1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/* ../netlib/dsptrd.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
static doublereal c_b8 = 0.;
static doublereal c_b14 = -1.;
/* > \brief \b DSPTRD */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DSPTRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsptrd. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsptrd. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsptrd. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DSPTRD( UPLO, N, AP, D, E, TAU, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER UPLO */
/* INTEGER INFO, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION AP( * ), D( * ), E( * ), TAU( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSPTRD reduces a real symmetric matrix A stored in packed form to */
/* > symmetric tridiagonal form T by an orthogonal similarity */
/* > transformation: Q**T * A * Q = T. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A is stored;
*/
/* > = 'L': Lower triangle of A is stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] AP */
/* > \verbatim */
/* > AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/* > On entry, the upper or lower triangle of the symmetric matrix */
/* > A, packed columnwise in a linear array. The j-th column of A */
/* > is stored in the array AP as follows: */
/* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*/
/* > if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/* > On exit, if UPLO = 'U', the diagonal and first superdiagonal */
/* > of A are overwritten by the corresponding elements of the */
/* > tridiagonal matrix T, and the elements above the first */
/* > superdiagonal, with the array TAU, represent the orthogonal */
/* > matrix Q as a product of elementary reflectors;
if UPLO */
/* > = 'L', the diagonal and first subdiagonal of A are over- */
/* > written by the corresponding elements of the tridiagonal */
/* > matrix T, and the elements below the first subdiagonal, with */
/* > the array TAU, represent the orthogonal matrix Q as a product */
/* > of elementary reflectors. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[out] D */
/* > \verbatim */
/* > D is DOUBLE PRECISION array, dimension (N) */
/* > The diagonal elements of the tridiagonal matrix T: */
/* > D(i) = A(i,i). */
/* > \endverbatim */
/* > */
/* > \param[out] E */
/* > \verbatim */
/* > E is DOUBLE PRECISION array, dimension (N-1) */
/* > The off-diagonal elements of the tridiagonal matrix T: */
/* > E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION array, dimension (N-1) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2011 */
/* > \ingroup doubleOTHERcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
/* > reflectors */
/* > */
/* > Q = H(n-1) . . . H(2) H(1). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(i+1:n) = 0 and v(i) = 1;
v(1:i-1) is stored on exit in AP, */
/* > overwriting A(1:i-1,i+1), and tau is stored in TAU(i). */
/* > */
/* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
/* > reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(n-1). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(1:i) = 0 and v(i+1) = 1;
v(i+2:n) is stored on exit in AP, */
/* > overwriting A(i+2:n,i), and tau is stored in TAU(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */
int dsptrd_(char *uplo, integer *n, doublereal *ap, doublereal *d__, doublereal *e, doublereal *tau, integer *info)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__, i1, ii, i1i1;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *);
doublereal taui;
extern /* Subroutine */
int dspr2_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *);
doublereal alpha;
extern logical lsame_(char *, char *);
extern /* Subroutine */
int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dspmv_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *);
logical upper;
extern /* Subroutine */
int dlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
/* -- LAPACK computational routine (version 3.4.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2011 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
--tau;
--e;
--d__;
--ap;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L"))
{
*info = -1;
}
else if (*n < 0)
{
*info = -2;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("DSPTRD", &i__1);
return 0;
}
/* Quick return if possible */
if (*n <= 0)
{
return 0;
}
if (upper)
{
/* Reduce the upper triangle of A. */
/* I1 is the index in AP of A(1,I+1). */
i1 = *n * (*n - 1) / 2 + 1;
for (i__ = *n - 1;
i__ >= 1;
--i__)
{
/* Generate elementary reflector H(i) = I - tau * v * v**T */
/* to annihilate A(1:i-1,i+1) */
dlarfg_(&i__, &ap[i1 + i__ - 1], &ap[i1], &c__1, &taui);
e[i__] = ap[i1 + i__ - 1];
if (taui != 0.)
{
/* Apply H(i) from both sides to A(1:i,1:i) */
ap[i1 + i__ - 1] = 1.;
/* Compute y := tau * A * v storing y in TAU(1:i) */
dspmv_(uplo, &i__, &taui, &ap[1], &ap[i1], &c__1, &c_b8, &tau[ 1], &c__1);
/* Compute w := y - 1/2 * tau * (y**T *v) * v */
alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &ap[i1], & c__1);
daxpy_(&i__, &alpha, &ap[i1], &c__1, &tau[1], &c__1);
/* Apply the transformation as a rank-2 update: */
/* A := A - v * w**T - w * v**T */
dspr2_(uplo, &i__, &c_b14, &ap[i1], &c__1, &tau[1], &c__1, & ap[1]);
ap[i1 + i__ - 1] = e[i__];
}
d__[i__ + 1] = ap[i1 + i__];
tau[i__] = taui;
i1 -= i__;
/* L10: */
}
d__[1] = ap[1];
}
else
{
/* Reduce the lower triangle of A. II is the index in AP of */
/* A(i,i) and I1I1 is the index of A(i+1,i+1). */
ii = 1;
i__1 = *n - 1;
for (i__ = 1;
i__ <= i__1;
++i__)
{
i1i1 = ii + *n - i__ + 1;
/* Generate elementary reflector H(i) = I - tau * v * v**T */
/* to annihilate A(i+2:n,i) */
i__2 = *n - i__;
dlarfg_(&i__2, &ap[ii + 1], &ap[ii + 2], &c__1, &taui);
e[i__] = ap[ii + 1];
if (taui != 0.)
{
/* Apply H(i) from both sides to A(i+1:n,i+1:n) */
ap[ii + 1] = 1.;
/* Compute y := tau * A * v storing y in TAU(i:n-1) */
i__2 = *n - i__;
dspmv_(uplo, &i__2, &taui, &ap[i1i1], &ap[ii + 1], &c__1, & c_b8, &tau[i__], &c__1);
/* Compute w := y - 1/2 * tau * (y**T *v) * v */
i__2 = *n - i__;
alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &ap[ii + 1], &c__1);
i__2 = *n - i__;
daxpy_(&i__2, &alpha, &ap[ii + 1], &c__1, &tau[i__], &c__1);
/* Apply the transformation as a rank-2 update: */
/* A := A - v * w**T - w * v**T */
i__2 = *n - i__;
dspr2_(uplo, &i__2, &c_b14, &ap[ii + 1], &c__1, &tau[i__], & c__1, &ap[i1i1]);
ap[ii + 1] = e[i__];
}
d__[i__] = ap[ii];
tau[i__] = taui;
ii = i1i1;
/* L20: */
}
d__[*n] = ap[ii];
}
return 0;
/* End of DSPTRD */
}
/* dsptrd_ */
|