1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
/* ../netlib/dspevx.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
/* > \brief <b> DSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DSPEVX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspevx. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspevx. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspevx. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, */
/* ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, */
/* INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER JOBZ, RANGE, UPLO */
/* INTEGER IL, INFO, IU, LDZ, M, N */
/* DOUBLE PRECISION ABSTOL, VL, VU */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IFAIL( * ), IWORK( * ) */
/* DOUBLE PRECISION AP( * ), W( * ), WORK( * ), Z( LDZ, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSPEVX computes selected eigenvalues and, optionally, eigenvectors */
/* > of a real symmetric matrix A in packed storage. Eigenvalues/vectors */
/* > can be selected by specifying either a range of values or a range of */
/* > indices for the desired eigenvalues. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBZ */
/* > \verbatim */
/* > JOBZ is CHARACTER*1 */
/* > = 'N': Compute eigenvalues only;
*/
/* > = 'V': Compute eigenvalues and eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] RANGE */
/* > \verbatim */
/* > RANGE is CHARACTER*1 */
/* > = 'A': all eigenvalues will be found;
*/
/* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
/* > will be found;
*/
/* > = 'I': the IL-th through IU-th eigenvalues will be found. */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A is stored;
*/
/* > = 'L': Lower triangle of A is stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] AP */
/* > \verbatim */
/* > AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/* > On entry, the upper or lower triangle of the symmetric matrix */
/* > A, packed columnwise in a linear array. The j-th column of A */
/* > is stored in the array AP as follows: */
/* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*/
/* > if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/* > */
/* > On exit, AP is overwritten by values generated during the */
/* > reduction to tridiagonal form. If UPLO = 'U', the diagonal */
/* > and first superdiagonal of the tridiagonal matrix T overwrite */
/* > the corresponding elements of A, and if UPLO = 'L', the */
/* > diagonal and first subdiagonal of T overwrite the */
/* > corresponding elements of A. */
/* > \endverbatim */
/* > */
/* > \param[in] VL */
/* > \verbatim */
/* > VL is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[in] VU */
/* > \verbatim */
/* > VU is DOUBLE PRECISION */
/* > If RANGE='V', the lower and upper bounds of the interval to */
/* > be searched for eigenvalues. VL < VU. */
/* > Not referenced if RANGE = 'A' or 'I'. */
/* > \endverbatim */
/* > */
/* > \param[in] IL */
/* > \verbatim */
/* > IL is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[in] IU */
/* > \verbatim */
/* > IU is INTEGER */
/* > If RANGE='I', the indices (in ascending order) of the */
/* > smallest and largest eigenvalues to be returned. */
/* > 1 <= IL <= IU <= N, if N > 0;
IL = 1 and IU = 0 if N = 0. */
/* > Not referenced if RANGE = 'A' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[in] ABSTOL */
/* > \verbatim */
/* > ABSTOL is DOUBLE PRECISION */
/* > The absolute error tolerance for the eigenvalues. */
/* > An approximate eigenvalue is accepted as converged */
/* > when it is determined to lie in an interval [a,b] */
/* > of width less than or equal to */
/* > */
/* > ABSTOL + EPS * max( |a|,|b| ) , */
/* > */
/* > where EPS is the machine precision. If ABSTOL is less than */
/* > or equal to zero, then EPS*|T| will be used in its place, */
/* > where |T| is the 1-norm of the tridiagonal matrix obtained */
/* > by reducing AP to tridiagonal form. */
/* > */
/* > Eigenvalues will be computed most accurately when ABSTOL is */
/* > set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/* > If this routine returns with INFO>0, indicating that some */
/* > eigenvectors did not converge, try setting ABSTOL to */
/* > 2*DLAMCH('S'). */
/* > */
/* > See "Computing Small Singular Values of Bidiagonal Matrices */
/* > with Guaranteed High Relative Accuracy," by Demmel and */
/* > Kahan, LAPACK Working Note #3. */
/* > \endverbatim */
/* > */
/* > \param[out] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The total number of eigenvalues found. 0 <= M <= N. */
/* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is DOUBLE PRECISION array, dimension (N) */
/* > If INFO = 0, the selected eigenvalues in ascending order. */
/* > \endverbatim */
/* > */
/* > \param[out] Z */
/* > \verbatim */
/* > Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
/* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/* > contain the orthonormal eigenvectors of the matrix A */
/* > corresponding to the selected eigenvalues, with the i-th */
/* > column of Z holding the eigenvector associated with W(i). */
/* > If an eigenvector fails to converge, then that column of Z */
/* > contains the latest approximation to the eigenvector, and the */
/* > index of the eigenvector is returned in IFAIL. */
/* > If JOBZ = 'N', then Z is not referenced. */
/* > Note: the user must ensure that at least max(1,M) columns are */
/* > supplied in the array Z;
if RANGE = 'V', the exact value of M */
/* > is not known in advance and an upper bound must be used. */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of the array Z. LDZ >= 1, and if */
/* > JOBZ = 'V', LDZ >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (8*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (5*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IFAIL */
/* > \verbatim */
/* > IFAIL is INTEGER array, dimension (N) */
/* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
/* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
/* > indices of the eigenvectors that failed to converge. */
/* > If JOBZ = 'N', then IFAIL is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, then i eigenvectors failed to converge. */
/* > Their indices are stored in array IFAIL. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2011 */
/* > \ingroup doubleOTHEReigen */
/* ===================================================================== */
/* Subroutine */
int dspevx_(char *jobz, char *range, char *uplo, integer *n, doublereal *ap, doublereal *vl, doublereal *vu, integer *il, integer * iu, doublereal *abstol, integer *m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *iwork, integer *ifail, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, jj;
doublereal eps, vll, vuu, tmp1;
integer indd, inde;
doublereal anrm;
integer imax;
doublereal rmin, rmax;
logical test;
integer itmp1, indee;
extern /* Subroutine */
int dscal_(integer *, doublereal *, doublereal *, integer *);
doublereal sigma;
extern logical lsame_(char *, char *);
integer iinfo;
char order[1];
extern /* Subroutine */
int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *);
logical wantz;
extern doublereal dlamch_(char *);
logical alleig, indeig;
integer iscale, indibl;
logical valeig;
doublereal safmin;
extern /* Subroutine */
int xerbla_(char *, integer *);
doublereal abstll, bignum;
extern doublereal dlansp_(char *, char *, integer *, doublereal *, doublereal *);
integer indtau, indisp;
extern /* Subroutine */
int dstein_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *), dsterf_(integer *, doublereal *, doublereal *, integer *);
integer indiwo;
extern /* Subroutine */
int dstebz_(char *, char *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *);
integer indwrk;
extern /* Subroutine */
int dopgtr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *), dsptrd_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), dsteqr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *), dopmtr_(char *, char *, char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *);
integer nsplit;
doublereal smlnum;
/* -- LAPACK driver routine (version 3.4.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2011 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--iwork;
--ifail;
/* Function Body */
wantz = lsame_(jobz, "V");
alleig = lsame_(range, "A");
valeig = lsame_(range, "V");
indeig = lsame_(range, "I");
*info = 0;
if (! (wantz || lsame_(jobz, "N")))
{
*info = -1;
}
else if (! (alleig || valeig || indeig))
{
*info = -2;
}
else if (! (lsame_(uplo, "L") || lsame_(uplo, "U")))
{
*info = -3;
}
else if (*n < 0)
{
*info = -4;
}
else
{
if (valeig)
{
if (*n > 0 && *vu <= *vl)
{
*info = -7;
}
}
else if (indeig)
{
if (*il < 1 || *il > max(1,*n))
{
*info = -8;
}
else if (*iu < min(*n,*il) || *iu > *n)
{
*info = -9;
}
}
}
if (*info == 0)
{
if (*ldz < 1 || wantz && *ldz < *n)
{
*info = -14;
}
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("DSPEVX", &i__1);
return 0;
}
/* Quick return if possible */
*m = 0;
if (*n == 0)
{
return 0;
}
if (*n == 1)
{
if (alleig || indeig)
{
*m = 1;
w[1] = ap[1];
}
else
{
if (*vl < ap[1] && *vu >= ap[1])
{
*m = 1;
w[1] = ap[1];
}
}
if (wantz)
{
z__[z_dim1 + 1] = 1.;
}
return 0;
}
/* Get machine constants. */
safmin = dlamch_("Safe minimum");
eps = dlamch_("Precision");
smlnum = safmin / eps;
bignum = 1. / smlnum;
rmin = sqrt(smlnum);
/* Computing MIN */
d__1 = sqrt(bignum);
d__2 = 1. / sqrt(sqrt(safmin)); // , expr subst
rmax = min(d__1,d__2);
/* Scale matrix to allowable range, if necessary. */
iscale = 0;
abstll = *abstol;
if (valeig)
{
vll = *vl;
vuu = *vu;
}
else
{
vll = 0.;
vuu = 0.;
}
anrm = dlansp_("M", uplo, n, &ap[1], &work[1]);
if (anrm > 0. && anrm < rmin)
{
iscale = 1;
sigma = rmin / anrm;
}
else if (anrm > rmax)
{
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1)
{
i__1 = *n * (*n + 1) / 2;
dscal_(&i__1, &sigma, &ap[1], &c__1);
if (*abstol > 0.)
{
abstll = *abstol * sigma;
}
if (valeig)
{
vll = *vl * sigma;
vuu = *vu * sigma;
}
}
/* Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */
indtau = 1;
inde = indtau + *n;
indd = inde + *n;
indwrk = indd + *n;
dsptrd_(uplo, n, &ap[1], &work[indd], &work[inde], &work[indtau], &iinfo);
/* If all eigenvalues are desired and ABSTOL is less than or equal */
/* to zero, then call DSTERF or DOPGTR and SSTEQR. If this fails */
/* for some eigenvalue, then try DSTEBZ. */
test = FALSE_;
if (indeig)
{
if (*il == 1 && *iu == *n)
{
test = TRUE_;
}
}
if ((alleig || test) && *abstol <= 0.)
{
dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
indee = indwrk + (*n << 1);
if (! wantz)
{
i__1 = *n - 1;
dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
dsterf_(n, &w[1], &work[indee], info);
}
else
{
dopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, & work[indwrk], &iinfo);
i__1 = *n - 1;
dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[ indwrk], info);
if (*info == 0)
{
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
ifail[i__] = 0;
/* L10: */
}
}
}
if (*info == 0)
{
*m = *n;
goto L20;
}
*info = 0;
}
/* Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */
if (wantz)
{
*(unsigned char *)order = 'B';
}
else
{
*(unsigned char *)order = 'E';
}
indibl = 1;
indisp = indibl + *n;
indiwo = indisp + *n;
dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[ indwrk], &iwork[indiwo], info);
if (wantz)
{
dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], & ifail[1], info);
/* Apply orthogonal matrix used in reduction to tridiagonal */
/* form to eigenvectors returned by DSTEIN. */
dopmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[indwrk], &iinfo);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
L20:
if (iscale == 1)
{
if (*info == 0)
{
imax = *m;
}
else
{
imax = *info - 1;
}
d__1 = 1. / sigma;
dscal_(&imax, &d__1, &w[1], &c__1);
}
/* If eigenvalues are not in order, then sort them, along with */
/* eigenvectors. */
if (wantz)
{
i__1 = *m - 1;
for (j = 1;
j <= i__1;
++j)
{
i__ = 0;
tmp1 = w[j];
i__2 = *m;
for (jj = j + 1;
jj <= i__2;
++jj)
{
if (w[jj] < tmp1)
{
i__ = jj;
tmp1 = w[jj];
}
/* L30: */
}
if (i__ != 0)
{
itmp1 = iwork[indibl + i__ - 1];
w[i__] = w[j];
iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
w[j] = tmp1;
iwork[indibl + j - 1] = itmp1;
dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1);
if (*info != 0)
{
itmp1 = ifail[i__];
ifail[i__] = ifail[j];
ifail[j] = itmp1;
}
}
/* L40: */
}
}
return 0;
/* End of DSPEVX */
}
/* dspevx_ */
|