);
/* zero (1,1) elements of U**T*A and V**T*B, and then swap. */
if (f2c_abs(ua11) + f2c_abs(ua12) != 0.)
{
if (aua11 / (f2c_abs(ua11) + f2c_abs(ua12)) <= avb11 / (f2c_abs(vb11) + f2c_abs(vb12)))
{
dlartg_(&ua12, &ua11, csq, snq, &r__);
}
else
{
dlartg_(&vb12, &vb11, csq, snq, &r__);
}
}
else
{
dlartg_(&vb12, &vb11, csq, snq, &r__);
}
*csu = snr;
*snu = csr;
*csv = snl;
*snv = csl;
}
}
return 0;
/* End of DLAGS2 */
}
/* dlags2_ */
|