1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/* ../netlib/dspev.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
/* > \brief <b> DSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER m atrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DSPEV + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspev.f "> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspev.f "> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspev.f "> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER JOBZ, UPLO */
/* INTEGER INFO, LDZ, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION AP( * ), W( * ), WORK( * ), Z( LDZ, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSPEV computes all the eigenvalues and, optionally, eigenvectors of a */
/* > real symmetric matrix A in packed storage. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBZ */
/* > \verbatim */
/* > JOBZ is CHARACTER*1 */
/* > = 'N': Compute eigenvalues only;
*/
/* > = 'V': Compute eigenvalues and eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A is stored;
*/
/* > = 'L': Lower triangle of A is stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] AP */
/* > \verbatim */
/* > AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/* > On entry, the upper or lower triangle of the symmetric matrix */
/* > A, packed columnwise in a linear array. The j-th column of A */
/* > is stored in the array AP as follows: */
/* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*/
/* > if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/* > */
/* > On exit, AP is overwritten by values generated during the */
/* > reduction to tridiagonal form. If UPLO = 'U', the diagonal */
/* > and first superdiagonal of the tridiagonal matrix T overwrite */
/* > the corresponding elements of A, and if UPLO = 'L', the */
/* > diagonal and first subdiagonal of T overwrite the */
/* > corresponding elements of A. */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is DOUBLE PRECISION array, dimension (N) */
/* > If INFO = 0, the eigenvalues in ascending order. */
/* > \endverbatim */
/* > */
/* > \param[out] Z */
/* > \verbatim */
/* > Z is DOUBLE PRECISION array, dimension (LDZ, N) */
/* > If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/* > eigenvectors of the matrix A, with the i-th column of Z */
/* > holding the eigenvector associated with W(i). */
/* > If JOBZ = 'N', then Z is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of the array Z. LDZ >= 1, and if */
/* > JOBZ = 'V', LDZ >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (3*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = i, the algorithm failed to converge;
i */
/* > off-diagonal elements of an intermediate tridiagonal */
/* > form did not converge to zero. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2011 */
/* > \ingroup doubleOTHEReigen */
/* ===================================================================== */
/* Subroutine */
int dspev_(char *jobz, char *uplo, integer *n, doublereal * ap, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1;
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublereal eps;
integer inde;
doublereal anrm;
integer imax;
doublereal rmin, rmax;
extern /* Subroutine */
int dscal_(integer *, doublereal *, doublereal *, integer *);
doublereal sigma;
extern logical lsame_(char *, char *);
integer iinfo;
logical wantz;
extern doublereal dlamch_(char *);
integer iscale;
doublereal safmin;
extern /* Subroutine */
int xerbla_(char *, integer *);
doublereal bignum;
extern doublereal dlansp_(char *, char *, integer *, doublereal *, doublereal *);
integer indtau;
extern /* Subroutine */
int dsterf_(integer *, doublereal *, doublereal *, integer *);
integer indwrk;
extern /* Subroutine */
int dopgtr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *), dsptrd_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), dsteqr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *);
doublereal smlnum;
/* -- LAPACK driver routine (version 3.4.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2011 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
/* Function Body */
wantz = lsame_(jobz, "V");
*info = 0;
if (! (wantz || lsame_(jobz, "N")))
{
*info = -1;
}
else if (! (lsame_(uplo, "U") || lsame_(uplo, "L")))
{
*info = -2;
}
else if (*n < 0)
{
*info = -3;
}
else if (*ldz < 1 || wantz && *ldz < *n)
{
*info = -7;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("DSPEV ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0)
{
return 0;
}
if (*n == 1)
{
w[1] = ap[1];
if (wantz)
{
z__[z_dim1 + 1] = 1.;
}
return 0;
}
/* Get machine constants. */
safmin = dlamch_("Safe minimum");
eps = dlamch_("Precision");
smlnum = safmin / eps;
bignum = 1. / smlnum;
rmin = sqrt(smlnum);
rmax = sqrt(bignum);
/* Scale matrix to allowable range, if necessary. */
anrm = dlansp_("M", uplo, n, &ap[1], &work[1]);
iscale = 0;
if (anrm > 0. && anrm < rmin)
{
iscale = 1;
sigma = rmin / anrm;
}
else if (anrm > rmax)
{
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1)
{
i__1 = *n * (*n + 1) / 2;
dscal_(&i__1, &sigma, &ap[1], &c__1);
}
/* Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */
inde = 1;
indtau = inde + *n;
dsptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);
/* For eigenvalues only, call DSTERF. For eigenvectors, first call */
/* DOPGTR to generate the orthogonal matrix, then call DSTEQR. */
if (! wantz)
{
dsterf_(n, &w[1], &work[inde], info);
}
else
{
indwrk = indtau + *n;
dopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[ indwrk], &iinfo);
dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[ indtau], info);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (iscale == 1)
{
if (*info == 0)
{
imax = *n;
}
else
{
imax = *info - 1;
}
d__1 = 1. / sigma;
dscal_(&imax, &d__1, &w[1], &c__1);
}
return 0;
/* End of DSPEV */
}
/* dspev_ */
|